Properties

Label 256.2.g.c.97.2
Level $256$
Weight $2$
Character 256.97
Analytic conductor $2.044$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,2,Mod(33,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.33");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 256.g (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.04417029174\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{8})\)
Coefficient field: 8.0.18939904.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 14x^{6} - 28x^{5} + 43x^{4} - 44x^{3} + 30x^{2} - 12x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 32)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 97.2
Root \(0.500000 - 0.0297061i\) of defining polynomial
Character \(\chi\) \(=\) 256.97
Dual form 256.2.g.c.161.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.27882 - 0.529706i) q^{3} +(0.707107 - 1.70711i) q^{5} +(2.74912 + 2.74912i) q^{7} +(-0.766519 + 0.766519i) q^{9} +(0.135390 + 0.0560803i) q^{11} +(-1.18073 - 2.85054i) q^{13} -2.55765i q^{15} -6.44549i q^{17} +(0.805198 + 1.94392i) q^{19} +(4.97186 + 2.05941i) q^{21} +(-0.749118 + 0.749118i) q^{23} +(1.12132 + 1.12132i) q^{25} +(-2.16333 + 5.22274i) q^{27} +(-4.32417 + 1.79113i) q^{29} -1.17157 q^{31} +0.202846 q^{33} +(6.63696 - 2.74912i) q^{35} +(-1.73172 + 4.18073i) q^{37} +(-3.01990 - 3.01990i) q^{39} +(-2.49824 + 2.49824i) q^{41} +(-6.10725 - 2.52971i) q^{43} +(0.766519 + 1.85054i) q^{45} -2.66981i q^{47} +8.11529i q^{49} +(-3.41421 - 8.24264i) q^{51} +(-1.64769 - 0.682497i) q^{53} +(0.191470 - 0.191470i) q^{55} +(2.05941 + 2.05941i) q^{57} +(1.43744 - 3.47029i) q^{59} +(3.46760 - 1.43633i) q^{61} -4.21450 q^{63} -5.70108 q^{65} +(-14.0791 + 5.83176i) q^{67} +(-0.561177 + 1.35480i) q^{69} +(3.40950 + 3.40950i) q^{71} +(-0.442353 + 0.442353i) q^{73} +(2.02794 + 0.840001i) q^{75} +(0.218031 + 0.526374i) q^{77} +7.07550i q^{79} +4.57283i q^{81} +(2.99862 + 7.23931i) q^{83} +(-11.0031 - 4.55765i) q^{85} +(-4.58107 + 4.58107i) q^{87} +(-4.21803 - 4.21803i) q^{89} +(4.59050 - 11.0824i) q^{91} +(-1.49824 + 0.620589i) q^{93} +3.88784 q^{95} +10.3267 q^{97} +(-0.146766 + 0.0607923i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} + 8 q^{7} + 4 q^{11} + 8 q^{13} + 4 q^{19} + 8 q^{23} - 8 q^{25} + 8 q^{27} - 32 q^{31} - 16 q^{33} + 16 q^{35} + 8 q^{37} - 16 q^{39} + 8 q^{41} - 12 q^{43} - 16 q^{51} - 8 q^{53} + 16 q^{55}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(e\left(\frac{5}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.27882 0.529706i 0.738329 0.305826i 0.0183595 0.999831i \(-0.494156\pi\)
0.719970 + 0.694005i \(0.244156\pi\)
\(4\) 0 0
\(5\) 0.707107 1.70711i 0.316228 0.763441i −0.683220 0.730213i \(-0.739421\pi\)
0.999448 0.0332288i \(-0.0105790\pi\)
\(6\) 0 0
\(7\) 2.74912 + 2.74912i 1.03907 + 1.03907i 0.999205 + 0.0398636i \(0.0126924\pi\)
0.0398636 + 0.999205i \(0.487308\pi\)
\(8\) 0 0
\(9\) −0.766519 + 0.766519i −0.255506 + 0.255506i
\(10\) 0 0
\(11\) 0.135390 + 0.0560803i 0.0408216 + 0.0169089i 0.403001 0.915200i \(-0.367967\pi\)
−0.362179 + 0.932108i \(0.617967\pi\)
\(12\) 0 0
\(13\) −1.18073 2.85054i −0.327476 0.790598i −0.998778 0.0494138i \(-0.984265\pi\)
0.671302 0.741184i \(-0.265735\pi\)
\(14\) 0 0
\(15\) 2.55765i 0.660382i
\(16\) 0 0
\(17\) 6.44549i 1.56326i −0.623742 0.781630i \(-0.714389\pi\)
0.623742 0.781630i \(-0.285611\pi\)
\(18\) 0 0
\(19\) 0.805198 + 1.94392i 0.184725 + 0.445966i 0.988929 0.148387i \(-0.0474082\pi\)
−0.804204 + 0.594353i \(0.797408\pi\)
\(20\) 0 0
\(21\) 4.97186 + 2.05941i 1.08495 + 0.449401i
\(22\) 0 0
\(23\) −0.749118 + 0.749118i −0.156202 + 0.156202i −0.780881 0.624679i \(-0.785230\pi\)
0.624679 + 0.780881i \(0.285230\pi\)
\(24\) 0 0
\(25\) 1.12132 + 1.12132i 0.224264 + 0.224264i
\(26\) 0 0
\(27\) −2.16333 + 5.22274i −0.416333 + 1.00512i
\(28\) 0 0
\(29\) −4.32417 + 1.79113i −0.802978 + 0.332604i −0.746148 0.665780i \(-0.768099\pi\)
−0.0568292 + 0.998384i \(0.518099\pi\)
\(30\) 0 0
\(31\) −1.17157 −0.210421 −0.105210 0.994450i \(-0.533552\pi\)
−0.105210 + 0.994450i \(0.533552\pi\)
\(32\) 0 0
\(33\) 0.202846 0.0353109
\(34\) 0 0
\(35\) 6.63696 2.74912i 1.12185 0.464686i
\(36\) 0 0
\(37\) −1.73172 + 4.18073i −0.284692 + 0.687308i −0.999933 0.0115700i \(-0.996317\pi\)
0.715241 + 0.698878i \(0.246317\pi\)
\(38\) 0 0
\(39\) −3.01990 3.01990i −0.483571 0.483571i
\(40\) 0 0
\(41\) −2.49824 + 2.49824i −0.390159 + 0.390159i −0.874744 0.484585i \(-0.838971\pi\)
0.484585 + 0.874744i \(0.338971\pi\)
\(42\) 0 0
