Properties

Label 2550.2.a.e.1.1
Level $2550$
Weight $2$
Character 2550.1
Self dual yes
Analytic conductor $20.362$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2550,2,Mod(1,2550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2550, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2550.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2550 = 2 \cdot 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2550.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.3618525154\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2550.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} +6.00000 q^{11} -1.00000 q^{12} +2.00000 q^{13} +1.00000 q^{16} -1.00000 q^{17} -1.00000 q^{18} +4.00000 q^{19} -6.00000 q^{22} +5.00000 q^{23} +1.00000 q^{24} -2.00000 q^{26} -1.00000 q^{27} -2.00000 q^{31} -1.00000 q^{32} -6.00000 q^{33} +1.00000 q^{34} +1.00000 q^{36} -3.00000 q^{37} -4.00000 q^{38} -2.00000 q^{39} +5.00000 q^{41} -2.00000 q^{43} +6.00000 q^{44} -5.00000 q^{46} -1.00000 q^{48} -7.00000 q^{49} +1.00000 q^{51} +2.00000 q^{52} -1.00000 q^{53} +1.00000 q^{54} -4.00000 q^{57} -3.00000 q^{59} +5.00000 q^{61} +2.00000 q^{62} +1.00000 q^{64} +6.00000 q^{66} +2.00000 q^{67} -1.00000 q^{68} -5.00000 q^{69} +5.00000 q^{71} -1.00000 q^{72} +3.00000 q^{74} +4.00000 q^{76} +2.00000 q^{78} -8.00000 q^{79} +1.00000 q^{81} -5.00000 q^{82} +1.00000 q^{83} +2.00000 q^{86} -6.00000 q^{88} +14.0000 q^{89} +5.00000 q^{92} +2.00000 q^{93} +1.00000 q^{96} -16.0000 q^{97} +7.00000 q^{98} +6.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.00000 0.408248
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 6.00000 1.80907 0.904534 0.426401i \(-0.140219\pi\)
0.904534 + 0.426401i \(0.140219\pi\)
\(12\) −1.00000 −0.288675
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) −1.00000 −0.235702
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −6.00000 −1.27920
\(23\) 5.00000 1.04257 0.521286 0.853382i \(-0.325452\pi\)
0.521286 + 0.853382i \(0.325452\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) −2.00000 −0.392232
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) −1.00000 −0.176777
\(33\) −6.00000 −1.04447
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −3.00000 −0.493197 −0.246598 0.969118i \(-0.579313\pi\)
−0.246598 + 0.969118i \(0.579313\pi\)
\(38\) −4.00000 −0.648886
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 5.00000 0.780869 0.390434 0.920631i \(-0.372325\pi\)
0.390434 + 0.920631i \(0.372325\pi\)
\(42\) 0 0
\(43\) −2.00000 −0.304997 −0.152499 0.988304i \(-0.548732\pi\)
−0.152499 + 0.988304i \(0.548732\pi\)
\(44\) 6.00000 0.904534
\(45\) 0 0
\(46\) −5.00000 −0.737210
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) −1.00000 −0.144338
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 1.00000 0.140028
\(52\) 2.00000 0.277350
\(53\) −1.00000 −0.137361 −0.0686803 0.997639i \(-0.521879\pi\)
−0.0686803 + 0.997639i \(0.521879\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 0 0
\(59\) −3.00000 −0.390567 −0.195283 0.980747i \(-0.562563\pi\)
−0.195283 + 0.980747i \(0.562563\pi\)
\(60\) 0 0
\(61\) 5.00000 0.640184 0.320092 0.947386i \(-0.396286\pi\)
0.320092 + 0.947386i \(0.396286\pi\)
\(62\) 2.00000 0.254000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 6.00000 0.738549
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) −1.00000 −0.121268
\(69\) −5.00000 −0.601929
\(70\) 0 0
\(71\) 5.00000 0.593391 0.296695 0.954972i \(-0.404115\pi\)
0.296695 + 0.954972i \(0.404115\pi\)
\(72\) −1.00000 −0.117851
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 3.00000 0.348743
\(75\) 0 0
\(76\) 4.00000 0.458831
\(77\) 0 0
\(78\) 2.00000 0.226455
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −5.00000 −0.552158
\(83\) 1.00000 0.109764 0.0548821 0.998493i \(-0.482522\pi\)
0.0548821 + 0.998493i \(0.482522\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 2.00000 0.215666
\(87\) 0 0
\(88\) −6.00000 −0.639602
\(89\) 14.0000 1.48400 0.741999 0.670402i \(-0.233878\pi\)
0.741999 + 0.670402i \(0.233878\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 5.00000 0.521286
\(93\) 2.00000 0.207390
\(94\) 0 0
\(95\) 0 0
\(96\) 1.00000 0.102062
