Properties

Label 256.11.c.m.255.15
Level $256$
Weight $11$
Character 256.255
Analytic conductor $162.651$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,11,Mod(255,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 11, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.255");
 
S:= CuspForms(chi, 11);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 256.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(162.651456684\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{14} + 61429 x^{12} - 23865589 x^{10} + 9433993075 x^{8} - 796642244899 x^{6} + \cdots + 11\!\cdots\!56 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{178}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 8)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 255.15
Root \(11.1953 - 8.43092i\) of defining polynomial
Character \(\chi\) \(=\) 256.255
Dual form 256.11.c.m.255.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+352.099i q^{3} -3773.58 q^{5} -15618.2i q^{7} -64924.4 q^{9} +115158. i q^{11} +546374. q^{13} -1.32867e6i q^{15} -1.50100e6 q^{17} +3.45753e6i q^{19} +5.49914e6 q^{21} +3.90931e6i q^{23} +4.47430e6 q^{25} -2.06872e6i q^{27} -1.57435e7 q^{29} +1.36335e7i q^{31} -4.05471e7 q^{33} +5.89365e7i q^{35} +7.96225e7 q^{37} +1.92377e8i q^{39} +1.01409e7 q^{41} -4.09302e7i q^{43} +2.44998e8 q^{45} +2.36040e8i q^{47} +3.85474e7 q^{49} -5.28499e8i q^{51} -3.09768e8 q^{53} -4.34559e8i q^{55} -1.21739e9 q^{57} +6.26191e7i q^{59} -1.02129e9 q^{61} +1.01400e9i q^{63} -2.06179e9 q^{65} +6.25414e8i q^{67} -1.37646e9 q^{69} +2.05543e9i q^{71} -2.44117e9 q^{73} +1.57539e9i q^{75} +1.79856e9 q^{77} -3.04489e9i q^{79} -3.10533e9 q^{81} +2.75511e9i q^{83} +5.66413e9 q^{85} -5.54325e9i q^{87} -2.51922e8 q^{89} -8.53337e9i q^{91} -4.80035e9 q^{93} -1.30473e10i q^{95} -1.56384e10 q^{97} -7.47658e9i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 70992 q^{9} - 741600 q^{17} + 37585520 q^{25} - 148617408 q^{33} - 185338656 q^{41} - 160864496 q^{49} - 2801425728 q^{57} - 1678056960 q^{65} - 5600145440 q^{73} - 23818130352 q^{81} - 12325192224 q^{89}+ \cdots - 19395727072 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 352.099i 1.44897i 0.689293 + 0.724483i \(0.257921\pi\)
−0.689293 + 0.724483i \(0.742079\pi\)
\(4\) 0 0
\(5\) −3773.58 −1.20755 −0.603773 0.797156i \(-0.706337\pi\)
−0.603773 + 0.797156i \(0.706337\pi\)
\(6\) 0 0
\(7\) − 15618.2i − 0.929267i −0.885503 0.464633i \(-0.846186\pi\)
0.885503 0.464633i \(-0.153814\pi\)
\(8\) 0 0
\(9\) −64924.4 −1.09950
\(10\) 0 0
\(11\) 115158.i 0.715042i 0.933905 + 0.357521i \(0.116378\pi\)
−0.933905 + 0.357521i \(0.883622\pi\)
\(12\) 0 0
\(13\) 546374. 1.47154 0.735772 0.677230i \(-0.236820\pi\)
0.735772 + 0.677230i \(0.236820\pi\)
\(14\) 0 0
\(15\) − 1.32867e6i − 1.74969i
\(16\) 0 0
\(17\) −1.50100e6 −1.05715 −0.528573 0.848888i \(-0.677273\pi\)
−0.528573 + 0.848888i \(0.677273\pi\)
\(18\) 0 0
\(19\) 3.45753e6i 1.39636i 0.715922 + 0.698180i \(0.246007\pi\)
−0.715922 + 0.698180i \(0.753993\pi\)
\(20\) 0 0
\(21\) 5.49914e6 1.34648
\(22\) 0 0
\(23\) 3.90931e6i 0.607380i 0.952771 + 0.303690i \(0.0982188\pi\)
−0.952771 + 0.303690i \(0.901781\pi\)
\(24\) 0 0
\(25\) 4.47430e6 0.458168
\(26\) 0 0
\(27\) − 2.06872e6i − 0.144173i
\(28\) 0 0
\(29\) −1.57435e7 −0.767557 −0.383778 0.923425i \(-0.625377\pi\)
−0.383778 + 0.923425i \(0.625377\pi\)
\(30\) 0 0
\(31\) 1.36335e7i 0.476212i 0.971239 + 0.238106i \(0.0765265\pi\)
−0.971239 + 0.238106i \(0.923473\pi\)
\(32\) 0 0
\(33\) −4.05471e7 −1.03607
\(34\) 0 0
\(35\) 5.89365e7i 1.12213i
\(36\) 0 0
\(37\) 7.96225e7 1.14823 0.574113 0.818776i \(-0.305347\pi\)
0.574113 + 0.818776i \(0.305347\pi\)
\(38\) 0 0
\(39\) 1.92377e8i 2.13222i
\(40\) 0 0
\(41\) 1.01409e7 0.0875298 0.0437649 0.999042i \(-0.486065\pi\)
0.0437649 + 0.999042i \(0.486065\pi\)
\(42\) 0 0
\(43\) − 4.09302e7i − 0.278421i −0.990263 0.139210i \(-0.955544\pi\)
0.990263 0.139210i \(-0.0444565\pi\)
\(44\) 0 0
\(45\) 2.44998e8 1.32770
\(46\) 0 0
\(47\) 2.36040e8i 1.02919i 0.857433 + 0.514595i \(0.172058\pi\)
−0.857433 + 0.514595i \(0.827942\pi\)
\(48\) 0 0
\(49\) 3.85474e7 0.136463
\(50\) 0 0
\(51\) − 5.28499e8i − 1.53177i
\(52\) 0 0
\(53\) −3.09768e8 −0.740725 −0.370362 0.928887i \(-0.620766\pi\)
−0.370362 + 0.928887i \(0.620766\pi\)
\(54\) 0 0
\(55\) − 4.34559e8i − 0.863447i
\(56\) 0 0
\(57\) −1.21739e9 −2.02328
\(58\) 0 0
\(59\) 6.26191e7i 0.0875885i 0.999041 + 0.0437942i \(0.0139446\pi\)
−0.999041 + 0.0437942i \(0.986055\pi\)
\(60\) 0 0
\(61\) −1.02129e9 −1.20921 −0.604603 0.796527i \(-0.706668\pi\)
−0.604603 + 0.796527i \(0.706668\pi\)