\(43\) −6.10725 2.52971i −0.931347 0.385777i −0.135158 0.990824i \(-0.543154\pi\)
−0.796189 + 0.605048i \(0.793154\pi\)
\(44\) 0 0
\(45\) 0.766519 + 1.85054i 0.114266 + 0.275862i
\(46\) 0 0
\(47\) 2.66981i 0.389432i −0.980860 0.194716i \(-0.937622\pi\)
0.980860 0.194716i \(-0.0623784\pi\)
\(48\) 0 0
\(49\) 8.11529i 1.15933i
\(50\) 0 0
\(51\) −3.41421 8.24264i −0.478086 1.15420i
\(52\) 0 0
\(53\) −1.64769 0.682497i −0.226328 0.0937482i 0.266638 0.963797i \(-0.414087\pi\)
−0.492966 + 0.870049i \(0.664087\pi\)
\(54\) 0 0
\(55\) 0.191470 0.191470i 0.0258178 0.0258178i
\(56\) 0 0
\(57\) 2.05941 + 2.05941i 0.272776 + 0.272776i
\(58\) 0 0
\(59\) 1.43744 3.47029i 0.187139 0.451794i −0.802267 0.596965i \(-0.796373\pi\)
0.989407 + 0.145171i \(0.0463732\pi\)
\(60\) 0 0
\(61\) 3.46760 1.43633i 0.443981 0.183903i −0.149482 0.988764i \(-0.547761\pi\)
0.593462 + 0.804862i \(0.297761\pi\)
\(62\) 0 0
\(63\) −4.21450 −0.530977
\(64\) 0 0
\(65\) −5.70108 −0.707132
\(66\) 0 0
\(67\) −14.0791 + 5.83176i −1.72004 + 0.712463i −0.720212 + 0.693754i \(0.755956\pi\)
−0.999825 + 0.0187090i \(0.994044\pi\)
\(68\) 0 0
\(69\) −0.561177 + 1.35480i −0.0675578 + 0.163099i
\(70\) 0 0
\(71\) 3.40950 + 3.40950i 0.404633 + 0.404633i 0.879862 0.475229i \(-0.157635\pi\)
−0.475229 + 0.879862i \(0.657635\pi\)
\(72\) 0 0
\(73\) −0.442353 + 0.442353i −0.0517735 + 0.0517735i −0.732520 0.680746i \(-0.761656\pi\)
0.680746 + 0.732520i \(0.261656\pi\)
\(74\) 0 0
\(75\) 2.02794 + 0.840001i 0.234166 + 0.0969949i
\(76\) 0 0
\(77\) 0.218031 + 0.526374i 0.0248470 + 0.0599859i
\(78\) 0 0
\(79\) 7.07550i 0.796056i 0.917373 + 0.398028i \(0.130305\pi\)
−0.917373 + 0.398028i \(0.869695\pi\)
\(80\) 0 0
\(81\) 4.57283i 0.508093i
\(82\) 0 0
\(83\) 2.99862 + 7.23931i 0.329141 + 0.794617i 0.998656 + 0.0518190i \(0.0165019\pi\)
−0.669515 + 0.742798i \(0.733498\pi\)
\(84\) 0 0
\(85\) −11.0031 4.55765i −1.19346 0.494346i
\(86\) 0 0
\(87\) −4.58107 + 4.58107i −0.491143 + 0.491143i
\(88\) 0 0
\(89\) −4.21803 4.21803i −0.447110 0.447110i 0.447282 0.894393i \(-0.352392\pi\)
−0.894393 + 0.447282i \(0.852392\pi\)
\(90\) 0 0
\(91\) 4.59050 11.0824i 0.481215 1.16176i
\(92\) 0 0
\(93\) −1.49824 + 0.620589i −0.155360 + 0.0643521i
\(94\) 0 0
\(95\) 3.88784 0.398884
\(96\) 0 0
\(97\) 10.3267 1.04851 0.524257 0.851560i \(-0.324343\pi\)
0.524257 + 0.851560i \(0.324343\pi\)
\(98\) 0 0
\(99\) −0.146766 + 0.0607923i −0.0147505 + 0.00610986i
\(100\) 0 0
\(101\) 4.31750 10.4234i 0.429608 1.03716i −0.549805 0.835293i \(-0.685298\pi\)
0.979412 0.201871i \(-0.0647022\pi\)
\(102\) 0 0
\(103\) −13.3134 13.3134i −1.31181 1.31181i −0.920080 0.391732i \(-0.871876\pi\)
−0.391732 0.920080i \(-0.628124\pi\)
\(104\) 0 0
\(105\) 7.03127 7.03127i 0.686182 0.686182i
\(106\) 0 0
\(107\) 13.2507 + 5.48861i 1.28099 + 0.530604i 0.916288 0.400519i \(-0.131170\pi\)
0.364704 + 0.931124i \(0.381170\pi\)
\(108\) 0 0
\(109\) 4.87515 + 11.7697i 0.466955 + 1.12733i 0.965486 + 0.260456i \(0.0838730\pi\)
−0.498531 + 0.866872i \(0.666127\pi\)
\(110\) 0 0
\(111\) 6.26372i 0.594526i
\(112\) 0 0
\(113\) 5.88118i 0.553254i −0.960977 0.276627i \(-0.910783\pi\)
0.960977 0.276627i \(-0.0892167\pi\)
\(114\) 0 0
\(115\) 0.749118 + 1.80853i 0.0698556 + 0.168646i
\(116\) 0 0
\(117\) 3.09005 + 1.27994i 0.285675 + 0.118330i
\(118\) 0 0
\(119\) 17.7194 17.7194i 1.62433 1.62433i
\(120\) 0 0
\(121\) −7.76299 7.76299i −0.705726 0.705726i
\(122\) 0 0
\(123\) −1.87147 + 4.51813i −0.168745 + 0.407386i
\(124\) 0 0
\(125\) 11.2426 4.65685i 1.00557 0.416522i
\(126\) 0 0
\(127\) 15.4022 1.36672 0.683360 0.730081i \(-0.260518\pi\)
0.683360 + 0.730081i \(0.260518\pi\)
\(128\) 0 0
\(129\) −9.15010 −0.805621
\(130\) 0 0
\(131\) −2.96382 + 1.22765i −0.258950 + 0.107261i −0.508382 0.861132i \(-0.669756\pi\)
0.249432 + 0.968392i \(0.419756\pi\)
\(132\) 0 0
\(133\) −3.13048 + 7.55765i −0.271447 + 0.655331i
\(134\) 0 0
\(135\) 7.38607 + 7.38607i 0.635692 + 0.635692i
\(136\) 0 0
\(137\) 10.7757 10.7757i 0.920628 0.920628i −0.0764454 0.997074i \(-0.524357\pi\)
0.997074 + 0.0764454i \(0.0243571\pi\)
\(138\) 0 0
\(139\) 4.78372 + 1.98148i 0.405750 + 0.168067i 0.576218 0.817296i \(-0.304528\pi\)
−0.170468 + 0.985363i \(0.554528\pi\)
\(140\) 0 0
\(141\) −1.41421 3.41421i −0.119098 0.287529i
\(142\) 0 0
\(143\) 0.452150i 0.0378107i
\(144\) 0 0
\(145\) 8.64833i 0.718205i
\(146\) 0 0
\(147\) 4.29872 + 10.3780i 0.354553 + 0.855966i
\(148\) 0 0
\(149\) −4.32417 1.79113i −0.354250 0.146735i 0.198460 0.980109i \(-0.436406\pi\)
−0.552709 + 0.833374i \(0.686406\pi\)
\(150\) 0 0