\(97\) −16.0000 −1.62455 −0.812277 0.583272i \(-0.801772\pi\)
−0.812277 + 0.583272i \(0.801772\pi\)
\(98\) 7.00000 0.707107
\(99\) 6.00000 0.603023
\(100\) 0 0
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) −1.00000 −0.0990148
\(103\) 13.0000 1.28093 0.640464 0.767988i \(-0.278742\pi\)
0.640464 + 0.767988i \(0.278742\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) 1.00000 0.0971286
\(107\) −16.0000 −1.54678 −0.773389 0.633932i \(-0.781440\pi\)
−0.773389 + 0.633932i \(0.781440\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) 3.00000 0.284747
\(112\) 0 0
\(113\) 13.0000 1.22294 0.611469 0.791269i \(-0.290579\pi\)
0.611469 + 0.791269i \(0.290579\pi\)
\(114\) 4.00000 0.374634
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000 0.184900
\(118\) 3.00000 0.276172
\(119\) 0 0
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) −5.00000 −0.452679
\(123\) −5.00000 −0.450835
\(124\) −2.00000 −0.179605
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 2.00000 0.176090
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) −6.00000 −0.522233
\(133\) 0 0
\(134\) −2.00000 −0.172774
\(135\) 0 0
\(136\) 1.00000 0.0857493
\(137\) 20.0000 1.70872 0.854358 0.519685i \(-0.173951\pi\)
0.854358 + 0.519685i \(0.173951\pi\)
\(138\) 5.00000 0.425628
\(139\) 1.00000 0.0848189 0.0424094 0.999100i \(-0.486497\pi\)
0.0424094 + 0.999100i \(0.486497\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −5.00000 −0.419591
\(143\) 12.0000 1.00349
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 0 0
\(147\) 7.00000 0.577350
\(148\) −3.00000 −0.246598
\(149\) −5.00000 −0.409616 −0.204808 0.978802i \(-0.565657\pi\)
−0.204808 + 0.978802i \(0.565657\pi\)
\(150\) 0 0
\(151\) 9.00000 0.732410 0.366205 0.930534i \(-0.380657\pi\)
0.366205 + 0.930534i \(0.380657\pi\)
\(152\) −4.00000 −0.324443
\(153\) −1.00000 −0.0808452
\(154\) 0 0
\(155\) 0 0
\(156\) −2.00000 −0.160128
\(157\) −18.0000 −1.43656 −0.718278 0.695756i \(-0.755069\pi\)
−0.718278 + 0.695756i \(0.755069\pi\)
\(158\) 8.00000 0.636446
\(159\) 1.00000 0.0793052
\(160\) 0 0
\(161\) 0 0
\(162\) −1.00000 −0.0785674
\(163\) −9.00000 −0.704934 −0.352467 0.935824i \(-0.614657\pi\)
−0.352467 + 0.935824i \(0.614657\pi\)
\(164\) 5.00000 0.390434
\(165\) 0 0
\(166\) −1.00000 −0.0776151
\(167\) 24.0000 1.85718 0.928588 0.371113i \(-0.121024\pi\)
0.928588 + 0.371113i \(0.121024\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) −2.00000 −0.152499
\(173\) 24.0000 1.82469 0.912343 0.409426i \(-0.134271\pi\)
0.912343 + 0.409426i \(0.134271\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 6.00000 0.452267
\(177\) 3.00000 0.225494
\(178\) −14.0000 −1.04934
\(179\) 3.00000 0.224231 0.112115 0.993695i \(-0.464237\pi\)
0.112115 + 0.993695i \(0.464237\pi\)
\(180\) 0 0
\(181\) 19.0000 1.41226 0.706129 0.708083i \(-0.250440\pi\)
0.706129 + 0.708083i \(0.250440\pi\)
\(182\) 0 0
\(183\) −5.00000 −0.369611
\(184\) −5.00000 −0.368605
\(185\) 0 0
\(186\) −2.00000 −0.146647
\(187\) −6.00000 −0.438763
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −6.00000 −0.434145 −0.217072 0.976156i \(-0.569651\pi\)
−0.217072 + 0.976156i \(0.569651\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 12.0000 0.863779 0.431889 0.901927i \(-0.357847\pi\)
0.431889 + 0.901927i \(0.357847\pi\)
\(194\) 16.0000 1.14873
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) −6.00000 −0.426401
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 0 0
\(201\) −2.00000 −0.141069
\(202\) −10.0000 −0.703598
\(203\) 0 0
\(204\) 1.00000 0.0700140
\(205\) 0 0
\(206\) −13.0000 −0.905753
\(207\) 5.00000 0.347524
\(208\) 2.00000 0.138675
\(209\) 24.0000 1.66011
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) −1.00000 −0.0686803
\(213\) −5.00000 −0.342594
\(214\) 16.0000 1.09374
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) 0 0
\(218\) 10.0000 0.677285
\(219\) 0 0
\(220\) 0 0
\(221\) −2.00000 −0.134535
\(222\) −3.00000 −0.201347
\(223\) −1.00000 −0.0669650 −0.0334825 0.999439i \(-0.510660\pi\)
−0.0334825 + 0.999439i \(0.510660\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −13.0000 −0.864747
\(227\) 6.00000 0.398234 0.199117 0.979976i \(-0.436193\pi\)