\(62\) 0 0
\(63\) 1.01400e9i 1.02173i
\(64\) 0 0
\(65\) −2.06179e9 −1.77696
\(66\) 0 0
\(67\) 6.25414e8i 0.463227i 0.972808 + 0.231613i \(0.0744004\pi\)
−0.972808 + 0.231613i \(0.925600\pi\)
\(68\) 0 0
\(69\) −1.37646e9 −0.880073
\(70\) 0 0
\(71\) 2.05543e9i 1.13923i 0.821913 + 0.569614i \(0.192907\pi\)
−0.821913 + 0.569614i \(0.807093\pi\)
\(72\) 0 0
\(73\) −2.44117e9 −1.17756 −0.588781 0.808292i \(-0.700392\pi\)
−0.588781 + 0.808292i \(0.700392\pi\)
\(74\) 0 0
\(75\) 1.57539e9i 0.663870i
\(76\) 0 0
\(77\) 1.79856e9 0.664465
\(78\) 0 0
\(79\) − 3.04489e9i − 0.989548i −0.869022 0.494774i \(-0.835251\pi\)
0.869022 0.494774i \(-0.164749\pi\)
\(80\) 0 0
\(81\) −3.10533e9 −0.890599
\(82\) 0 0
\(83\) 2.75511e9i 0.699438i 0.936855 + 0.349719i \(0.113723\pi\)
−0.936855 + 0.349719i \(0.886277\pi\)
\(84\) 0 0
\(85\) 5.66413e9 1.27655
\(86\) 0 0
\(87\) − 5.54325e9i − 1.11216i
\(88\) 0 0
\(89\) −2.51922e8 −0.0451145 −0.0225573 0.999746i \(-0.507181\pi\)
−0.0225573 + 0.999746i \(0.507181\pi\)
\(90\) 0 0
\(91\) − 8.53337e9i − 1.36746i
\(92\) 0 0
\(93\) −4.80035e9 −0.690014
\(94\) 0 0
\(95\) − 1.30473e10i − 1.68617i
\(96\) 0 0
\(97\) −1.56384e10 −1.82110 −0.910549 0.413401i \(-0.864341\pi\)
−0.910549 + 0.413401i \(0.864341\pi\)
\(98\) 0 0
\(99\) − 7.47658e9i − 0.786189i
\(100\) 0 0
\(101\) 3.85788e9 0.367064 0.183532 0.983014i \(-0.441247\pi\)
0.183532 + 0.983014i \(0.441247\pi\)
\(102\) 0 0
\(103\) − 9.28145e9i − 0.800626i −0.916378 0.400313i \(-0.868901\pi\)
0.916378 0.400313i \(-0.131099\pi\)
\(104\) 0 0
\(105\) −2.07515e10 −1.62593
\(106\) 0 0
\(107\) 3.91137e9i 0.278875i 0.990231 + 0.139438i \(0.0445294\pi\)
−0.990231 + 0.139438i \(0.955471\pi\)
\(108\) 0 0
\(109\) 1.09799e10 0.713619 0.356809 0.934177i \(-0.383865\pi\)
0.356809 + 0.934177i \(0.383865\pi\)
\(110\) 0 0
\(111\) 2.80350e10i 1.66374i
\(112\) 0 0
\(113\) 2.02898e10 1.10125 0.550624 0.834753i \(-0.314390\pi\)
0.550624 + 0.834753i \(0.314390\pi\)
\(114\) 0 0
\(115\) − 1.47521e10i − 0.733440i
\(116\) 0 0
\(117\) −3.54730e10 −1.61796
\(118\) 0 0
\(119\) 2.34428e10i 0.982371i
\(120\) 0 0
\(121\) 1.26760e10 0.488714
\(122\) 0 0
\(123\) 3.57058e9i 0.126828i
\(124\) 0 0
\(125\) 1.99672e10 0.654287
\(126\) 0 0
\(127\) − 6.26328e9i − 0.189576i −0.995497 0.0947880i \(-0.969783\pi\)
0.995497 0.0947880i \(-0.0302173\pi\)
\(128\) 0 0
\(129\) 1.44115e10 0.403422
\(130\) 0 0
\(131\) − 4.99170e9i − 0.129387i −0.997905 0.0646937i \(-0.979393\pi\)
0.997905 0.0646937i \(-0.0206070\pi\)
\(132\) 0 0
\(133\) 5.40003e10 1.29759
\(134\) 0 0
\(135\) 7.80649e9i 0.174095i
\(136\) 0 0
\(137\) 5.31439e10 1.10116 0.550580 0.834782i \(-0.314406\pi\)
0.550580 + 0.834782i \(0.314406\pi\)
\(138\) 0 0
\(139\) − 3.24537e10i − 0.625446i −0.949844 0.312723i \(-0.898759\pi\)
0.949844 0.312723i \(-0.101241\pi\)
\(140\) 0 0
\(141\) −8.31093e10 −1.49126
\(142\) 0 0
\(143\) 6.29195e10i 1.05222i
\(144\) 0 0
\(145\) 5.94093e10 0.926860
\(146\) 0 0
\(147\) 1.35725e10i 0.197730i
\(148\) 0 0
\(149\) −9.33485e10 −1.27109 −0.635544 0.772064i \(-0.719224\pi\)
−0.635544 + 0.772064i \(0.719224\pi\)
\(150\) 0 0
\(151\) − 1.79317e8i − 0.00228422i −0.999999 0.00114211i \(-0.999636\pi\)
0.999999 0.00114211i \(-0.000363545\pi\)
\(152\) 0 0
\(153\) 9.74513e10 1.16233
\(154\) 0 0
\(155\) − 5.14473e10i − 0.575048i
\(156\) 0 0
\(157\) −4.41399e10 −0.462736 −0.231368 0.972866i \(-0.574320\pi\)
−0.231368 + 0.972866i \(0.574320\pi\)
\(158\) 0 0
\(159\) − 1.09069e11i − 1.07328i
\(160\) 0 0
\(161\) 6.10563e10 0.564419
\(162\) 0 0
\(163\) − 1.06005e11i − 0.921272i −0.887589 0.460636i \(-0.847621\pi\)
0.887589 0.460636i \(-0.152379\pi\)
\(164\) 0 0
\(165\) 1.53008e11 1.25110
\(166\) 0 0
\(167\) 1.65219e11i 1.27198i 0.771699 + 0.635988i \(0.219407\pi\)
−0.771699 + 0.635988i \(0.780593\pi\)
\(168\) 0 0
\(169\) 1.60666e11 1.16544
\(170\) 0 0
\(171\) − 2.24478e11i − 1.53530i
\(172\) 0 0
\(173\) 2.73295e11 1.76361 0.881803 0.471617i \(-0.156330\pi\)
0.881803 + 0.471617i \(0.156330\pi\)
\(174\) 0 0
\(175\) − 6.98805e10i − 0.425761i
\(176\) 0 0
\(177\) −2.20481e10 −0.126913
\(178\) 0 0
\(179\) − 1.55618e11i − 0.846824i −0.905937 0.423412i \(-0.860832\pi\)
0.905937 0.423412i \(-0.139168\pi\)
\(180\) 0 0
\(181\) 1.55132e10 0.0798562 0.0399281 0.999203i \(-0.487287\pi\)
0.0399281 + 0.999203i \(0.487287\pi\)
\(182\) 0 0
\(183\) − 3.59595e11i − 1.75210i
\(184\) 0 0
\(185\) −3.00462e11 −1.38654
\(186\) 0 0
\(187\) − 1.72852e11i − 0.755904i
\(188\) 0 0
\(189\) −3.23097e10 −0.133975
\(190\) 0 0
\(191\) 2.19148e11i 0.862127i 0.902322 + 0.431063i \(0.141861\pi\)