\(151\) −13.2344 + 13.2344i −1.07700 + 1.07700i −0.0802232 + 0.996777i \(0.525563\pi\)
−0.996777 + 0.0802232i \(0.974437\pi\)
\(152\) 0 0
\(153\) 4.94059 + 4.94059i 0.399423 + 0.399423i
\(154\) 0 0
\(155\) −0.828427 + 2.00000i −0.0665409 + 0.160644i
\(156\) 0 0
\(157\) 15.9529 6.60790i 1.27318 0.527368i 0.359249 0.933242i \(-0.383033\pi\)
0.913929 + 0.405874i \(0.133033\pi\)
\(158\) 0 0
\(159\) −2.46863 −0.195775
\(160\) 0 0
\(161\) −4.11882 −0.324609
\(162\) 0 0
\(163\) 10.6488 4.41088i 0.834079 0.345487i 0.0755629 0.997141i \(-0.475925\pi\)
0.758516 + 0.651654i \(0.225925\pi\)
\(164\) 0 0
\(165\) 0.143434 0.346280i 0.0111663 0.0269578i
\(166\) 0 0
\(167\) 2.98677 + 2.98677i 0.231123 + 0.231123i 0.813161 0.582038i \(-0.197745\pi\)
−0.582038 + 0.813161i \(0.697745\pi\)
\(168\) 0 0
\(169\) 2.46094 2.46094i 0.189303 0.189303i
\(170\) 0 0
\(171\) −2.10725 0.872852i −0.161145 0.0667486i
\(172\) 0 0
\(173\) −7.85054 18.9529i −0.596866 1.44096i −0.876759 0.480930i \(-0.840299\pi\)
0.279894 0.960031i \(-0.409701\pi\)
\(174\) 0 0
\(175\) 6.16528i 0.466052i
\(176\) 0 0
\(177\) 5.19932i 0.390805i
\(178\) 0 0
\(179\) −9.60549 23.1897i −0.717948 1.73328i −0.679113 0.734033i \(-0.737636\pi\)
−0.0388344 0.999246i \(-0.512364\pi\)
\(180\) 0 0
\(181\) −1.87868 0.778175i −0.139641 0.0578413i 0.311768 0.950158i \(-0.399079\pi\)
−0.451410 + 0.892317i \(0.649079\pi\)
\(182\) 0 0
\(183\) 3.67362 3.67362i 0.271562 0.271562i
\(184\) 0 0
\(185\) 5.91245 + 5.91245i 0.434692 + 0.434692i
\(186\) 0 0
\(187\) 0.361465 0.872654i 0.0264329 0.0638148i
\(188\) 0 0
\(189\) −20.3052 + 8.41068i −1.47699 + 0.611787i
\(190\) 0 0
\(191\) −9.05902 −0.655487 −0.327744 0.944767i \(-0.606288\pi\)
−0.327744 + 0.944767i \(0.606288\pi\)
\(192\) 0 0
\(193\) 6.24707 0.449674 0.224837 0.974396i \(-0.427815\pi\)
0.224837 + 0.974396i \(0.427815\pi\)
\(194\) 0 0
\(195\) −7.29068 + 3.01990i −0.522096 + 0.216259i
\(196\) 0 0
\(197\) 1.81298 4.37691i 0.129169 0.311842i −0.846043 0.533115i \(-0.821021\pi\)
0.975212 + 0.221273i \(0.0710212\pi\)
\(198\) 0 0
\(199\) −6.14186 6.14186i −0.435385 0.435385i 0.455071 0.890455i \(-0.349614\pi\)
−0.890455 + 0.455071i \(0.849614\pi\)
\(200\) 0 0
\(201\) −14.9156 + 14.9156i −1.05206 + 1.05206i
\(202\) 0 0
\(203\) −16.8117 6.96362i −1.17995 0.488750i
\(204\) 0 0
\(205\) 2.49824 + 6.03127i 0.174484 + 0.421242i
\(206\) 0 0
\(207\) 1.14843i 0.0798211i
\(208\) 0 0
\(209\) 0.308343i 0.0213285i
\(210\) 0 0
\(211\) 5.21588 + 12.5923i 0.359076 + 0.866886i 0.995430 + 0.0954895i \(0.0304416\pi\)
−0.636354 + 0.771397i \(0.719558\pi\)
\(212\) 0 0
\(213\) 6.16619 + 2.55412i 0.422500 + 0.175005i
\(214\) 0 0
\(215\) −8.63696 + 8.63696i −0.589036 + 0.589036i
\(216\) 0 0
\(217\) −3.22079 3.22079i −0.218642 0.218642i
\(218\) 0 0
\(219\) −0.331374 + 0.800008i −0.0223922 + 0.0540595i
\(220\) 0 0
\(221\) −18.3731 + 7.61040i −1.23591 + 0.511931i
\(222\) 0 0
\(223\) 0.960579 0.0643251 0.0321626 0.999483i \(-0.489761\pi\)
0.0321626 + 0.999483i \(0.489761\pi\)
\(224\) 0 0
\(225\) −1.71903 −0.114602
\(226\) 0 0
\(227\) 14.1698 5.86932i 0.940482 0.389561i 0.140837 0.990033i \(-0.455021\pi\)
0.799646 + 0.600472i \(0.205021\pi\)
\(228\) 0 0
\(229\) −1.80408 + 4.35544i −0.119217 + 0.287816i −0.972211 0.234105i \(-0.924784\pi\)
0.852994 + 0.521920i \(0.174784\pi\)
\(230\) 0 0
\(231\) 0.557647 + 0.557647i 0.0366905 + 0.0366905i
\(232\) 0 0
\(233\) −16.7918 + 16.7918i −1.10007 + 1.10007i −0.105663 + 0.994402i \(0.533697\pi\)
−0.994402 + 0.105663i \(0.966303\pi\)
\(234\) 0 0
\(235\) −4.55765 1.88784i −0.297308 0.123149i
\(236\) 0 0
\(237\) 3.74794 + 9.04832i 0.243455 + 0.587751i
\(238\) 0 0
\(239\) 15.8414i 1.02469i −0.858779 0.512347i \(-0.828776\pi\)
0.858779 0.512347i \(-0.171224\pi\)
\(240\) 0 0
\(241\) 0.313335i 0.0201837i 0.999949 + 0.0100918i \(0.00321239\pi\)
−0.999949 + 0.0100918i \(0.996788\pi\)
\(242\) 0 0
\(243\) −4.06774 9.82038i −0.260945 0.629978i
\(244\) 0 0
\(245\) 13.8537 + 5.73838i 0.885079 + 0.366612i
\(246\) 0 0
\(247\) 4.59050 4.59050i 0.292086 0.292086i
\(248\) 0 0
\(249\) 7.66941 + 7.66941i 0.486029 + 0.486029i
\(250\) 0 0
\(251\) −3.55903 + 8.59225i −0.224644 + 0.542338i −0.995510 0.0946593i \(-0.969824\pi\)
0.770866 + 0.636997i \(0.219824\pi\)
\(252\) 0 0
\(253\) −0.143434 + 0.0594122i −0.00901760 + 0.00373521i
\(254\) 0 0
\(255\) −16.4853 −1.03235
\(256\) 0 0
\(257\) 18.9043 1.17922 0.589609 0.807689i \(-0.299282\pi\)
0.589609 + 0.807689i \(0.299282\pi\)
\(258\) 0 0
\(259\) −16.2540 + 6.73263i −1.00998 + 0.418346i
\(260\) 0 0