0.199117 + 0.979976i \(0.436193\pi\)
\(228\) −4.00000 −0.264906
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.00000 −0.0655122 −0.0327561 0.999463i \(-0.510428\pi\)
−0.0327561 + 0.999463i \(0.510428\pi\)
\(234\) −2.00000 −0.130744
\(235\) 0 0
\(236\) −3.00000 −0.195283
\(237\) 8.00000 0.519656
\(238\) 0 0
\(239\) −30.0000 −1.94054 −0.970269 0.242028i \(-0.922188\pi\)
−0.970269 + 0.242028i \(0.922188\pi\)
\(240\) 0 0
\(241\) −18.0000 −1.15948 −0.579741 0.814801i \(-0.696846\pi\)
−0.579741 + 0.814801i \(0.696846\pi\)
\(242\) −25.0000 −1.60706
\(243\) −1.00000 −0.0641500
\(244\) 5.00000 0.320092
\(245\) 0 0
\(246\) 5.00000 0.318788
\(247\) 8.00000 0.509028
\(248\) 2.00000 0.127000
\(249\) −1.00000 −0.0633724
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 30.0000 1.88608
\(254\) 0 0
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 28.0000 1.74659 0.873296 0.487190i \(-0.161978\pi\)
0.873296 + 0.487190i \(0.161978\pi\)
\(258\) −2.00000 −0.124515
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 12.0000 0.741362
\(263\) 8.00000 0.493301 0.246651 0.969104i \(-0.420670\pi\)
0.246651 + 0.969104i \(0.420670\pi\)
\(264\) 6.00000 0.369274
\(265\) 0 0
\(266\) 0 0
\(267\) −14.0000 −0.856786
\(268\) 2.00000 0.122169
\(269\) 26.0000 1.58525 0.792624 0.609711i \(-0.208714\pi\)
0.792624 + 0.609711i \(0.208714\pi\)
\(270\) 0 0
\(271\) 11.0000 0.668202 0.334101 0.942537i \(-0.391567\pi\)
0.334101 + 0.942537i \(0.391567\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 0 0
\(274\) −20.0000 −1.20824
\(275\) 0 0
\(276\) −5.00000 −0.300965
\(277\) 25.0000 1.50210 0.751052 0.660243i \(-0.229547\pi\)
0.751052 + 0.660243i \(0.229547\pi\)
\(278\) −1.00000 −0.0599760
\(279\) −2.00000 −0.119737
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) −17.0000 −1.01055 −0.505273 0.862960i \(-0.668608\pi\)
−0.505273 + 0.862960i \(0.668608\pi\)
\(284\) 5.00000 0.296695
\(285\) 0 0
\(286\) −12.0000 −0.709575
\(287\) 0 0
\(288\) −1.00000 −0.0589256
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 16.0000 0.937937
\(292\) 0 0
\(293\) 21.0000 1.22683 0.613417 0.789760i \(-0.289795\pi\)
0.613417 + 0.789760i \(0.289795\pi\)
\(294\) −7.00000 −0.408248
\(295\) 0 0
\(296\) 3.00000 0.174371
\(297\) −6.00000 −0.348155
\(298\) 5.00000 0.289642
\(299\) 10.0000 0.578315
\(300\) 0 0
\(301\) 0 0
\(302\) −9.00000 −0.517892
\(303\) −10.0000 −0.574485
\(304\) 4.00000 0.229416
\(305\) 0 0
\(306\) 1.00000 0.0571662
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) 0 0
\(309\) −13.0000 −0.739544
\(310\) 0 0
\(311\) 15.0000 0.850572 0.425286 0.905059i \(-0.360174\pi\)
0.425286 + 0.905059i \(0.360174\pi\)
\(312\) 2.00000 0.113228
\(313\) 20.0000 1.13047 0.565233 0.824931i \(-0.308786\pi\)
0.565233 + 0.824931i \(0.308786\pi\)
\(314\) 18.0000 1.01580
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) 14.0000 0.786318 0.393159 0.919470i \(-0.371382\pi\)
0.393159 + 0.919470i \(0.371382\pi\)
\(318\) −1.00000 −0.0560772
\(319\) 0 0
\(320\) 0 0
\(321\) 16.0000 0.893033
\(322\) 0 0
\(323\) −4.00000 −0.222566
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) 9.00000 0.498464
\(327\) 10.0000 0.553001
\(328\) −5.00000 −0.276079
\(329\) 0 0
\(330\) 0 0
\(331\) 10.0000 0.549650 0.274825 0.961494i \(-0.411380\pi\)
0.274825 + 0.961494i \(0.411380\pi\)
\(332\) 1.00000 0.0548821
\(333\) −3.00000 −0.164399
\(334\) −24.0000 −1.31322
\(335\) 0 0
\(336\) 0 0
\(337\) −6.00000 −0.326841 −0.163420 0.986557i \(-0.552253\pi\)
−0.163420 + 0.986557i \(0.552253\pi\)
\(338\) 9.00000 0.489535
\(339\) −13.0000 −0.706063
\(340\) 0 0
\(341\) −12.0000 −0.649836
\(342\) −4.00000 −0.216295
\(343\) 0 0
\(344\) 2.00000 0.107833
\(345\) 0 0
\(346\) −24.0000 −1.29025
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) −2.00000 −0.106752
\(352\) −6.00000 −0.319801
\(353\) −20.0000 −1.06449 −0.532246 0.846590i \(-0.678652\pi\)
−0.532246 + 0.846590i \(0.678652\pi\)
\(354\) −3.00000 −0.159448
\(355\) 0 0
\(356\) 14.0000 0.741999
\(357\) 0 0
\(358\) −3.00000 −0.158555
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) −19.0000 −0.998618
\(363\) −25.0000 −1.31216
\(364\) 0 0
\(365\) 0 0