−0.902322 + 0.431063i \(0.858139\pi\)
\(192\) 0 0
\(193\) 1.83821e11 0.686451 0.343225 0.939253i \(-0.388481\pi\)
0.343225 + 0.939253i \(0.388481\pi\)
\(194\) 0 0
\(195\) − 7.25952e11i − 2.57475i
\(196\) 0 0
\(197\) −2.89571e10 −0.0975943 −0.0487971 0.998809i \(-0.515539\pi\)
−0.0487971 + 0.998809i \(0.515539\pi\)
\(198\) 0 0
\(199\) − 3.25273e11i − 1.04228i −0.853473 0.521138i \(-0.825508\pi\)
0.853473 0.521138i \(-0.174492\pi\)
\(200\) 0 0
\(201\) −2.20207e11 −0.671199
\(202\) 0 0
\(203\) 2.45884e11i 0.713265i
\(204\) 0 0
\(205\) −3.82674e10 −0.105696
\(206\) 0 0
\(207\) − 2.53810e11i − 0.667815i
\(208\) 0 0
\(209\) −3.98163e11 −0.998457
\(210\) 0 0
\(211\) 6.20459e11i 1.48354i 0.670652 + 0.741772i \(0.266014\pi\)
−0.670652 + 0.741772i \(0.733986\pi\)
\(212\) 0 0
\(213\) −7.23713e11 −1.65070
\(214\) 0 0
\(215\) 1.54454e11i 0.336206i
\(216\) 0 0
\(217\) 2.12931e11 0.442528
\(218\) 0 0
\(219\) − 8.59533e11i − 1.70625i
\(220\) 0 0
\(221\) −8.20105e11 −1.55564
\(222\) 0 0
\(223\) − 5.25673e11i − 0.953217i −0.879116 0.476608i \(-0.841866\pi\)
0.879116 0.476608i \(-0.158134\pi\)
\(224\) 0 0
\(225\) −2.90491e11 −0.503756
\(226\) 0 0
\(227\) − 8.73761e11i − 1.44965i −0.688933 0.724825i \(-0.741921\pi\)
0.688933 0.724825i \(-0.258079\pi\)
\(228\) 0 0
\(229\) 8.30219e11 1.31830 0.659151 0.752010i \(-0.270916\pi\)
0.659151 + 0.752010i \(0.270916\pi\)
\(230\) 0 0
\(231\) 6.33272e11i 0.962787i
\(232\) 0 0
\(233\) −8.33377e11 −1.21356 −0.606781 0.794869i \(-0.707540\pi\)
−0.606781 + 0.794869i \(0.707540\pi\)
\(234\) 0 0
\(235\) − 8.90716e11i − 1.24280i
\(236\) 0 0
\(237\) 1.07210e12 1.43382
\(238\) 0 0
\(239\) 9.19325e11i 1.17891i 0.807802 + 0.589454i \(0.200657\pi\)
−0.807802 + 0.589454i \(0.799343\pi\)
\(240\) 0 0
\(241\) −1.56744e12 −1.92799 −0.963997 0.265912i \(-0.914327\pi\)
−0.963997 + 0.265912i \(0.914327\pi\)
\(242\) 0 0
\(243\) − 1.21554e12i − 1.43462i
\(244\) 0 0
\(245\) −1.45462e11 −0.164785
\(246\) 0 0
\(247\) 1.88910e12i 2.05481i
\(248\) 0 0
\(249\) −9.70072e11 −1.01346
\(250\) 0 0
\(251\) − 1.83947e12i − 1.84639i −0.384331 0.923195i \(-0.625568\pi\)
0.384331 0.923195i \(-0.374432\pi\)
\(252\) 0 0
\(253\) −4.50189e11 −0.434303
\(254\) 0 0
\(255\) 1.99433e12i 1.84968i
\(256\) 0 0
\(257\) −4.69431e11 −0.418703 −0.209352 0.977840i \(-0.567135\pi\)
−0.209352 + 0.977840i \(0.567135\pi\)
\(258\) 0 0
\(259\) − 1.24356e12i − 1.06701i
\(260\) 0 0
\(261\) 1.02214e12 0.843929
\(262\) 0 0
\(263\) − 2.02740e12i − 1.61124i −0.592433 0.805619i \(-0.701833\pi\)
0.592433 0.805619i \(-0.298167\pi\)
\(264\) 0 0
\(265\) 1.16893e12 0.894459
\(266\) 0 0
\(267\) − 8.87015e10i − 0.0653694i
\(268\) 0 0
\(269\) −1.54905e12 −1.09977 −0.549886 0.835239i \(-0.685329\pi\)
−0.549886 + 0.835239i \(0.685329\pi\)
\(270\) 0 0
\(271\) − 2.74756e12i − 1.87975i −0.341514 0.939877i \(-0.610940\pi\)
0.341514 0.939877i \(-0.389060\pi\)
\(272\) 0 0
\(273\) 3.00459e12 1.98140
\(274\) 0 0
\(275\) 5.15253e11i 0.327610i
\(276\) 0 0
\(277\) −3.44260e11 −0.211100 −0.105550 0.994414i \(-0.533660\pi\)
−0.105550 + 0.994414i \(0.533660\pi\)
\(278\) 0 0
\(279\) − 8.85149e11i − 0.523595i
\(280\) 0 0
\(281\) 5.16881e11 0.295025 0.147513 0.989060i \(-0.452873\pi\)
0.147513 + 0.989060i \(0.452873\pi\)
\(282\) 0 0
\(283\) − 9.80974e11i − 0.540413i −0.962802 0.270206i \(-0.912908\pi\)
0.962802 0.270206i \(-0.0870919\pi\)
\(284\) 0 0
\(285\) 4.59392e12 2.44320
\(286\) 0 0
\(287\) − 1.58382e11i − 0.0813385i
\(288\) 0 0
\(289\) 2.36996e11 0.117558
\(290\) 0 0
\(291\) − 5.50625e12i − 2.63871i
\(292\) 0 0
\(293\) −3.78962e12 −1.75492 −0.877461 0.479648i \(-0.840764\pi\)
−0.877461 + 0.479648i \(0.840764\pi\)
\(294\) 0 0
\(295\) − 2.36298e11i − 0.105767i
\(296\) 0 0
\(297\) 2.38230e11 0.103090
\(298\) 0 0
\(299\) 2.13594e12i 0.893787i
\(300\) 0 0
\(301\) −6.39256e11 −0.258727
\(302\) 0 0
\(303\) 1.35836e12i 0.531864i
\(304\) 0 0
\(305\) 3.85393e12 1.46017
\(306\) 0 0
\(307\) 4.74199e12i 1.73888i 0.494041 + 0.869438i \(0.335519\pi\)
−0.494041 + 0.869438i \(0.664481\pi\)
\(308\) 0 0
\(309\) 3.26798e12 1.16008
\(310\) 0 0
\(311\) − 1.77863e12i − 0.611340i −0.952138 0.305670i \(-0.901120\pi\)
0.952138 0.305670i \(-0.0988804\pi\)
\(312\) 0 0
\(313\) 2.19482e12 0.730595 0.365297 0.930891i \(-0.380967\pi\)
0.365297 + 0.930891i \(0.380967\pi\)
\(314\) 0 0
\(315\) − 3.82642e12i − 1.23379i
\(316\) 0 0
\(317\) −2.30472e12 −0.719981 −0.359991 0.932956i \(-0.617220\pi\)
−0.359991 + 0.932956i \(0.617220\pi\)
\(318\) 0 0
\(319\) − 1.81299e12i − 0.548836i
\(320\) 0 0
\(321\) −1.37719e12 −0.404080
\(322\) 0 0
\(323\) − 5.18974e12i − 1.47616i