\(261\) 1.94162 4.68749i 0.120183 0.290148i
\(262\) 0 0
\(263\) 16.6366 + 16.6366i 1.02585 + 1.02585i 0.999657 + 0.0261975i \(0.00833988\pi\)
0.0261975 + 0.999657i \(0.491660\pi\)
\(264\) 0 0
\(265\) −2.33019 + 2.33019i −0.143143 + 0.143143i
\(266\) 0 0
\(267\) −7.62844 3.15980i −0.466853 0.193377i
\(268\) 0 0
\(269\) 5.01046 + 12.0963i 0.305493 + 0.737525i 0.999840 + 0.0178850i \(0.00569329\pi\)
−0.694347 + 0.719640i \(0.744307\pi\)
\(270\) 0 0
\(271\) 28.2141i 1.71388i −0.515412 0.856942i \(-0.672361\pi\)
0.515412 0.856942i \(-0.327639\pi\)
\(272\) 0 0
\(273\) 16.6041i 1.00493i
\(274\) 0 0
\(275\) 0.0889314 + 0.214699i 0.00536277 + 0.0129469i
\(276\) 0 0
\(277\) 21.8246 + 9.04006i 1.31132 + 0.543165i 0.925268 0.379314i \(-0.123840\pi\)
0.386047 + 0.922479i \(0.373840\pi\)
\(278\) 0 0
\(279\) 0.898033 0.898033i 0.0537638 0.0537638i
\(280\) 0 0
\(281\) 3.00666 + 3.00666i 0.179363 + 0.179363i 0.791078 0.611715i \(-0.209520\pi\)
−0.611715 + 0.791078i \(0.709520\pi\)
\(282\) 0 0
\(283\) 0.709521 1.71293i 0.0421766 0.101823i −0.901387 0.433014i \(-0.857450\pi\)
0.943564 + 0.331190i \(0.107450\pi\)
\(284\) 0 0
\(285\) 4.97186 2.05941i 0.294508 0.121989i
\(286\) 0 0
\(287\) −13.7359 −0.810804
\(288\) 0 0
\(289\) −24.5443 −1.44378
\(290\) 0 0
\(291\) 13.2060 5.47010i 0.774148 0.320663i
\(292\) 0 0
\(293\) −10.5176 + 25.3917i −0.614444 + 1.48340i 0.243627 + 0.969869i \(0.421663\pi\)
−0.858071 + 0.513530i \(0.828337\pi\)
\(294\) 0 0
\(295\) −4.90774 4.90774i −0.285739 0.285739i
\(296\) 0 0
\(297\) −0.585786 + 0.585786i −0.0339908 + 0.0339908i
\(298\) 0 0
\(299\) 3.01990 + 1.25088i 0.174645 + 0.0723404i
\(300\) 0 0
\(301\) −9.83509 23.7440i −0.566885 1.36858i
\(302\) 0 0
\(303\) 15.6167i 0.897154i
\(304\) 0 0
\(305\) 6.93520i 0.397108i
\(306\) 0 0
\(307\) 5.80167 + 14.0065i 0.331119 + 0.799391i 0.998504 + 0.0546786i \(0.0174134\pi\)
−0.667385 + 0.744713i \(0.732587\pi\)
\(308\) 0 0
\(309\) −24.0777 9.97332i −1.36973 0.567363i
\(310\) 0 0
\(311\) −7.15481 + 7.15481i −0.405712 + 0.405712i −0.880240 0.474528i \(-0.842619\pi\)
0.474528 + 0.880240i \(0.342619\pi\)
\(312\) 0 0
\(313\) −11.8512 11.8512i −0.669868 0.669868i 0.287817 0.957685i \(-0.407070\pi\)
−0.957685 + 0.287817i \(0.907070\pi\)
\(314\) 0 0
\(315\) −2.98010 + 7.19460i −0.167910 + 0.405370i
\(316\) 0 0
\(317\) −18.9377 + 7.84425i −1.06365 + 0.440577i −0.844745 0.535170i \(-0.820248\pi\)
−0.218902 + 0.975747i \(0.570248\pi\)
\(318\) 0 0
\(319\) −0.685896 −0.0384028
\(320\) 0 0
\(321\) 19.8526 1.10807
\(322\) 0 0
\(323\) 12.5295 5.18989i 0.697160 0.288773i
\(324\) 0 0
\(325\) 1.87239 4.52035i 0.103861 0.250744i
\(326\) 0 0
\(327\) 12.4689 + 12.4689i 0.689533 + 0.689533i
\(328\) 0 0
\(329\) 7.33962 7.33962i 0.404646 0.404646i
\(330\) 0 0
\(331\) 9.91107 + 4.10530i 0.544762 + 0.225648i 0.638055 0.769991i \(-0.279739\pi\)
−0.0932931 + 0.995639i \(0.529739\pi\)
\(332\) 0 0
\(333\) −1.87722 4.53200i −0.102871 0.248352i
\(334\) 0 0
\(335\) 28.1582i 1.53845i
\(336\) 0 0
\(337\) 3.23412i 0.176174i 0.996113 + 0.0880868i \(0.0280753\pi\)
−0.996113 + 0.0880868i \(0.971925\pi\)
\(338\) 0 0
\(339\) −3.11529 7.52099i −0.169200 0.408484i
\(340\) 0 0
\(341\) −0.158619 0.0657022i −0.00858971 0.00355797i
\(342\) 0 0
\(343\) −3.06608 + 3.06608i −0.165553 + 0.165553i
\(344\) 0 0
\(345\) 1.91598 + 1.91598i 0.103153 + 0.103153i
\(346\) 0 0
\(347\) −9.82705 + 23.7246i −0.527544 + 1.27360i 0.405584 + 0.914058i \(0.367068\pi\)
−0.933128 + 0.359545i \(0.882932\pi\)
\(348\) 0 0
\(349\) 12.5762 5.20925i 0.673190 0.278845i −0.0197868 0.999804i \(-0.506299\pi\)
0.692977 + 0.720960i \(0.256299\pi\)
\(350\) 0 0
\(351\) 17.4420 0.930983
\(352\) 0 0
\(353\) −8.67371 −0.461655 −0.230828 0.972995i \(-0.574143\pi\)
−0.230828 + 0.972995i \(0.574143\pi\)
\(354\) 0 0
\(355\) 8.23127 3.40950i 0.436870 0.180958i
\(356\) 0 0
\(357\) 13.2739 32.0461i 0.702530 1.69606i
\(358\) 0 0
\(359\) −13.6307 13.6307i −0.719399 0.719399i 0.249083 0.968482i \(-0.419871\pi\)
−0.968482 + 0.249083i \(0.919871\pi\)
\(360\) 0 0
\(361\) 10.3045 10.3045i 0.542345 0.542345i
\(362\) 0 0
\(363\) −14.0396 5.81539i −0.736888 0.305229i
\(364\) 0 0
\(365\) 0.442353 + 1.06793i 0.0231538 + 0.0558982i
\(366\) 0 0
\(367\) 28.9800i 1.51274i 0.654142 + 0.756371i \(0.273030\pi\)
−0.654142 + 0.756371i \(0.726970\pi\)
\(368\) 0 0
\(369\) 3.82989i 0.199376i
\(370\) 0 0
\(371\) −2.65344 6.40597i −0.137760 0.332581i
\(372\) 0 0
\(373\) 5.56367 + 2.30455i 0.288076 + 0.119325i 0.522042 0.852920i \(-0.325170\pi\)
−0.233966 + 0.972245i \(0.575170\pi\)