\(366\) 5.00000 0.261354
\(367\) −14.0000 −0.730794 −0.365397 0.930852i \(-0.619067\pi\)
−0.365397 + 0.930852i \(0.619067\pi\)
\(368\) 5.00000 0.260643
\(369\) 5.00000 0.260290
\(370\) 0 0
\(371\) 0 0
\(372\) 2.00000 0.103695
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 6.00000 0.310253
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 31.0000 1.59236 0.796182 0.605058i \(-0.206850\pi\)
0.796182 + 0.605058i \(0.206850\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 6.00000 0.306987
\(383\) −4.00000 −0.204390 −0.102195 0.994764i \(-0.532587\pi\)
−0.102195 + 0.994764i \(0.532587\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) −12.0000 −0.610784
\(387\) −2.00000 −0.101666
\(388\) −16.0000 −0.812277
\(389\) 19.0000 0.963338 0.481669 0.876353i \(-0.340031\pi\)
0.481669 + 0.876353i \(0.340031\pi\)
\(390\) 0 0
\(391\) −5.00000 −0.252861
\(392\) 7.00000 0.353553
\(393\) 12.0000 0.605320
\(394\) −6.00000 −0.302276
\(395\) 0 0
\(396\) 6.00000 0.301511
\(397\) 21.0000 1.05396 0.526980 0.849878i \(-0.323324\pi\)
0.526980 + 0.849878i \(0.323324\pi\)
\(398\) 10.0000 0.501255
\(399\) 0 0
\(400\) 0 0
\(401\) −39.0000 −1.94757 −0.973784 0.227477i \(-0.926952\pi\)
−0.973784 + 0.227477i \(0.926952\pi\)
\(402\) 2.00000 0.0997509
\(403\) −4.00000 −0.199254
\(404\) 10.0000 0.497519
\(405\) 0 0
\(406\) 0 0
\(407\) −18.0000 −0.892227
\(408\) −1.00000 −0.0495074
\(409\) 11.0000 0.543915 0.271957 0.962309i \(-0.412329\pi\)
0.271957 + 0.962309i \(0.412329\pi\)
\(410\) 0 0
\(411\) −20.0000 −0.986527
\(412\) 13.0000 0.640464
\(413\) 0 0
\(414\) −5.00000 −0.245737
\(415\) 0 0
\(416\) −2.00000 −0.0980581
\(417\) −1.00000 −0.0489702
\(418\) −24.0000 −1.17388
\(419\) 4.00000 0.195413 0.0977064 0.995215i \(-0.468849\pi\)
0.0977064 + 0.995215i \(0.468849\pi\)
\(420\) 0 0
\(421\) −28.0000 −1.36464 −0.682318 0.731055i \(-0.739028\pi\)
−0.682318 + 0.731055i \(0.739028\pi\)
\(422\) −12.0000 −0.584151
\(423\) 0 0
\(424\) 1.00000 0.0485643
\(425\) 0 0
\(426\) 5.00000 0.242251
\(427\) 0 0
\(428\) −16.0000 −0.773389
\(429\) −12.0000 −0.579365
\(430\) 0 0
\(431\) −28.0000 −1.34871 −0.674356 0.738406i \(-0.735579\pi\)
−0.674356 + 0.738406i \(0.735579\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −6.00000 −0.288342 −0.144171 0.989553i \(-0.546051\pi\)
−0.144171 + 0.989553i \(0.546051\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −10.0000 −0.478913
\(437\) 20.0000 0.956730
\(438\) 0 0
\(439\) −4.00000 −0.190910 −0.0954548 0.995434i \(-0.530431\pi\)
−0.0954548 + 0.995434i \(0.530431\pi\)
\(440\) 0 0
\(441\) −7.00000 −0.333333
\(442\) 2.00000 0.0951303
\(443\) −11.0000 −0.522626 −0.261313 0.965254i \(-0.584155\pi\)
−0.261313 + 0.965254i \(0.584155\pi\)
\(444\) 3.00000 0.142374
\(445\) 0 0
\(446\) 1.00000 0.0473514
\(447\) 5.00000 0.236492
\(448\) 0 0
\(449\) 2.00000 0.0943858 0.0471929 0.998886i \(-0.484972\pi\)
0.0471929 + 0.998886i \(0.484972\pi\)
\(450\) 0 0
\(451\) 30.0000 1.41264
\(452\) 13.0000 0.611469
\(453\) −9.00000 −0.422857
\(454\) −6.00000 −0.281594
\(455\) 0 0
\(456\) 4.00000 0.187317
\(457\) −25.0000 −1.16945 −0.584725 0.811231i \(-0.698798\pi\)
−0.584725 + 0.811231i \(0.698798\pi\)
\(458\) 6.00000 0.280362
\(459\) 1.00000 0.0466760
\(460\) 0 0
\(461\) −35.0000 −1.63011 −0.815056 0.579382i \(-0.803294\pi\)
−0.815056 + 0.579382i \(0.803294\pi\)
\(462\) 0 0
\(463\) −27.0000 −1.25480 −0.627398 0.778699i \(-0.715880\pi\)
−0.627398 + 0.778699i \(0.715880\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 1.00000 0.0463241
\(467\) −33.0000 −1.52706 −0.763529 0.645774i \(-0.776535\pi\)
−0.763529 + 0.645774i \(0.776535\pi\)
\(468\) 2.00000 0.0924500
\(469\) 0 0
\(470\) 0 0
\(471\) 18.0000 0.829396
\(472\) 3.00000 0.138086
\(473\) −12.0000 −0.551761
\(474\) −8.00000 −0.367452
\(475\) 0 0
\(476\) 0 0
\(477\) −1.00000 −0.0457869
\(478\) 30.0000 1.37217
\(479\) −16.0000 −0.731059 −0.365529 0.930800i \(-0.619112\pi\)
−0.365529 + 0.930800i \(0.619112\pi\)
\(480\) 0 0
\(481\) −6.00000 −0.273576
\(482\) 18.0000 0.819878
\(483\) 0 0
\(484\) 25.0000 1.13636
\(485\) 0 0
\(486\) 1.00000 0.0453609
\(487\) 26.0000 1.17817 0.589086 0.808070i \(-0.299488\pi\)
0.589086 + 0.808070i \(0.299488\pi\)