\(324\) 0 0
\(325\) 2.44464e12 0.674215
\(326\) 0 0
\(327\) 3.86601e12i 1.03401i
\(328\) 0 0
\(329\) 3.68651e12 0.956393
\(330\) 0 0
\(331\) − 3.59393e12i − 0.904544i −0.891880 0.452272i \(-0.850614\pi\)
0.891880 0.452272i \(-0.149386\pi\)
\(332\) 0 0
\(333\) −5.16944e12 −1.26247
\(334\) 0 0
\(335\) − 2.36005e12i − 0.559368i
\(336\) 0 0
\(337\) −1.56362e12 −0.359734 −0.179867 0.983691i \(-0.557567\pi\)
−0.179867 + 0.983691i \(0.557567\pi\)
\(338\) 0 0
\(339\) 7.14401e12i 1.59567i
\(340\) 0 0
\(341\) −1.57001e12 −0.340512
\(342\) 0 0
\(343\) − 5.01379e12i − 1.05608i
\(344\) 0 0
\(345\) 5.19419e12 1.06273
\(346\) 0 0
\(347\) 1.77379e10i 0.00352578i 0.999998 + 0.00176289i \(0.000561145\pi\)
−0.999998 + 0.00176289i \(0.999439\pi\)
\(348\) 0 0
\(349\) −1.94015e12 −0.374722 −0.187361 0.982291i \(-0.559993\pi\)
−0.187361 + 0.982291i \(0.559993\pi\)
\(350\) 0 0
\(351\) − 1.13030e12i − 0.212157i
\(352\) 0 0
\(353\) 4.41804e12 0.806038 0.403019 0.915192i \(-0.367961\pi\)
0.403019 + 0.915192i \(0.367961\pi\)
\(354\) 0 0
\(355\) − 7.75633e12i − 1.37567i
\(356\) 0 0
\(357\) −8.25419e12 −1.42342
\(358\) 0 0
\(359\) 4.43076e12i 0.743029i 0.928427 + 0.371515i \(0.121161\pi\)
−0.928427 + 0.371515i \(0.878839\pi\)
\(360\) 0 0
\(361\) −5.82343e12 −0.949824
\(362\) 0 0
\(363\) 4.46320e12i 0.708130i
\(364\) 0 0
\(365\) 9.21196e12 1.42196
\(366\) 0 0
\(367\) 2.67602e12i 0.401939i 0.979598 + 0.200969i \(0.0644092\pi\)
−0.979598 + 0.200969i \(0.935591\pi\)
\(368\) 0 0
\(369\) −6.58390e11 −0.0962390
\(370\) 0 0
\(371\) 4.83801e12i 0.688331i
\(372\) 0 0
\(373\) 9.92009e12 1.37395 0.686976 0.726680i \(-0.258938\pi\)
0.686976 + 0.726680i \(0.258938\pi\)
\(374\) 0 0
\(375\) 7.03044e12i 0.948039i
\(376\) 0 0
\(377\) −8.60182e12 −1.12949
\(378\) 0 0
\(379\) − 6.20132e11i − 0.0793028i −0.999214 0.0396514i \(-0.987375\pi\)
0.999214 0.0396514i \(-0.0126247\pi\)
\(380\) 0 0
\(381\) 2.20529e12 0.274689
\(382\) 0 0
\(383\) 5.18547e12i 0.629207i 0.949223 + 0.314604i \(0.101872\pi\)
−0.949223 + 0.314604i \(0.898128\pi\)
\(384\) 0 0
\(385\) −6.78703e12 −0.802373
\(386\) 0 0
\(387\) 2.65737e12i 0.306124i
\(388\) 0 0
\(389\) −1.84987e12 −0.207679 −0.103840 0.994594i \(-0.533113\pi\)
−0.103840 + 0.994594i \(0.533113\pi\)
\(390\) 0 0
\(391\) − 5.86786e12i − 0.642090i
\(392\) 0 0
\(393\) 1.75757e12 0.187478
\(394\) 0 0
\(395\) 1.14902e13i 1.19493i
\(396\) 0 0
\(397\) 6.84533e12 0.694132 0.347066 0.937841i \(-0.387178\pi\)
0.347066 + 0.937841i \(0.387178\pi\)
\(398\) 0 0
\(399\) 1.90134e13i 1.88017i
\(400\) 0 0
\(401\) −1.07383e13 −1.03565 −0.517825 0.855486i \(-0.673258\pi\)
−0.517825 + 0.855486i \(0.673258\pi\)
\(402\) 0 0
\(403\) 7.44901e12i 0.700766i
\(404\) 0 0
\(405\) 1.17182e13 1.07544
\(406\) 0 0
\(407\) 9.16919e12i 0.821030i
\(408\) 0 0
\(409\) −1.79443e13 −1.56787 −0.783936 0.620841i \(-0.786791\pi\)
−0.783936 + 0.620841i \(0.786791\pi\)
\(410\) 0 0
\(411\) 1.87119e13i 1.59554i
\(412\) 0 0
\(413\) 9.77997e11 0.0813931
\(414\) 0 0
\(415\) − 1.03967e13i − 0.844604i
\(416\) 0 0
\(417\) 1.14269e13 0.906250
\(418\) 0 0
\(419\) 1.01675e13i 0.787303i 0.919260 + 0.393652i \(0.128788\pi\)
−0.919260 + 0.393652i \(0.871212\pi\)
\(420\) 0 0
\(421\) −1.38694e13 −1.04869 −0.524346 0.851505i \(-0.675690\pi\)
−0.524346 + 0.851505i \(0.675690\pi\)
\(422\) 0 0
\(423\) − 1.53247e13i − 1.13160i
\(424\) 0 0
\(425\) −6.71591e12 −0.484351
\(426\) 0 0
\(427\) 1.59507e13i 1.12368i
\(428\) 0 0
\(429\) −2.21539e13 −1.52462
\(430\) 0 0
\(431\) 3.51756e11i 0.0236513i 0.999930 + 0.0118257i \(0.00376431\pi\)
−0.999930 + 0.0118257i \(0.996236\pi\)
\(432\) 0 0
\(433\) −1.73769e13 −1.14165 −0.570823 0.821073i \(-0.693376\pi\)
−0.570823 + 0.821073i \(0.693376\pi\)
\(434\) 0 0
\(435\) 2.09179e13i 1.34299i
\(436\) 0 0
\(437\) −1.35165e13 −0.848122
\(438\) 0 0
\(439\) − 1.05808e13i − 0.648928i −0.945898 0.324464i \(-0.894816\pi\)
0.945898 0.324464i \(-0.105184\pi\)
\(440\) 0 0
\(441\) −2.50267e12 −0.150041
\(442\) 0 0
\(443\) − 2.18951e13i − 1.28330i −0.766996 0.641651i \(-0.778250\pi\)
0.766996 0.641651i \(-0.221750\pi\)
\(444\) 0 0
\(445\) 9.50649e11 0.0544779
\(446\) 0 0
\(447\) − 3.28679e13i − 1.84176i
\(448\) 0 0
\(449\) −3.53942e13 −1.93954 −0.969772 0.244011i \(-0.921537\pi\)
−0.969772 + 0.244011i \(0.921537\pi\)
\(450\) 0 0
\(451\) 1.16780e12i 0.0625875i
\(452\) 0 0
\(453\) 6.31374e10 0.00330975
\(454\) 0 0
\(455\) 3.22014e13i 1.65127i
\(456\) 0 0
\(457\) 1.93883e13 0.972653 0.486326 0.873777i \(-0.338337\pi\)
0.486326 + 0.873777i \(0.338337\pi\)
\(458\) 0 0
\(459\) 3.10514e12i 0.152412i
\(460\) 0 0