\(374\) 0 0
\(375\) 11.9106 11.9106i 0.615060 0.615060i
\(376\) 0 0
\(377\) 10.2114 + 10.2114i 0.525912 + 0.525912i
\(378\) 0 0
\(379\) 8.55274 20.6481i 0.439325 1.06062i −0.536858 0.843673i \(-0.680389\pi\)
0.976183 0.216951i \(-0.0696111\pi\)
\(380\) 0 0
\(381\) 19.6966 8.15862i 1.00909 0.417979i
\(382\) 0 0
\(383\) 30.5667 1.56188 0.780942 0.624603i \(-0.214739\pi\)
0.780942 + 0.624603i \(0.214739\pi\)
\(384\) 0 0
\(385\) 1.05275 0.0536530
\(386\) 0 0
\(387\) 6.62039 2.74226i 0.336533 0.139397i
\(388\) 0 0
\(389\) 7.06634 17.0597i 0.358278 0.864959i −0.637265 0.770645i \(-0.719934\pi\)
0.995543 0.0943139i \(-0.0300657\pi\)
\(390\) 0 0
\(391\) 4.82843 + 4.82843i 0.244184 + 0.244184i
\(392\) 0 0
\(393\) −3.13990 + 3.13990i −0.158387 + 0.158387i
\(394\) 0 0
\(395\) 12.0786 + 5.00313i 0.607742 + 0.251735i
\(396\) 0 0
\(397\) −7.15759 17.2799i −0.359229 0.867255i −0.995409 0.0957146i \(-0.969486\pi\)
0.636180 0.771541i \(-0.280514\pi\)
\(398\) 0 0
\(399\) 11.3231i 0.566866i
\(400\) 0 0
\(401\) 11.0004i 0.549332i 0.961540 + 0.274666i \(0.0885674\pi\)
−0.961540 + 0.274666i \(0.911433\pi\)
\(402\) 0 0
\(403\) 1.38331 + 3.33962i 0.0689078 + 0.166358i
\(404\) 0 0
\(405\) 7.80631 + 3.23348i 0.387899 + 0.160673i
\(406\) 0 0
\(407\) −0.468914 + 0.468914i −0.0232432 + 0.0232432i
\(408\) 0 0
\(409\) −1.15862 1.15862i −0.0572900 0.0572900i 0.677881 0.735171i \(-0.262898\pi\)
−0.735171 + 0.677881i \(0.762898\pi\)
\(410\) 0 0
\(411\) 8.07225 19.4881i 0.398175 0.961279i
\(412\) 0 0
\(413\) 13.4919 5.58855i 0.663895 0.274994i
\(414\) 0 0
\(415\) 14.4786 0.710727
\(416\) 0 0
\(417\) 7.16714 0.350976
\(418\) 0 0
\(419\) −32.0362 + 13.2698i −1.56507 + 0.648273i −0.985961 0.166978i \(-0.946599\pi\)
−0.579108 + 0.815251i \(0.696599\pi\)
\(420\) 0 0
\(421\) −9.34602 + 22.5633i −0.455497 + 1.09967i 0.514705 + 0.857368i \(0.327902\pi\)
−0.970202 + 0.242299i \(0.922098\pi\)
\(422\) 0 0
\(423\) 2.04646 + 2.04646i 0.0995022 + 0.0995022i
\(424\) 0 0
\(425\) 7.22746 7.22746i 0.350583 0.350583i
\(426\) 0 0
\(427\) 13.4815 + 5.58421i 0.652414 + 0.270239i
\(428\) 0 0
\(429\) −0.239507 0.578221i −0.0115635 0.0279168i
\(430\) 0 0
\(431\) 4.47586i 0.215594i −0.994173 0.107797i \(-0.965620\pi\)
0.994173 0.107797i \(-0.0343797\pi\)
\(432\) 0 0
\(433\) 1.44196i 0.0692960i 0.999400 + 0.0346480i \(0.0110310\pi\)
−0.999400 + 0.0346480i \(0.988969\pi\)
\(434\) 0 0
\(435\) 4.58107 + 11.0597i 0.219646 + 0.530272i
\(436\) 0 0
\(437\) −2.05941 0.853036i −0.0985150 0.0408063i
\(438\) 0 0
\(439\) −0.854615 + 0.854615i −0.0407885 + 0.0407885i −0.727207 0.686418i \(-0.759182\pi\)
0.686418 + 0.727207i \(0.259182\pi\)
\(440\) 0 0
\(441\) −6.22053 6.22053i −0.296216 0.296216i
\(442\) 0 0
\(443\) 4.68913 11.3206i 0.222787 0.537857i −0.772479 0.635040i \(-0.780983\pi\)
0.995266 + 0.0971838i \(0.0309835\pi\)
\(444\) 0 0
\(445\) −10.1832 + 4.21803i −0.482731 + 0.199954i
\(446\) 0 0
\(447\) −6.47862 −0.306428
\(448\) 0 0
\(449\) −24.5573 −1.15893 −0.579464 0.814998i \(-0.696738\pi\)
−0.579464 + 0.814998i \(0.696738\pi\)
\(450\) 0 0
\(451\) −0.478338 + 0.198134i −0.0225240 + 0.00932976i
\(452\) 0 0
\(453\) −9.91412 + 23.9348i −0.465806 + 1.12456i
\(454\) 0 0
\(455\) −15.6729 15.6729i −0.734759 0.734759i
\(456\) 0 0
\(457\) 14.1684 14.1684i 0.662771 0.662771i −0.293262 0.956032i \(-0.594741\pi\)
0.956032 + 0.293262i \(0.0947407\pi\)
\(458\) 0 0
\(459\) 33.6631 + 13.9437i 1.57126 + 0.650837i
\(460\) 0 0
\(461\) 11.7965 + 28.4793i 0.549417 + 1.32641i 0.917913 + 0.396782i \(0.129873\pi\)
−0.368496 + 0.929630i \(0.620127\pi\)
\(462\) 0 0
\(463\) 14.8190i 0.688697i −0.938842 0.344349i \(-0.888100\pi\)
0.938842 0.344349i \(-0.111900\pi\)
\(464\) 0 0
\(465\) 2.99647i 0.138958i
\(466\) 0 0
\(467\) 5.43521 + 13.1218i 0.251512 + 0.607203i 0.998326 0.0578293i \(-0.0184179\pi\)
−0.746815 + 0.665032i \(0.768418\pi\)
\(468\) 0 0
\(469\) −54.7373 22.6729i −2.52753 1.04694i
\(470\) 0 0
\(471\) 16.9007 16.9007i 0.778742 0.778742i
\(472\) 0 0
\(473\) −0.684993 0.684993i −0.0314960 0.0314960i
\(474\) 0 0
\(475\) −1.27687 + 3.08264i −0.0585869 + 0.141441i
\(476\) 0 0
\(477\) 1.78614 0.739842i 0.0817816 0.0338750i
\(478\) 0 0
\(479\) −32.3727 −1.47915 −0.739574 0.673076i \(-0.764973\pi\)
−0.739574 + 0.673076i \(0.764973\pi\)
\(480\) 0 0
\(481\) 13.9620 0.636614
\(482\) 0 0
\(483\) −5.26725 + 2.18177i −0.239668 + 0.0992738i
\(484\) 0 0
\(485\) 7.30205 17.6287i 0.331569 0.800479i
\(486\) 0 0
\(487\) 1.89478 + 1.89478i 0.0858608 + 0.0858608i 0.748733 0.662872i \(-0.230663\pi\)