\(488\) −5.00000 −0.226339
\(489\) 9.00000 0.406994
\(490\) 0 0
\(491\) −43.0000 −1.94056 −0.970281 0.241979i \(-0.922203\pi\)
−0.970281 + 0.241979i \(0.922203\pi\)
\(492\) −5.00000 −0.225417
\(493\) 0 0
\(494\) −8.00000 −0.359937
\(495\) 0 0
\(496\) −2.00000 −0.0898027
\(497\) 0 0
\(498\) 1.00000 0.0448111
\(499\) −41.0000 −1.83541 −0.917706 0.397260i \(-0.869961\pi\)
−0.917706 + 0.397260i \(0.869961\pi\)
\(500\) 0 0
\(501\) −24.0000 −1.07224
\(502\) 12.0000 0.535586
\(503\) −5.00000 −0.222939 −0.111469 0.993768i \(-0.535556\pi\)
−0.111469 + 0.993768i \(0.535556\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −30.0000 −1.33366
\(507\) 9.00000 0.399704
\(508\) 0 0
\(509\) 30.0000 1.32973 0.664863 0.746965i \(-0.268490\pi\)
0.664863 + 0.746965i \(0.268490\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) −4.00000 −0.176604
\(514\) −28.0000 −1.23503
\(515\) 0 0
\(516\) 2.00000 0.0880451
\(517\) 0 0
\(518\) 0 0
\(519\) −24.0000 −1.05348
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 0 0
\(523\) −26.0000 −1.13690 −0.568450 0.822718i \(-0.692457\pi\)
−0.568450 + 0.822718i \(0.692457\pi\)
\(524\) −12.0000 −0.524222
\(525\) 0 0
\(526\) −8.00000 −0.348817
\(527\) 2.00000 0.0871214
\(528\) −6.00000 −0.261116
\(529\) 2.00000 0.0869565
\(530\) 0 0
\(531\) −3.00000 −0.130189
\(532\) 0 0
\(533\) 10.0000 0.433148
\(534\) 14.0000 0.605839
\(535\) 0 0
\(536\) −2.00000 −0.0863868
\(537\) −3.00000 −0.129460
\(538\) −26.0000 −1.12094
\(539\) −42.0000 −1.80907
\(540\) 0 0
\(541\) −25.0000 −1.07483 −0.537417 0.843317i \(-0.680600\pi\)
−0.537417 + 0.843317i \(0.680600\pi\)
\(542\) −11.0000 −0.472490
\(543\) −19.0000 −0.815368
\(544\) 1.00000 0.0428746
\(545\) 0 0
\(546\) 0 0
\(547\) −13.0000 −0.555840 −0.277920 0.960604i \(-0.589645\pi\)
−0.277920 + 0.960604i \(0.589645\pi\)
\(548\) 20.0000 0.854358
\(549\) 5.00000 0.213395
\(550\) 0 0
\(551\) 0 0
\(552\) 5.00000 0.212814
\(553\) 0 0
\(554\) −25.0000 −1.06215
\(555\) 0 0
\(556\) 1.00000 0.0424094
\(557\) −11.0000 −0.466085 −0.233042 0.972467i \(-0.574868\pi\)
−0.233042 + 0.972467i \(0.574868\pi\)
\(558\) 2.00000 0.0846668
\(559\) −4.00000 −0.169182
\(560\) 0 0
\(561\) 6.00000 0.253320
\(562\) 6.00000 0.253095
\(563\) −21.0000 −0.885044 −0.442522 0.896758i \(-0.645916\pi\)
−0.442522 + 0.896758i \(0.645916\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 17.0000 0.714563
\(567\) 0 0
\(568\) −5.00000 −0.209795
\(569\) −26.0000 −1.08998 −0.544988 0.838444i \(-0.683466\pi\)
−0.544988 + 0.838444i \(0.683466\pi\)
\(570\) 0 0
\(571\) 23.0000 0.962520 0.481260 0.876578i \(-0.340179\pi\)
0.481260 + 0.876578i \(0.340179\pi\)
\(572\) 12.0000 0.501745
\(573\) 6.00000 0.250654
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) −7.00000 −0.291414 −0.145707 0.989328i \(-0.546546\pi\)
−0.145707 + 0.989328i \(0.546546\pi\)
\(578\) −1.00000 −0.0415945
\(579\) −12.0000 −0.498703
\(580\) 0 0
\(581\) 0 0
\(582\) −16.0000 −0.663221
\(583\) −6.00000 −0.248495
\(584\) 0 0
\(585\) 0 0
\(586\) −21.0000 −0.867502
\(587\) 45.0000 1.85735 0.928674 0.370896i \(-0.120949\pi\)
0.928674 + 0.370896i \(0.120949\pi\)
\(588\) 7.00000 0.288675
\(589\) −8.00000 −0.329634
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) −3.00000 −0.123299
\(593\) 24.0000 0.985562 0.492781 0.870153i \(-0.335980\pi\)
0.492781 + 0.870153i \(0.335980\pi\)
\(594\) 6.00000 0.246183
\(595\) 0 0
\(596\) −5.00000 −0.204808
\(597\) 10.0000 0.409273
\(598\) −10.0000 −0.408930
\(599\) −8.00000 −0.326871 −0.163436 0.986554i \(-0.552258\pi\)
−0.163436 + 0.986554i \(0.552258\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) 2.00000 0.0814463
\(604\) 9.00000 0.366205
\(605\) 0 0
\(606\) 10.0000 0.406222
\(607\) 34.0000 1.38002 0.690009 0.723801i \(-0.257607\pi\)
0.690009 + 0.723801i \(0.257607\pi\)
\(608\) −4.00000 −0.162221
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −1.00000 −0.0404226
\(613\) −38.0000 −1.53481 −0.767403 0.641165i \(-0.778451\pi\)
−0.767403 + 0.641165i \(0.778451\pi\)
\(614\) −2.00000 −0.0807134
\(615\) 0 0
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 13.0000 0.522937
\(619\) 20.0000 0.803868 0.401934 0.915669i \(-0.368338\pi\)