\(461\) −1.69421e13 −0.813696 −0.406848 0.913496i \(-0.633372\pi\)
−0.406848 + 0.913496i \(0.633372\pi\)
\(462\) 0 0
\(463\) − 4.19900e13i − 1.97352i −0.162198 0.986758i \(-0.551858\pi\)
0.162198 0.986758i \(-0.448142\pi\)
\(464\) 0 0
\(465\) 1.81145e13 0.833224
\(466\) 0 0
\(467\) 9.55773e12i 0.430299i 0.976581 + 0.215150i \(0.0690239\pi\)
−0.976581 + 0.215150i \(0.930976\pi\)
\(468\) 0 0
\(469\) 9.76783e12 0.430461
\(470\) 0 0
\(471\) − 1.55416e13i − 0.670488i
\(472\) 0 0
\(473\) 4.71346e12 0.199083
\(474\) 0 0
\(475\) 1.54700e13i 0.639768i
\(476\) 0 0
\(477\) 2.01115e13 0.814427
\(478\) 0 0
\(479\) 4.05634e13i 1.60863i 0.594201 + 0.804317i \(0.297468\pi\)
−0.594201 + 0.804317i \(0.702532\pi\)
\(480\) 0 0
\(481\) 4.35036e13 1.68966
\(482\) 0 0
\(483\) 2.14978e13i 0.817823i
\(484\) 0 0
\(485\) 5.90127e13 2.19906
\(486\) 0 0
\(487\) − 5.27934e13i − 1.92723i −0.267286 0.963617i \(-0.586127\pi\)
0.267286 0.963617i \(-0.413873\pi\)
\(488\) 0 0
\(489\) 3.73242e13 1.33489
\(490\) 0 0
\(491\) 2.41468e13i 0.846158i 0.906093 + 0.423079i \(0.139051\pi\)
−0.906093 + 0.423079i \(0.860949\pi\)
\(492\) 0 0
\(493\) 2.36309e13 0.811419
\(494\) 0 0
\(495\) 2.82135e13i 0.949360i
\(496\) 0 0
\(497\) 3.21021e13 1.05865
\(498\) 0 0
\(499\) 2.21286e11i 0.00715238i 0.999994 + 0.00357619i \(0.00113834\pi\)
−0.999994 + 0.00357619i \(0.998862\pi\)
\(500\) 0 0
\(501\) −5.81735e13 −1.84305
\(502\) 0 0
\(503\) 9.04543e12i 0.280924i 0.990086 + 0.140462i \(0.0448588\pi\)
−0.990086 + 0.140462i \(0.955141\pi\)
\(504\) 0 0
\(505\) −1.45580e13 −0.443247
\(506\) 0 0
\(507\) 5.65702e13i 1.68868i
\(508\) 0 0
\(509\) −2.24139e13 −0.656036 −0.328018 0.944671i \(-0.606381\pi\)
−0.328018 + 0.944671i \(0.606381\pi\)
\(510\) 0 0
\(511\) 3.81267e13i 1.09427i
\(512\) 0 0
\(513\) 7.15266e12 0.201317
\(514\) 0 0
\(515\) 3.50243e13i 0.966793i
\(516\) 0 0
\(517\) −2.71819e13 −0.735915
\(518\) 0 0
\(519\) 9.62269e13i 2.55540i
\(520\) 0 0
\(521\) −2.19502e12 −0.0571807 −0.0285904 0.999591i \(-0.509102\pi\)
−0.0285904 + 0.999591i \(0.509102\pi\)
\(522\) 0 0
\(523\) 2.91933e13i 0.746062i 0.927819 + 0.373031i \(0.121681\pi\)
−0.927819 + 0.373031i \(0.878319\pi\)
\(524\) 0 0
\(525\) 2.46048e13 0.616913
\(526\) 0 0
\(527\) − 2.04639e13i − 0.503425i
\(528\) 0 0
\(529\) 2.61438e13 0.631089
\(530\) 0 0
\(531\) − 4.06551e12i − 0.0963036i
\(532\) 0 0
\(533\) 5.54070e12 0.128804
\(534\) 0 0
\(535\) − 1.47599e13i − 0.336755i
\(536\) 0 0
\(537\) 5.47927e13 1.22702
\(538\) 0 0
\(539\) 4.43905e12i 0.0975768i
\(540\) 0 0
\(541\) 4.86387e12 0.104953 0.0524766 0.998622i \(-0.483288\pi\)
0.0524766 + 0.998622i \(0.483288\pi\)
\(542\) 0 0
\(543\) 5.46218e12i 0.115709i
\(544\) 0 0
\(545\) −4.14336e13 −0.861728
\(546\) 0 0
\(547\) 3.29297e13i 0.672436i 0.941784 + 0.336218i \(0.109148\pi\)
−0.941784 + 0.336218i \(0.890852\pi\)
\(548\) 0 0
\(549\) 6.63067e13 1.32952
\(550\) 0 0
\(551\) − 5.44335e13i − 1.07179i
\(552\) 0 0
\(553\) −4.75557e13 −0.919554
\(554\) 0 0
\(555\) − 1.05792e14i − 2.00904i
\(556\) 0 0
\(557\) 4.29354e13 0.800828 0.400414 0.916334i \(-0.368866\pi\)
0.400414 + 0.916334i \(0.368866\pi\)
\(558\) 0 0
\(559\) − 2.23632e13i − 0.409709i
\(560\) 0 0
\(561\) 6.08610e13 1.09528
\(562\) 0 0
\(563\) − 1.01247e14i − 1.78994i −0.446126 0.894970i \(-0.647197\pi\)
0.446126 0.894970i \(-0.352803\pi\)
\(564\) 0 0
\(565\) −7.65652e13 −1.32981
\(566\) 0 0
\(567\) 4.84996e13i 0.827604i
\(568\) 0 0
\(569\) 3.75395e12 0.0629401 0.0314701 0.999505i \(-0.489981\pi\)
0.0314701 + 0.999505i \(0.489981\pi\)
\(570\) 0 0
\(571\) 4.82773e13i 0.795358i 0.917525 + 0.397679i \(0.130184\pi\)
−0.917525 + 0.397679i \(0.869816\pi\)
\(572\) 0 0
\(573\) −7.71618e13 −1.24919
\(574\) 0 0
\(575\) 1.74914e13i 0.278283i
\(576\) 0 0
\(577\) −3.01929e13 −0.472091 −0.236046 0.971742i \(-0.575851\pi\)
−0.236046 + 0.971742i \(0.575851\pi\)
\(578\) 0 0
\(579\) 6.47232e13i 0.994644i
\(580\) 0 0
\(581\) 4.30299e13 0.649964
\(582\) 0 0
\(583\) − 3.56723e13i − 0.529649i
\(584\) 0 0
\(585\) 1.33860e14 1.95377
\(586\) 0 0
\(587\) − 5.82710e13i − 0.836107i −0.908422 0.418053i \(-0.862712\pi\)
0.908422 0.418053i \(-0.137288\pi\)
\(588\) 0 0
\(589\) −4.71383e13 −0.664963
\(590\) 0 0
\(591\) − 1.01958e13i − 0.141411i
\(592\) 0 0
\(593\) −3.13152e13 −0.427052 −0.213526 0.976937i \(-0.568495\pi\)
−0.213526 + 0.976937i \(0.568495\pi\)
\(594\) 0 0
\(595\) − 8.84635e13i − 1.18626i
\(596\) 0 0
\(597\) 1.14528e14 1.51022
\(598\) 0 0
\(599\) 7.34955e13i 0.953074i 0.879154 + 0.476537i \(0.158108\pi\)
−0.879154 + 0.476537i \(0.841892\pi\)
\(600\) 0 0
\(601\) −1.07112e14 −1.36605 −0.683024 0.730396i \(-0.739335\pi\)