−0.662872 + 0.748733i \(0.730663\pi\)
\(488\) 0 0
\(489\) 11.2815 11.2815i 0.510166 0.510166i
\(490\) 0 0
\(491\) −18.2886 7.57539i −0.825354 0.341873i −0.0702922 0.997526i \(-0.522393\pi\)
−0.755062 + 0.655654i \(0.772393\pi\)
\(492\) 0 0
\(493\) 11.5447 + 27.8714i 0.519947 + 1.25526i
\(494\) 0 0
\(495\) 0.293531i 0.0131932i
\(496\) 0 0
\(497\) 18.7462i 0.840884i
\(498\) 0 0
\(499\) −9.54921 23.0538i −0.427481 1.03203i −0.980083 0.198586i \(-0.936365\pi\)
0.552602 0.833445i \(-0.313635\pi\)
\(500\) 0 0
\(501\) 5.40166 + 2.23744i 0.241328 + 0.0999614i
\(502\) 0 0
\(503\) −22.6436 + 22.6436i −1.00963 + 1.00963i −0.00967595 + 0.999953i \(0.503080\pi\)
−0.999953 + 0.00967595i \(0.996920\pi\)
\(504\) 0 0
\(505\) −14.7409 14.7409i −0.655960 0.655960i
\(506\) 0 0
\(507\) 1.84353 4.45068i 0.0818741 0.197661i
\(508\) 0 0
\(509\) 21.3715 8.85238i 0.947276 0.392375i 0.145070 0.989421i \(-0.453659\pi\)
0.802206 + 0.597047i \(0.203659\pi\)
\(510\) 0 0
\(511\) −2.43216 −0.107592
\(512\) 0 0
\(513\) −11.8945 −0.525155
\(514\) 0 0
\(515\) −32.1415 + 13.3134i −1.41632 + 0.586660i
\(516\) 0 0
\(517\) 0.149724 0.361465i 0.00658484 0.0158972i
\(518\) 0 0
\(519\) −20.0789 20.0789i −0.881366 0.881366i
\(520\) 0 0
\(521\) −9.76588 + 9.76588i −0.427851 + 0.427851i −0.887896 0.460045i \(-0.847833\pi\)
0.460045 + 0.887896i \(0.347833\pi\)
\(522\) 0 0
\(523\) −16.9370 7.01552i −0.740601 0.306767i −0.0197010 0.999806i \(-0.506271\pi\)
−0.720900 + 0.693039i \(0.756271\pi\)
\(524\) 0 0
\(525\) 3.26579 + 7.88431i 0.142531 + 0.344099i
\(526\) 0 0
\(527\) 7.55136i 0.328942i
\(528\) 0 0
\(529\) 21.8776i 0.951202i
\(530\) 0 0
\(531\) 1.55822 + 3.76187i 0.0676209 + 0.163251i
\(532\) 0 0
\(533\) 10.0711 + 4.17157i 0.436226 + 0.180691i
\(534\) 0 0
\(535\) 18.7393 18.7393i 0.810170 0.810170i
\(536\) 0 0
\(537\) −24.5674 24.5674i −1.06016 1.06016i
\(538\) 0 0
\(539\) −0.455108 + 1.09873i −0.0196029 + 0.0473256i
\(540\) 0 0
\(541\) −14.2214 + 5.89071i −0.611427 + 0.253261i −0.666839 0.745202i \(-0.732353\pi\)
0.0554115 + 0.998464i \(0.482353\pi\)
\(542\) 0 0
\(543\) −2.81470 −0.120791
\(544\) 0 0
\(545\) 23.5393 1.00831
\(546\) 0 0
\(547\) −9.67342 + 4.00686i −0.413606 + 0.171321i −0.579776 0.814776i \(-0.696860\pi\)
0.166170 + 0.986097i \(0.446860\pi\)
\(548\) 0 0
\(549\) −1.55701 + 3.75895i −0.0664515 + 0.160428i
\(550\) 0 0
\(551\) −6.96362 6.96362i −0.296660 0.296660i
\(552\) 0 0
\(553\) −19.4514 + 19.4514i −0.827157 + 0.827157i
\(554\) 0 0
\(555\) 10.6928 + 4.42912i 0.453886 + 0.188006i
\(556\) 0 0
\(557\) 3.08965 + 7.45908i 0.130913 + 0.316051i 0.975721 0.219018i \(-0.0702854\pi\)
−0.844808 + 0.535070i \(0.820285\pi\)
\(558\) 0 0
\(559\) 20.3959i 0.862653i
\(560\) 0 0
\(561\) 1.30744i 0.0552002i
\(562\) 0 0
\(563\) 10.1815 + 24.5802i 0.429097 + 1.03593i 0.979574 + 0.201082i \(0.0644457\pi\)
−0.550477 + 0.834850i \(0.685554\pi\)
\(564\) 0 0
\(565\) −10.0398 4.15862i −0.422377 0.174954i
\(566\) 0 0
\(567\) −12.5713 + 12.5713i −0.527943 + 0.527943i
\(568\) 0 0
\(569\) 8.12862 + 8.12862i 0.340770 + 0.340770i 0.856657 0.515887i \(-0.172538\pi\)
−0.515887 + 0.856657i \(0.672538\pi\)
\(570\) 0 0
\(571\) −7.40930 + 17.8876i −0.310070 + 0.748574i 0.689632 + 0.724160i \(0.257772\pi\)
−0.999702 + 0.0244147i \(0.992228\pi\)
\(572\) 0 0
\(573\) −11.5849 + 4.79862i −0.483965 + 0.200465i
\(574\) 0 0
\(575\) −1.68000 −0.0700609
\(576\) 0 0
\(577\) −11.9134 −0.495959 −0.247980 0.968765i \(-0.579767\pi\)
−0.247980 + 0.968765i \(0.579767\pi\)
\(578\) 0 0
\(579\) 7.98890 3.30911i 0.332008 0.137522i
\(580\) 0 0
\(581\) −11.6582 + 28.1453i −0.483662 + 1.16766i
\(582\) 0 0
\(583\) −0.184807 0.184807i −0.00765391 0.00765391i
\(584\) 0 0
\(585\) 4.36999 4.36999i 0.180677 0.180677i
\(586\) 0 0
\(587\) −23.6011 9.77588i −0.974120 0.403494i −0.161876 0.986811i \(-0.551754\pi\)
−0.812244 + 0.583318i \(0.801754\pi\)
\(588\) 0 0
\(589\) −0.943348 2.27744i −0.0388700 0.0938404i
\(590\) 0 0
\(591\) 6.55765i 0.269746i
\(592\) 0 0
\(593\) 12.5549i 0.515567i 0.966203 + 0.257784i \(0.0829922\pi\)
−0.966203 + 0.257784i \(0.917008\pi\)
\(594\) 0 0
\(595\) −17.7194 42.7784i −0.726425 1.75374i
\(596\) 0 0
\(597\) −11.1077 4.60097i −0.454609 0.188305i
\(598\) 0 0
\(599\) 6.66010 6.66010i 0.272124 0.272124i −0.557830 0.829955i \(-0.688366\pi\)
0.829955 + 0.557830i \(0.188366\pi\)
\(600\) 0 0
\(601\) 27.4318 + 27.4318i 1.11896 + 1.11896i 0.991894 + 0.127071i \(0.0405577\pi\)
0.127071 + 0.991894i \(0.459442\pi\)
\(602\) 0 0
\(603\) 6.32175 15.2621i 0.257442 0.621519i