0.401934 + 0.915669i \(0.368338\pi\)
\(620\) 0 0
\(621\) −5.00000 −0.200643
\(622\) −15.0000 −0.601445
\(623\) 0 0
\(624\) −2.00000 −0.0800641
\(625\) 0 0
\(626\) −20.0000 −0.799361
\(627\) −24.0000 −0.958468
\(628\) −18.0000 −0.718278
\(629\) 3.00000 0.119618
\(630\) 0 0
\(631\) 41.0000 1.63218 0.816092 0.577922i \(-0.196136\pi\)
0.816092 + 0.577922i \(0.196136\pi\)
\(632\) 8.00000 0.318223
\(633\) −12.0000 −0.476957
\(634\) −14.0000 −0.556011
\(635\) 0 0
\(636\) 1.00000 0.0396526
\(637\) −14.0000 −0.554700
\(638\) 0 0
\(639\) 5.00000 0.197797
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) −16.0000 −0.631470
\(643\) −37.0000 −1.45914 −0.729569 0.683907i \(-0.760279\pi\)
−0.729569 + 0.683907i \(0.760279\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 4.00000 0.157378
\(647\) 10.0000 0.393141 0.196570 0.980490i \(-0.437020\pi\)
0.196570 + 0.980490i \(0.437020\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −18.0000 −0.706562
\(650\) 0 0
\(651\) 0 0
\(652\) −9.00000 −0.352467
\(653\) 24.0000 0.939193 0.469596 0.882881i \(-0.344399\pi\)
0.469596 + 0.882881i \(0.344399\pi\)
\(654\) −10.0000 −0.391031
\(655\) 0 0
\(656\) 5.00000 0.195217
\(657\) 0 0
\(658\) 0 0
\(659\) 16.0000 0.623272 0.311636 0.950202i \(-0.399123\pi\)
0.311636 + 0.950202i \(0.399123\pi\)
\(660\) 0 0
\(661\) 26.0000 1.01128 0.505641 0.862744i \(-0.331256\pi\)
0.505641 + 0.862744i \(0.331256\pi\)
\(662\) −10.0000 −0.388661
\(663\) 2.00000 0.0776736
\(664\) −1.00000 −0.0388075
\(665\) 0 0
\(666\) 3.00000 0.116248
\(667\) 0 0
\(668\) 24.0000 0.928588
\(669\) 1.00000 0.0386622
\(670\) 0 0
\(671\) 30.0000 1.15814
\(672\) 0 0
\(673\) 16.0000 0.616755 0.308377 0.951264i \(-0.400214\pi\)
0.308377 + 0.951264i \(0.400214\pi\)
\(674\) 6.00000 0.231111
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) −36.0000 −1.38359 −0.691796 0.722093i \(-0.743180\pi\)
−0.691796 + 0.722093i \(0.743180\pi\)
\(678\) 13.0000 0.499262
\(679\) 0 0
\(680\) 0 0
\(681\) −6.00000 −0.229920
\(682\) 12.0000 0.459504
\(683\) 30.0000 1.14792 0.573959 0.818884i \(-0.305407\pi\)
0.573959 + 0.818884i \(0.305407\pi\)
\(684\) 4.00000 0.152944
\(685\) 0 0
\(686\) 0 0
\(687\) 6.00000 0.228914
\(688\) −2.00000 −0.0762493
\(689\) −2.00000 −0.0761939
\(690\) 0 0
\(691\) −33.0000 −1.25538 −0.627690 0.778464i \(-0.715999\pi\)
−0.627690 + 0.778464i \(0.715999\pi\)
\(692\) 24.0000 0.912343
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 0 0
\(696\) 0 0
\(697\) −5.00000 −0.189389
\(698\) −14.0000 −0.529908
\(699\) 1.00000 0.0378235
\(700\) 0 0
\(701\) 31.0000 1.17085 0.585427 0.810725i \(-0.300927\pi\)
0.585427 + 0.810725i \(0.300927\pi\)
\(702\) 2.00000 0.0754851
\(703\) −12.0000 −0.452589
\(704\) 6.00000 0.226134
\(705\) 0 0
\(706\) 20.0000 0.752710
\(707\) 0 0
\(708\) 3.00000 0.112747
\(709\) −34.0000 −1.27690 −0.638448 0.769665i \(-0.720423\pi\)
−0.638448 + 0.769665i \(0.720423\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) −14.0000 −0.524672
\(713\) −10.0000 −0.374503
\(714\) 0 0
\(715\) 0 0
\(716\) 3.00000 0.112115
\(717\) 30.0000 1.12037
\(718\) 4.00000 0.149279
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 3.00000 0.111648
\(723\) 18.0000 0.669427
\(724\) 19.0000 0.706129
\(725\) 0 0
\(726\) 25.0000 0.927837
\(727\) −52.0000 −1.92857 −0.964287 0.264861i \(-0.914674\pi\)
−0.964287 + 0.264861i \(0.914674\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 2.00000 0.0739727
\(732\) −5.00000 −0.184805
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 14.0000 0.516749
\(735\) 0 0
\(736\) −5.00000 −0.184302
\(737\) 12.0000 0.442026
\(738\) −5.00000 −0.184053
\(739\) −28.0000 −1.03000 −0.514998 0.857191i \(-0.672207\pi\)
−0.514998 + 0.857191i \(0.672207\pi\)
\(740\) 0 0
\(741\) −8.00000 −0.293887
\(742\) 0 0
\(743\) −19.0000 −0.697042 −0.348521 0.937301i \(-0.613316\pi\)
−0.348521 + 0.937301i \(0.613316\pi\)
\(744\) −2.00000 −0.0733236
\(745\) 0 0
\(746\) −4.00000 −0.146450
\(747\) 1.00000 0.0365881
\(748\) −6.00000 −0.219382
\(749\) 0 0
\(750\) 0 0
\(751\) −12.0000 −0.437886 −0.218943 0.975738i \(-0.570261\pi\)
−0.218943 + 0.975738i \(0.570261\pi\)
\(752\) 0 0
\(753\) 12.0000 0.437304