−0.683024 + 0.730396i \(0.739335\pi\)
\(602\) 0 0
\(603\) − 4.06046e13i − 0.509318i
\(604\) 0 0
\(605\) −4.78339e13 −0.590145
\(606\) 0 0
\(607\) − 1.36295e13i − 0.165401i −0.996574 0.0827004i \(-0.973646\pi\)
0.996574 0.0827004i \(-0.0263545\pi\)
\(608\) 0 0
\(609\) −8.65756e13 −1.03350
\(610\) 0 0
\(611\) 1.28966e14i 1.51450i
\(612\) 0 0
\(613\) −1.16805e14 −1.34946 −0.674729 0.738066i \(-0.735739\pi\)
−0.674729 + 0.738066i \(0.735739\pi\)
\(614\) 0 0
\(615\) − 1.34739e13i − 0.153150i
\(616\) 0 0
\(617\) −4.22466e13 −0.472461 −0.236230 0.971697i \(-0.575912\pi\)
−0.236230 + 0.971697i \(0.575912\pi\)
\(618\) 0 0
\(619\) − 1.04957e14i − 1.15493i −0.816415 0.577466i \(-0.804042\pi\)
0.816415 0.577466i \(-0.195958\pi\)
\(620\) 0 0
\(621\) 8.08727e12 0.0875677
\(622\) 0 0
\(623\) 3.93457e12i 0.0419234i
\(624\) 0 0
\(625\) −1.19042e14 −1.24825
\(626\) 0 0
\(627\) − 1.40193e14i − 1.44673i
\(628\) 0 0
\(629\) −1.19513e14 −1.21384
\(630\) 0 0
\(631\) − 2.87613e12i − 0.0287516i −0.999897 0.0143758i \(-0.995424\pi\)
0.999897 0.0143758i \(-0.00457612\pi\)
\(632\) 0 0
\(633\) −2.18463e14 −2.14960
\(634\) 0 0
\(635\) 2.36350e13i 0.228922i
\(636\) 0 0
\(637\) 2.10613e13 0.200811
\(638\) 0 0
\(639\) − 1.33447e14i − 1.25258i
\(640\) 0 0
\(641\) −3.00941e13 −0.278094 −0.139047 0.990286i \(-0.544404\pi\)
−0.139047 + 0.990286i \(0.544404\pi\)
\(642\) 0 0
\(643\) − 1.66359e14i − 1.51353i −0.653689 0.756764i \(-0.726779\pi\)
0.653689 0.756764i \(-0.273221\pi\)
\(644\) 0 0
\(645\) −5.43829e13 −0.487151
\(646\) 0 0
\(647\) − 1.73339e14i − 1.52889i −0.644690 0.764444i \(-0.723013\pi\)
0.644690 0.764444i \(-0.276987\pi\)
\(648\) 0 0
\(649\) −7.21111e12 −0.0626295
\(650\) 0 0
\(651\) 7.49728e13i 0.641207i
\(652\) 0 0
\(653\) 1.89861e14 1.59908 0.799541 0.600612i \(-0.205076\pi\)
0.799541 + 0.600612i \(0.205076\pi\)
\(654\) 0 0
\(655\) 1.88366e13i 0.156241i
\(656\) 0 0
\(657\) 1.58492e14 1.29473
\(658\) 0 0
\(659\) − 9.80342e13i − 0.788771i −0.918945 0.394385i \(-0.870958\pi\)
0.918945 0.394385i \(-0.129042\pi\)
\(660\) 0 0
\(661\) 1.54197e14 1.22199 0.610996 0.791634i \(-0.290769\pi\)
0.610996 + 0.791634i \(0.290769\pi\)
\(662\) 0 0
\(663\) − 2.88758e14i − 2.25406i
\(664\) 0 0
\(665\) −2.03775e14 −1.56690
\(666\) 0 0
\(667\) − 6.15461e13i − 0.466199i
\(668\) 0 0
\(669\) 1.85089e14 1.38118
\(670\) 0 0
\(671\) − 1.17610e14i − 0.864634i
\(672\) 0 0
\(673\) −6.70067e13 −0.485336 −0.242668 0.970109i \(-0.578023\pi\)
−0.242668 + 0.970109i \(0.578023\pi\)
\(674\) 0 0
\(675\) − 9.25608e12i − 0.0660554i
\(676\) 0 0
\(677\) 1.71430e14 1.20543 0.602715 0.797956i \(-0.294085\pi\)
0.602715 + 0.797956i \(0.294085\pi\)
\(678\) 0 0
\(679\) 2.44243e14i 1.69229i
\(680\) 0 0
\(681\) 3.07650e14 2.10049
\(682\) 0 0
\(683\) − 5.05521e13i − 0.340123i −0.985433 0.170061i \(-0.945603\pi\)
0.985433 0.170061i \(-0.0543966\pi\)
\(684\) 0 0
\(685\) −2.00543e14 −1.32970
\(686\) 0 0
\(687\) 2.92319e14i 1.91017i
\(688\) 0 0
\(689\) −1.69249e14 −1.09001
\(690\) 0 0
\(691\) 5.33777e13i 0.338821i 0.985546 + 0.169410i \(0.0541863\pi\)
−0.985546 + 0.169410i \(0.945814\pi\)
\(692\) 0 0
\(693\) −1.16771e14 −0.730580
\(694\) 0 0
\(695\) 1.22467e14i 0.755256i
\(696\) 0 0
\(697\) −1.52214e13 −0.0925317
\(698\) 0 0
\(699\) − 2.93431e14i − 1.75841i
\(700\) 0 0
\(701\) −3.55178e13 −0.209824 −0.104912 0.994481i \(-0.533456\pi\)
−0.104912 + 0.994481i \(0.533456\pi\)
\(702\) 0 0
\(703\) 2.75297e14i 1.60334i
\(704\) 0 0
\(705\) 3.13620e14 1.80077
\(706\) 0 0
\(707\) − 6.02531e13i − 0.341101i
\(708\) 0 0
\(709\) 2.13491e14 1.19165 0.595824 0.803115i \(-0.296826\pi\)
0.595824 + 0.803115i \(0.296826\pi\)
\(710\) 0 0
\(711\) 1.97688e14i 1.08801i
\(712\) 0 0
\(713\) −5.32977e13 −0.289242
\(714\) 0 0
\(715\) − 2.37432e14i − 1.27060i
\(716\) 0 0
\(717\) −3.23693e14 −1.70820
\(718\) 0 0
\(719\) − 2.65916e14i − 1.38389i −0.721952 0.691943i \(-0.756755\pi\)
0.721952 0.691943i \(-0.243245\pi\)
\(720\) 0 0
\(721\) −1.44959e14 −0.743995
\(722\) 0 0
\(723\) − 5.51893e14i − 2.79360i
\(724\) 0 0
\(725\) −7.04410e13 −0.351670
\(726\) 0 0
\(727\) 1.56999e14i 0.773082i 0.922272 + 0.386541i \(0.126330\pi\)
−0.922272 + 0.386541i \(0.873670\pi\)
\(728\) 0 0
\(729\) 2.44622e14 1.18812
\(730\) 0 0
\(731\) 6.14361e13i 0.294332i
\(732\) 0 0
\(733\) 2.64144e14 1.24831 0.624153 0.781302i \(-0.285444\pi\)
0.624153 + 0.781302i \(0.285444\pi\)
\(734\) 0 0
\(735\) − 5.12169e13i − 0.238768i
\(736\) 0 0
\(737\) −7.20216e13 −0.331227
\(738\) 0 0
\(739\) 2.68052e14i 1.21618i 0.793869 + 0.608089i \(0.208064\pi\)
−0.793869 + 0.608089i \(0.791936\pi\)
\(740\) 0 0