\(604\) 0 0
\(605\) −18.7415 + 7.76299i −0.761951 + 0.315610i
\(606\) 0 0
\(607\) 20.3361 0.825416 0.412708 0.910863i \(-0.364583\pi\)
0.412708 + 0.910863i \(0.364583\pi\)
\(608\) 0 0
\(609\) −25.1878 −1.02066
\(610\) 0 0
\(611\) −7.61040 + 3.15233i −0.307884 + 0.127530i
\(612\) 0 0
\(613\) 13.3277 32.1759i 0.538301 1.29957i −0.387608 0.921824i \(-0.626699\pi\)
0.925908 0.377748i \(-0.123301\pi\)
\(614\) 0 0
\(615\) 6.38960 + 6.38960i 0.257654 + 0.257654i
\(616\) 0 0
\(617\) −11.3168 + 11.3168i −0.455599 + 0.455599i −0.897208 0.441609i \(-0.854408\pi\)
0.441609 + 0.897208i \(0.354408\pi\)
\(618\) 0 0
\(619\) −0.224799 0.0931149i −0.00903545 0.00374260i 0.378161 0.925740i \(-0.376557\pi\)
−0.387197 + 0.921997i \(0.626557\pi\)
\(620\) 0 0
\(621\) −2.29186 5.53304i −0.0919691 0.222033i
\(622\) 0 0
\(623\) 23.1917i 0.929157i
\(624\) 0 0
\(625\) 14.5563i 0.582254i
\(626\) 0 0
\(627\) 0.163331 + 0.394316i 0.00652282 + 0.0157475i
\(628\) 0 0
\(629\) 26.9469 + 11.1618i 1.07444 + 0.445048i
\(630\) 0 0
\(631\) −1.15481 + 1.15481i −0.0459722 + 0.0459722i −0.729719 0.683747i \(-0.760349\pi\)
0.683747 + 0.729719i \(0.260349\pi\)
\(632\) 0 0
\(633\) 13.3404 + 13.3404i 0.530233 + 0.530233i
\(634\) 0 0
\(635\) 10.8910 26.2931i 0.432195 1.04341i
\(636\) 0 0
\(637\) 23.1330 9.58199i 0.916562 0.379652i
\(638\) 0 0
\(639\) −5.22690 −0.206773
\(640\) 0 0
\(641\) −14.1953 −0.560679 −0.280339 0.959901i \(-0.590447\pi\)
−0.280339 + 0.959901i \(0.590447\pi\)
\(642\) 0 0
\(643\) 33.9334 14.0557i 1.33820 0.554302i 0.405219 0.914219i \(-0.367195\pi\)
0.932984 + 0.359917i \(0.117195\pi\)
\(644\) 0 0
\(645\) −6.47010 + 15.6202i −0.254760 + 0.615045i
\(646\) 0 0
\(647\) −8.73969 8.73969i −0.343593 0.343593i 0.514123 0.857716i \(-0.328117\pi\)
−0.857716 + 0.514123i \(0.828117\pi\)
\(648\) 0 0
\(649\) 0.389231 0.389231i 0.0152786 0.0152786i
\(650\) 0 0
\(651\) −5.82490 2.41275i −0.228296 0.0945632i
\(652\) 0 0
\(653\) −16.1182 38.9127i −0.630753 1.52277i −0.838679 0.544627i \(-0.816671\pi\)
0.207926 0.978145i \(-0.433329\pi\)
\(654\) 0 0
\(655\) 5.92763i 0.231612i
\(656\) 0 0
\(657\) 0.678143i 0.0264569i
\(658\) 0 0
\(659\) −8.93958 21.5821i −0.348237 0.840718i −0.996828 0.0795812i \(-0.974642\pi\)
0.648592 0.761136i \(-0.275358\pi\)
\(660\) 0 0
\(661\) 22.0088 + 9.11633i 0.856042 + 0.354584i 0.767158 0.641458i \(-0.221670\pi\)
0.0888835 + 0.996042i \(0.471670\pi\)
\(662\) 0 0
\(663\) −19.4647 + 19.4647i −0.755947 + 0.755947i
\(664\) 0 0
\(665\) 10.6881 + 10.6881i 0.414468 + 0.414468i
\(666\) 0 0
\(667\) 1.89754 4.58107i 0.0734732 0.177380i
\(668\) 0 0
\(669\) 1.22841 0.508825i 0.0474931 0.0196723i
\(670\) 0 0
\(671\) 0.550028 0.0212336
\(672\) 0 0
\(673\) 45.0980 1.73840 0.869200 0.494460i \(-0.164634\pi\)
0.869200 + 0.494460i \(0.164634\pi\)
\(674\) 0 0
\(675\) −8.28216 + 3.43058i −0.318780 + 0.132043i
\(676\) 0 0
\(677\) −13.6058 + 32.8474i −0.522915 + 1.26243i 0.413170 + 0.910654i \(0.364421\pi\)
−0.936085 + 0.351774i \(0.885579\pi\)
\(678\) 0 0
\(679\) 28.3892 + 28.3892i 1.08948 + 1.08948i
\(680\) 0 0
\(681\) 15.0117 15.0117i 0.575248 0.575248i
\(682\) 0 0
\(683\) 18.8141 + 7.79305i 0.719901 + 0.298193i 0.712395 0.701779i \(-0.247611\pi\)
0.00750651 + 0.999972i \(0.497611\pi\)
\(684\) 0 0
\(685\) −10.7757 26.0148i −0.411718 0.993974i
\(686\) 0 0
\(687\) 6.52547i 0.248962i
\(688\) 0 0
\(689\) 5.50267i 0.209635i
\(690\) 0 0
\(691\) 12.6322 + 30.4967i 0.480550 + 1.16015i 0.959348 + 0.282226i \(0.0910726\pi\)
−0.478798 + 0.877925i \(0.658927\pi\)
\(692\) 0 0
\(693\) −0.570601 0.236351i −0.0216753 0.00897822i
\(694\) 0 0
\(695\) 6.76521 6.76521i 0.256619 0.256619i
\(696\) 0 0
\(697\) 16.1023 + 16.1023i 0.609920 + 0.609920i
\(698\) 0 0
\(699\) −12.5790 + 30.3684i −0.475782 + 1.14864i
\(700\) 0 0
\(701\) −0.915341 + 0.379146i −0.0345719 + 0.0143202i −0.399902 0.916558i \(-0.630956\pi\)
0.365330 + 0.930878i \(0.380956\pi\)
\(702\) 0 0
\(703\) −9.52138 −0.359106
\(704\) 0 0
\(705\) −6.82843 −0.257173
\(706\) 0 0
\(707\) 40.5244 16.7858i 1.52408 0.631293i
\(708\) 0 0
\(709\) 18.9677 45.7920i 0.712346 1.71975i 0.0182911 0.999833i \(-0.494177\pi\)
0.694055 0.719922i \(-0.255823\pi\)
\(710\) 0 0
\(711\) −5.42350 5.42350i −0.203397 0.203397i
\(712\) 0 0
\(713\) 0.877646 0.877646i 0.0328681 0.0328681i
\(714\) 0 0
\(715\) −0.771869 0.319719i −0.0288663 0.0119568i
\(716\) 0 0
\(717\) −8.39128 20.2583i −0.313378 0.756561i
\(718\) 0 0
\(719\) 12.7931i 0.477102i 0.971130 + 0.238551i \(0.0766724\pi\)
−0.971130 + 0.238551i \(0.923328\pi\)