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 40.0000 1.45382 0.726912 0.686730i \(-0.240955\pi\)
0.726912 + 0.686730i \(0.240955\pi\)
\(758\) −31.0000 −1.12597
\(759\) −30.0000 −1.08893
\(760\) 0 0
\(761\) −36.0000 −1.30500 −0.652499 0.757789i \(-0.726280\pi\)
−0.652499 + 0.757789i \(0.726280\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −6.00000 −0.217072
\(765\) 0 0
\(766\) 4.00000 0.144526
\(767\) −6.00000 −0.216647
\(768\) −1.00000 −0.0360844
\(769\) 35.0000 1.26213 0.631066 0.775729i \(-0.282618\pi\)
0.631066 + 0.775729i \(0.282618\pi\)
\(770\) 0 0
\(771\) −28.0000 −1.00840
\(772\) 12.0000 0.431889
\(773\) −3.00000 −0.107903 −0.0539513 0.998544i \(-0.517182\pi\)
−0.0539513 + 0.998544i \(0.517182\pi\)
\(774\) 2.00000 0.0718885
\(775\) 0 0
\(776\) 16.0000 0.574367
\(777\) 0 0
\(778\) −19.0000 −0.681183
\(779\) 20.0000 0.716574
\(780\) 0 0
\(781\) 30.0000 1.07348
\(782\) 5.00000 0.178800
\(783\) 0 0
\(784\) −7.00000 −0.250000
\(785\) 0 0
\(786\) −12.0000 −0.428026
\(787\) 21.0000 0.748569 0.374285 0.927314i \(-0.377888\pi\)
0.374285 + 0.927314i \(0.377888\pi\)
\(788\) 6.00000 0.213741
\(789\) −8.00000 −0.284808
\(790\) 0 0
\(791\) 0 0
\(792\) −6.00000 −0.213201
\(793\) 10.0000 0.355110
\(794\) −21.0000 −0.745262
\(795\) 0 0
\(796\) −10.0000 −0.354441
\(797\) −19.0000 −0.673015 −0.336507 0.941681i \(-0.609246\pi\)
−0.336507 + 0.941681i \(0.609246\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 14.0000 0.494666
\(802\) 39.0000 1.37714
\(803\) 0 0
\(804\) −2.00000 −0.0705346
\(805\) 0 0
\(806\) 4.00000 0.140894
\(807\) −26.0000 −0.915243
\(808\) −10.0000 −0.351799
\(809\) 18.0000 0.632846 0.316423 0.948618i \(-0.397518\pi\)
0.316423 + 0.948618i \(0.397518\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) 0 0
\(813\) −11.0000 −0.385787
\(814\) 18.0000 0.630900
\(815\) 0 0
\(816\) 1.00000 0.0350070
\(817\) −8.00000 −0.279885
\(818\) −11.0000 −0.384606
\(819\) 0 0
\(820\) 0 0
\(821\) 36.0000 1.25641 0.628204 0.778048i \(-0.283790\pi\)
0.628204 + 0.778048i \(0.283790\pi\)
\(822\) 20.0000 0.697580
\(823\) −32.0000 −1.11545 −0.557725 0.830026i \(-0.688326\pi\)
−0.557725 + 0.830026i \(0.688326\pi\)
\(824\) −13.0000 −0.452876
\(825\) 0 0
\(826\) 0 0
\(827\) −10.0000 −0.347734 −0.173867 0.984769i \(-0.555626\pi\)
−0.173867 + 0.984769i \(0.555626\pi\)
\(828\) 5.00000 0.173762
\(829\) 16.0000 0.555703 0.277851 0.960624i \(-0.410378\pi\)
0.277851 + 0.960624i \(0.410378\pi\)
\(830\) 0 0
\(831\) −25.0000 −0.867240
\(832\) 2.00000 0.0693375
\(833\) 7.00000 0.242536
\(834\) 1.00000 0.0346272
\(835\) 0 0
\(836\) 24.0000 0.830057
\(837\) 2.00000 0.0691301
\(838\) −4.00000 −0.138178
\(839\) −15.0000 −0.517858 −0.258929 0.965896i \(-0.583369\pi\)
−0.258929 + 0.965896i \(0.583369\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 28.0000 0.964944
\(843\) 6.00000 0.206651
\(844\) 12.0000 0.413057
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −1.00000 −0.0343401
\(849\) 17.0000 0.583438
\(850\) 0 0
\(851\) −15.0000 −0.514193
\(852\) −5.00000 −0.171297
\(853\) 42.0000 1.43805 0.719026 0.694983i \(-0.244588\pi\)
0.719026 + 0.694983i \(0.244588\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 16.0000 0.546869
\(857\) 11.0000 0.375753 0.187876 0.982193i \(-0.439840\pi\)
0.187876 + 0.982193i \(0.439840\pi\)
\(858\) 12.0000 0.409673
\(859\) −16.0000 −0.545913 −0.272956 0.962026i \(-0.588002\pi\)
−0.272956 + 0.962026i \(0.588002\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 28.0000 0.953684
\(863\) −28.0000 −0.953131 −0.476566 0.879139i \(-0.658119\pi\)
−0.476566 + 0.879139i \(0.658119\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) 6.00000 0.203888
\(867\) −1.00000 −0.0339618
\(868\) 0 0
\(869\) −48.0000 −1.62829
\(870\) 0 0
\(871\) 4.00000 0.135535
\(872\) 10.0000 0.338643
\(873\) −16.0000 −0.541518
\(874\) −20.0000 −0.676510
\(875\) 0 0
\(876\) 0 0
\(877\) −2.00000 −0.0675352 −0.0337676 0.999430i \(-0.510751\pi\)
−0.0337676 + 0.999430i \(0.510751\pi\)
\(878\) 4.00000 0.134993
\(879\) −21.0000 −0.708312
\(880\) 0 0
\(881\) −53.0000 −1.78562 −0.892808 0.450438i \(-0.851268\pi\)
−0.892808 + 0.450438i \(0.851268\pi\)
\(882\) 7.00000 0.235702