\(741\) −6.65150e14 −2.97734
\(742\) 0 0
\(743\) 9.68880e13i 0.427884i 0.976846 + 0.213942i \(0.0686303\pi\)
−0.976846 + 0.213942i \(0.931370\pi\)
\(744\) 0 0
\(745\) 3.52258e14 1.53490
\(746\) 0 0
\(747\) − 1.78874e14i − 0.769032i
\(748\) 0 0
\(749\) 6.10885e13 0.259149
\(750\) 0 0
\(751\) 2.13814e13i 0.0895026i 0.998998 + 0.0447513i \(0.0142495\pi\)
−0.998998 + 0.0447513i \(0.985750\pi\)
\(752\) 0 0
\(753\) 6.47674e14 2.67536
\(754\) 0 0
\(755\) 6.76669e11i 0.00275830i
\(756\) 0 0
\(757\) 3.45330e14 1.38917 0.694584 0.719412i \(-0.255589\pi\)
0.694584 + 0.719412i \(0.255589\pi\)
\(758\) 0 0
\(759\) − 1.58511e14i − 0.629290i
\(760\) 0 0
\(761\) −1.01279e14 −0.396822 −0.198411 0.980119i \(-0.563578\pi\)
−0.198411 + 0.980119i \(0.563578\pi\)
\(762\) 0 0
\(763\) − 1.71486e14i − 0.663142i
\(764\) 0 0
\(765\) −3.67740e14 −1.40357
\(766\) 0 0
\(767\) 3.42135e13i 0.128890i
\(768\) 0 0
\(769\) −2.20211e14 −0.818854 −0.409427 0.912343i \(-0.634271\pi\)
−0.409427 + 0.912343i \(0.634271\pi\)
\(770\) 0 0
\(771\) − 1.65286e14i − 0.606687i
\(772\) 0 0
\(773\) −1.15285e14 −0.417709 −0.208855 0.977947i \(-0.566974\pi\)
−0.208855 + 0.977947i \(0.566974\pi\)
\(774\) 0 0
\(775\) 6.10005e13i 0.218185i
\(776\) 0 0
\(777\) 4.37855e14 1.54606
\(778\) 0 0
\(779\) 3.50623e13i 0.122223i
\(780\) 0 0
\(781\) −2.36700e14 −0.814596
\(782\) 0 0
\(783\) 3.25689e13i 0.110661i
\(784\) 0 0
\(785\) 1.66566e14 0.558775
\(786\) 0 0
\(787\) 2.91930e14i 0.966953i 0.875357 + 0.483476i \(0.160626\pi\)
−0.875357 + 0.483476i \(0.839374\pi\)
\(788\) 0 0
\(789\) 7.13843e14 2.33463
\(790\) 0 0
\(791\) − 3.16890e14i − 1.02335i
\(792\) 0 0
\(793\) −5.58007e14 −1.77940
\(794\) 0 0
\(795\) 4.11580e14i 1.29604i
\(796\) 0 0
\(797\) 3.56212e14 1.10769 0.553843 0.832621i \(-0.313161\pi\)
0.553843 + 0.832621i \(0.313161\pi\)
\(798\) 0 0
\(799\) − 3.54295e14i − 1.08800i
\(800\) 0 0
\(801\) 1.63559e13 0.0496035
\(802\) 0 0
\(803\) − 2.81121e14i − 0.842007i
\(804\) 0 0
\(805\) −2.30401e14 −0.681562
\(806\) 0 0
\(807\) − 5.45417e14i − 1.59353i
\(808\) 0 0
\(809\) 2.42201e14 0.698930 0.349465 0.936949i \(-0.386363\pi\)
0.349465 + 0.936949i \(0.386363\pi\)
\(810\) 0 0
\(811\) 4.06752e14i 1.15938i 0.814838 + 0.579689i \(0.196826\pi\)
−0.814838 + 0.579689i \(0.803174\pi\)
\(812\) 0 0
\(813\) 9.67412e14 2.72370
\(814\) 0 0
\(815\) 4.00018e14i 1.11248i
\(816\) 0 0
\(817\) 1.41517e14 0.388776
\(818\) 0 0
\(819\) 5.54024e14i 1.50352i
\(820\) 0 0
\(821\) −4.04166e14 −1.08354 −0.541768 0.840528i \(-0.682245\pi\)
−0.541768 + 0.840528i \(0.682245\pi\)
\(822\) 0 0
\(823\) 1.42442e14i 0.377259i 0.982048 + 0.188630i \(0.0604045\pi\)
−0.982048 + 0.188630i \(0.939595\pi\)
\(824\) 0 0
\(825\) −1.81420e14 −0.474695
\(826\) 0 0
\(827\) 3.85554e13i 0.0996684i 0.998758 + 0.0498342i \(0.0158693\pi\)
−0.998758 + 0.0498342i \(0.984131\pi\)
\(828\) 0 0
\(829\) −2.35400e14 −0.601221 −0.300610 0.953747i \(-0.597190\pi\)
−0.300610 + 0.953747i \(0.597190\pi\)
\(830\) 0 0
\(831\) − 1.21214e14i − 0.305877i
\(832\) 0 0
\(833\) −5.78595e13 −0.144261
\(834\) 0 0
\(835\) − 6.23469e14i − 1.53597i
\(836\) 0 0
\(837\) 2.82040e13 0.0686568
\(838\) 0 0
\(839\) − 5.54263e14i − 1.33323i −0.745401 0.666616i \(-0.767742\pi\)
0.745401 0.666616i \(-0.232258\pi\)
\(840\) 0 0
\(841\) −1.72850e14 −0.410857
\(842\) 0 0
\(843\) 1.81993e14i 0.427481i
\(844\) 0 0
\(845\) −6.06286e14 −1.40732
\(846\) 0 0
\(847\) − 1.97976e14i − 0.454146i
\(848\) 0 0
\(849\) 3.45400e14 0.783039
\(850\) 0 0
\(851\) 3.11269e14i 0.697410i
\(852\) 0 0
\(853\) −2.17078e14 −0.480696 −0.240348 0.970687i \(-0.577262\pi\)
−0.240348 + 0.970687i \(0.577262\pi\)
\(854\) 0 0
\(855\) 8.47086e14i 1.85395i
\(856\) 0 0
\(857\) −7.39171e14 −1.59897 −0.799485 0.600685i \(-0.794894\pi\)
−0.799485 + 0.600685i \(0.794894\pi\)
\(858\) 0 0
\(859\) − 3.16235e14i − 0.676152i −0.941119 0.338076i \(-0.890224\pi\)
0.941119 0.338076i \(-0.109776\pi\)
\(860\) 0 0
\(861\) 5.57661e13 0.117857
\(862\) 0 0
\(863\) 3.17121e14i 0.662478i 0.943547 + 0.331239i \(0.107467\pi\)
−0.943547 + 0.331239i \(0.892533\pi\)
\(864\) 0 0
\(865\) −1.03130e15 −2.12964
\(866\) 0 0
\(867\) 8.34458e13i 0.170337i
\(868\) 0 0
\(869\) 3.50645e14 0.707569
\(870\) 0 0
\(871\) 3.41710e14i 0.681658i
\(872\) 0 0
\(873\) 1.01531e15 2.00230
\(874\) 0 0
\(875\) − 3.11852e14i − 0.608007i
\(876\) 0 0
\(877\) 5.34325e14 1.02993 0.514965 0.857211i \(-0.327805\pi\)
0.514965 + 0.857211i \(0.327805\pi\)
\(878\) 0 0
\(879\) − 1.33432e15i − 2.54282i
\(880\) 0 0
\(881\) −1.20104e13 −0.0226297 −0.0113148 0.999936i \(-0.503602\pi\)
−0.0113148 + 0.999936i \(0.503602\pi\)
\(882\) 0 0
\(883\) 6.89886e14i 1.28521i 0.766198 + 0.642605i \(0.222146\pi\)
−0.766198 + 0.642605i \(0.777854\pi\)
\(884\) 0 0
\(885\) 8.32003e13 0.153253
\(886\) 0 0
\(887\) 7.40300e13i 0.134831i 0.997725 + 0.0674154i \(0.0214753\pi\)
−0.997725 + 0.0674154i \(0.978525\pi\)
\(888\) 0 0
\(889\) −9.78211e13 −0.176167
\(890\) 0 0
\(891\) − 3.57604e14i − 0.636816i
\(892\) 0 0
\(893\) −8.16114e14 −1.43712
\(894\) 0 0
\(895\) 5.87236e14i 1.02258i
\(896\) 0 0
\(897\) −7.52063e14 −1.29507
\(898\) 0 0
\(899\) − 2.14639e14i − 0.365519i
\(900\) 0 0
\(901\) 4.64960e14 0.783054
\(902\) 0 0
\(903\) − 2.25081e14i − 0.374887i
\(904\) 0 0
\(905\) −5.85404e13 −0.0964301
\(906\) 0 0
\(907\) 1.10129e15i 1.79418i 0.441852 + 0.897088i \(0.354322\pi\)
−0.441852 + 0.897088i \(0.645678\pi\)
\(908\) 0 0
\(909\) −2.50471e14 −0.403587
\(910\) 0 0
\(911\) 5.75678e14i 0.917461i 0.888575 + 0.458730i \(0.151696\pi\)
−0.888575 + 0.458730i \(0.848304\pi\)
\(912\) 0 0
\(913\) −3.17274e14 −0.500128
\(914\) 0 0
\(915\) 1.35696e15i 2.11574i
\(916\) 0 0
\(917\) −7.79613e13 −0.120235
\(918\) 0 0
\(919\) − 2.49831e14i − 0.381126i −0.981675 0.190563i \(-0.938969\pi\)
0.981675 0.190563i \(-0.0610314\pi\)
\(920\) 0 0
\(921\) −1.66965e15 −2.51957
\(922\) 0 0
\(923\) 1.12303e15i 1.67642i
\(924\) 0 0
\(925\) 3.56255e14 0.526081
\(926\) 0 0
\(927\) 6.02593e14i 0.880289i
\(928\) 0 0
\(929\) −5.75740e14 −0.832046 −0.416023 0.909354i \(-0.636576\pi\)
−0.416023 + 0.909354i \(0.636576\pi\)
\(930\) 0 0
\(931\) 1.33279e14i 0.190552i
\(932\) 0 0
\(933\) 6.26252e14 0.885811
\(934\) 0 0
\(935\) 6.52272e14i 0.912789i
\(936\) 0 0
\(937\) −4.19947e14 −0.581428 −0.290714 0.956810i \(-0.593893\pi\)
−0.290714 + 0.956810i \(0.593893\pi\)
\(938\) 0 0
\(939\) 7.72792e14i 1.05861i
\(940\) 0 0
\(941\) −4.76423e14 −0.645721 −0.322860 0.946447i \(-0.604644\pi\)
−0.322860 + 0.946447i \(0.604644\pi\)
\(942\) 0 0
\(943\) 3.96438e13i 0.0531639i
\(944\) 0 0
\(945\) 1.21923e14 0.161781
\(946\) 0 0
\(947\) 7.31112e14i 0.959918i 0.877291 + 0.479959i \(0.159348\pi\)
−0.877291 + 0.479959i \(0.840652\pi\)
\(948\) 0 0
\(949\) −1.33379e15 −1.73283
\(950\) 0 0
\(951\) − 8.11488e14i − 1.04323i
\(952\) 0 0
\(953\) −4.33318e14 −0.551242 −0.275621 0.961266i \(-0.588884\pi\)
−0.275621 + 0.961266i \(0.588884\pi\)
\(954\) 0 0
\(955\) − 8.26974e14i − 1.04106i
\(956\) 0 0
\(957\) 6.38352e14 0.795244
\(958\) 0 0
\(959\) − 8.30012e14i − 1.02327i
\(960\) 0 0
\(961\) 6.33755e14 0.773222
\(962\) 0 0
\(963\) − 2.53943e14i − 0.306623i
\(964\) 0 0
\(965\) −6.93665e14 −0.828921
\(966\) 0 0
\(967\) 1.28203e15i 1.51623i 0.652120 + 0.758115i \(0.273880\pi\)
−0.652120 + 0.758115i \(0.726120\pi\)
\(968\) 0 0
\(969\) 1.82730e15 2.13890
\(970\) 0 0
\(971\) 1.03910e15i 1.20381i 0.798566 + 0.601907i \(0.205592\pi\)
−0.798566 + 0.601907i \(0.794408\pi\)
\(972\) 0 0
\(973\) −5.06868e14 −0.581207
\(974\) 0 0
\(975\) 8.60755e14i 0.976914i
\(976\) 0 0
\(977\) −8.98564e13 −0.100943 −0.0504715 0.998726i \(-0.516072\pi\)
−0.0504715 + 0.998726i \(0.516072\pi\)
\(978\) 0 0
\(979\) − 2.90109e13i − 0.0322588i
\(980\) 0 0
\(981\) −7.12864e14 −0.784624
\(982\) 0 0
\(983\) 5.65525e14i 0.616147i 0.951363 + 0.308073i \(0.0996842\pi\)
−0.951363 + 0.308073i \(0.900316\pi\)
\(984\) 0 0
\(985\) 1.09272e14 0.117850
\(986\) 0 0
\(987\) 1.29802e15i 1.38578i
\(988\) 0 0
\(989\) 1.60009e14 0.169107
\(990\) 0 0
\(991\) 1.22093e15i 1.27739i 0.769461 + 0.638693i \(0.220525\pi\)
−0.769461 + 0.638693i \(0.779475\pi\)
\(992\) 0 0
\(993\) 1.26542e15 1.31065
\(994\) 0 0
\(995\) 1.22744e15i 1.25860i
\(996\) 0 0
\(997\) 4.49639e14 0.456445 0.228222 0.973609i \(-0.426709\pi\)
0.228222 + 0.973609i \(0.426709\pi\)
\(998\) 0 0
\(999\) − 1.64717e14i − 0.165543i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.11.c.m.255.15 16
4.3 odd 2 inner 256.11.c.m.255.1 16
8.3 odd 2 inner 256.11.c.m.255.16 16
8.5 even 2 inner 256.11.c.m.255.2 16
16.3 odd 4 8.11.d.b.3.5 8
16.5 even 4 8.11.d.b.3.6 yes 8
16.11 odd 4 32.11.d.b.15.1 8
16.13 even 4 32.11.d.b.15.2 8
48.5 odd 4 72.11.b.b.19.3 8
48.11 even 4 288.11.b.b.271.7 8
48.29 odd 4 288.11.b.b.271.2 8
48.35 even 4 72.11.b.b.19.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8.11.d.b.3.5 8 16.3 odd 4
8.11.d.b.3.6 yes 8 16.5 even 4
32.11.d.b.15.1 8 16.11 odd 4
32.11.d.b.15.2 8 16.13 even 4
72.11.b.b.19.3 8 48.5 odd 4
72.11.b.b.19.4 8 48.35 even 4
256.11.c.m.255.1 16 4.3 odd 2 inner
256.11.c.m.255.2 16 8.5 even 2 inner
256.11.c.m.255.15 16 1.1 even 1 trivial
256.11.c.m.255.16 16 8.3 odd 2 inner
288.11.b.b.271.2 8 48.29 odd 4
288.11.b.b.271.7 8 48.11 even 4