\(883\) −6.00000 −0.201916 −0.100958 0.994891i \(-0.532191\pi\)
−0.100958 + 0.994891i \(0.532191\pi\)
\(884\) −2.00000 −0.0672673
\(885\) 0 0
\(886\) 11.0000 0.369552
\(887\) 3.00000 0.100730 0.0503651 0.998731i \(-0.483962\pi\)
0.0503651 + 0.998731i \(0.483962\pi\)
\(888\) −3.00000 −0.100673
\(889\) 0 0
\(890\) 0 0
\(891\) 6.00000 0.201008
\(892\) −1.00000 −0.0334825
\(893\) 0 0
\(894\) −5.00000 −0.167225
\(895\) 0 0
\(896\) 0 0
\(897\) −10.0000 −0.333890
\(898\) −2.00000 −0.0667409
\(899\) 0 0
\(900\) 0 0
\(901\) 1.00000 0.0333148
\(902\) −30.0000 −0.998891
\(903\) 0 0
\(904\) −13.0000 −0.432374
\(905\) 0 0
\(906\) 9.00000 0.299005
\(907\) 17.0000 0.564476 0.282238 0.959344i \(-0.408923\pi\)
0.282238 + 0.959344i \(0.408923\pi\)
\(908\) 6.00000 0.199117
\(909\) 10.0000 0.331679
\(910\) 0 0
\(911\) −32.0000 −1.06021 −0.530104 0.847933i \(-0.677847\pi\)
−0.530104 + 0.847933i \(0.677847\pi\)
\(912\) −4.00000 −0.132453
\(913\) 6.00000 0.198571
\(914\) 25.0000 0.826927
\(915\) 0 0
\(916\) −6.00000 −0.198246
\(917\) 0 0
\(918\) −1.00000 −0.0330049
\(919\) 49.0000 1.61636 0.808180 0.588935i \(-0.200453\pi\)
0.808180 + 0.588935i \(0.200453\pi\)
\(920\) 0 0
\(921\) −2.00000 −0.0659022
\(922\) 35.0000 1.15266
\(923\) 10.0000 0.329154
\(924\) 0 0
\(925\) 0 0
\(926\) 27.0000 0.887275
\(927\) 13.0000 0.426976
\(928\) 0 0
\(929\) −13.0000 −0.426516 −0.213258 0.976996i \(-0.568408\pi\)
−0.213258 + 0.976996i \(0.568408\pi\)
\(930\) 0 0
\(931\) −28.0000 −0.917663
\(932\) −1.00000 −0.0327561
\(933\) −15.0000 −0.491078
\(934\) 33.0000 1.07979
\(935\) 0 0
\(936\) −2.00000 −0.0653720
\(937\) −23.0000 −0.751377 −0.375689 0.926746i \(-0.622594\pi\)
−0.375689 + 0.926746i \(0.622594\pi\)
\(938\) 0 0
\(939\) −20.0000 −0.652675
\(940\) 0 0
\(941\) 10.0000 0.325991 0.162995 0.986627i \(-0.447884\pi\)
0.162995 + 0.986627i \(0.447884\pi\)
\(942\) −18.0000 −0.586472
\(943\) 25.0000 0.814112
\(944\) −3.00000 −0.0976417
\(945\) 0 0
\(946\) 12.0000 0.390154
\(947\) 48.0000 1.55979 0.779895 0.625910i \(-0.215272\pi\)
0.779895 + 0.625910i \(0.215272\pi\)
\(948\) 8.00000 0.259828
\(949\) 0 0
\(950\) 0 0
\(951\) −14.0000 −0.453981
\(952\) 0 0
\(953\) −14.0000 −0.453504 −0.226752 0.973952i \(-0.572811\pi\)
−0.226752 + 0.973952i \(0.572811\pi\)
\(954\) 1.00000 0.0323762
\(955\) 0 0
\(956\) −30.0000 −0.970269
\(957\) 0 0
\(958\) 16.0000 0.516937
\(959\) 0 0
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 6.00000 0.193448
\(963\) −16.0000 −0.515593
\(964\) −18.0000 −0.579741
\(965\) 0 0
\(966\) 0 0
\(967\) −57.0000 −1.83300 −0.916498 0.400039i \(-0.868997\pi\)
−0.916498 + 0.400039i \(0.868997\pi\)
\(968\) −25.0000 −0.803530
\(969\) 4.00000 0.128499
\(970\) 0 0
\(971\) 51.0000 1.63667 0.818334 0.574743i \(-0.194898\pi\)
0.818334 + 0.574743i \(0.194898\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 0 0
\(974\) −26.0000 −0.833094
\(975\) 0 0
\(976\) 5.00000 0.160046
\(977\) −34.0000 −1.08776 −0.543878 0.839164i \(-0.683045\pi\)
−0.543878 + 0.839164i \(0.683045\pi\)
\(978\) −9.00000 −0.287788
\(979\) 84.0000 2.68465
\(980\) 0 0
\(981\) −10.0000 −0.319275
\(982\) 43.0000 1.37219
\(983\) −8.00000 −0.255160 −0.127580 0.991828i \(-0.540721\pi\)
−0.127580 + 0.991828i \(0.540721\pi\)
\(984\) 5.00000 0.159394
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 8.00000 0.254514
\(989\) −10.0000 −0.317982
\(990\) 0 0
\(991\) 40.0000 1.27064 0.635321 0.772248i \(-0.280868\pi\)
0.635321 + 0.772248i \(0.280868\pi\)
\(992\) 2.00000 0.0635001
\(993\) −10.0000 −0.317340
\(994\) 0 0
\(995\) 0 0
\(996\) −1.00000 −0.0316862
\(997\) 22.0000 0.696747 0.348373 0.937356i \(-0.386734\pi\)
0.348373 + 0.937356i \(0.386734\pi\)
\(998\) 41.0000 1.29783
\(999\) 3.00000 0.0949158
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2550.2.a.e.1.1 1
3.2 odd 2 7650.2.a.bv.1.1 1
5.2 odd 4 2550.2.d.t.2449.1 2
5.3 odd 4 2550.2.d.t.2449.2 2
5.4 even 2 2550.2.a.bd.1.1 yes 1
15.14 odd 2 7650.2.a.p.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2550.2.a.e.1.1 1 1.1 even 1 trivial
2550.2.a.bd.1.1 yes 1 5.4 even 2
2550.2.d.t.2449.1 2 5.2 odd 4
2550.2.d.t.2449.2 2 5.3 odd 4
7650.2.a.p.1.1 1 15.14 odd 2
7650.2.a.bv.1.1 1 3.2 odd 2