\(720\) 0 0
\(721\) 73.2004i 2.72612i
\(722\) 0 0
\(723\) 0.165975 + 0.400700i 0.00617269 + 0.0149022i
\(724\) 0 0
\(725\) −6.85720 2.84035i −0.254670 0.105488i
\(726\) 0 0
\(727\) 0.466154 0.466154i 0.0172887 0.0172887i −0.698410 0.715698i \(-0.746109\pi\)
0.715698 + 0.698410i \(0.246109\pi\)
\(728\) 0 0
\(729\) −20.1043 20.1043i −0.744603 0.744603i
\(730\) 0 0
\(731\) −16.3052 + 39.3642i −0.603069 + 1.45594i
\(732\) 0 0
\(733\) −34.0271 + 14.0945i −1.25682 + 0.520591i −0.908932 0.416945i \(-0.863101\pi\)
−0.347887 + 0.937536i \(0.613101\pi\)
\(734\) 0 0
\(735\) 20.7561 0.765599
\(736\) 0 0
\(737\) −2.23322 −0.0822616
\(738\) 0 0
\(739\) 8.25825 3.42068i 0.303785 0.125832i −0.225584 0.974224i \(-0.572429\pi\)
0.529368 + 0.848392i \(0.322429\pi\)
\(740\) 0 0
\(741\) 3.43882 8.30205i 0.126328 0.304984i
\(742\) 0 0
\(743\) 32.4060 + 32.4060i 1.18886 + 1.18886i 0.977383 + 0.211477i \(0.0678273\pi\)
0.211477 + 0.977383i \(0.432173\pi\)
\(744\) 0 0
\(745\) −6.11529 + 6.11529i −0.224047 + 0.224047i
\(746\) 0 0
\(747\) −7.84757 3.25057i −0.287127 0.118932i
\(748\) 0 0
\(749\) 21.3388 + 51.5165i 0.779704 + 1.88237i
\(750\) 0 0
\(751\) 21.5108i 0.784939i −0.919765 0.392470i \(-0.871621\pi\)
0.919765 0.392470i \(-0.128379\pi\)
\(752\) 0 0
\(753\) 12.8732i 0.469126i
\(754\) 0 0
\(755\) 13.2344 + 31.9507i 0.481649 + 1.16280i
\(756\) 0 0
\(757\) 17.3649 + 7.19276i 0.631137 + 0.261425i 0.675236 0.737602i \(-0.264042\pi\)
−0.0440993 + 0.999027i \(0.514042\pi\)
\(758\) 0 0
\(759\) −0.151955 + 0.151955i −0.00551563 + 0.00551563i
\(760\) 0 0
\(761\) −37.8574 37.8574i −1.37233 1.37233i −0.856977 0.515354i \(-0.827660\pi\)
−0.515354 0.856977i \(-0.672340\pi\)
\(762\) 0 0
\(763\) −18.9538 + 45.7585i −0.686174 + 1.65657i
\(764\) 0 0
\(765\) 11.9276 4.94059i 0.431245 0.178627i
\(766\) 0 0
\(767\) −11.5894 −0.418471
\(768\) 0 0
\(769\) 3.07370 0.110840 0.0554201 0.998463i \(-0.482350\pi\)
0.0554201 + 0.998463i \(0.482350\pi\)
\(770\) 0 0
\(771\) 24.1753 10.0137i 0.870651 0.360635i
\(772\) 0 0
\(773\) 6.55831 15.8332i 0.235886 0.569479i −0.760964 0.648795i \(-0.775273\pi\)
0.996850 + 0.0793155i \(0.0252735\pi\)
\(774\) 0 0
\(775\) −1.31371 1.31371i −0.0471898 0.0471898i
\(776\) 0 0
\(777\) −17.2197 + 17.2197i −0.617753 + 0.617753i
\(778\) 0 0
\(779\) −6.86794 2.84479i −0.246070 0.101925i
\(780\) 0 0
\(781\) 0.270406 + 0.652818i 0.00967589 + 0.0233597i
\(782\) 0 0
\(783\) 26.4588i 0.945561i
\(784\) 0 0
\(785\) 31.9058i 1.13877i
\(786\) 0 0
\(787\) −6.77706 16.3613i −0.241576 0.583216i 0.755864 0.654729i \(-0.227217\pi\)
−0.997440 + 0.0715129i \(0.977217\pi\)
\(788\) 0 0
\(789\) 30.0877 + 12.4627i 1.07115 + 0.443685i
\(790\) 0 0
\(791\) 16.1680 16.1680i 0.574869 0.574869i
\(792\) 0 0
\(793\) −8.18862 8.18862i −0.290786 0.290786i
\(794\) 0 0
\(795\) −1.74559 + 4.21422i −0.0619096 + 0.149463i
\(796\) 0 0
\(797\) 32.4476 13.4402i 1.14935 0.476077i 0.275036 0.961434i \(-0.411310\pi\)
0.874316 + 0.485356i \(0.161310\pi\)
\(798\) 0 0
\(799\) −17.2082 −0.608783
\(800\) 0 0
\(801\) 6.46640 0.228479
\(802\) 0 0
\(803\) −0.0846974 + 0.0350828i −0.00298891 + 0.00123805i
\(804\) 0 0
\(805\) −2.91245 + 7.03127i −0.102650 + 0.247820i
\(806\) 0 0
\(807\) 12.8150 + 12.8150i 0.451109 + 0.451109i
\(808\) 0 0
\(809\) 11.2704 11.2704i 0.396246 0.396246i −0.480661 0.876907i \(-0.659603\pi\)
0.876907 + 0.480661i \(0.159603\pi\)
\(810\) 0 0
\(811\) −16.3328 6.76529i −0.573524 0.237561i 0.0770206 0.997029i \(-0.475459\pi\)
−0.650545 + 0.759468i \(0.725459\pi\)
\(812\) 0 0
\(813\) −14.9452 36.0809i −0.524150 1.26541i
\(814\) 0 0
\(815\) 21.2976i 0.746023i
\(816\) 0 0
\(817\) 13.9089i 0.486611i
\(818\) 0 0
\(819\) 4.97620 + 12.0136i 0.173882 + 0.419789i
\(820\) 0 0
\(821\) −29.5124 12.2244i −1.02999 0.426636i −0.197281 0.980347i \(-0.563211\pi\)
−0.832709 + 0.553711i \(0.813211\pi\)
\(822\) 0 0
\(823\) −1.00381 + 1.00381i −0.0349906 + 0.0349906i −0.724386 0.689395i \(-0.757876\pi\)
0.689395 + 0.724386i \(0.257876\pi\)
\(824\) 0 0
\(825\) 0.227455 + 0.227455i 0.00791898 + 0.00791898i
\(826\) 0 0
\(827\) 15.7060 37.9176i 0.546151 1.31852i −0.374170 0.927360i \(-0.622072\pi\)
0.920321 0.391165i \(-0.127928\pi\)
\(828\) 0 0
\(829\) −31.9806 + 13.2468i −1.11073 + 0.460081i −0.861190 0.508283i \(-0.830280\pi\)
−0.249543 + 0.968364i \(0.580280\pi\)
\(830\) 0 0
\(831\) 32.6984 1.13430
\(832\) 0 0
\(833\) 52.3070 1.81233
\(834\) 0 0
\(835\) 7.21069 2.98677i 0.249536 0.103361i
\(836\) 0 0
\(837\) 2.53450 6.11882i 0.0876051 0.211498i
\(838\) 0 0
\(839\) −3.42599 3.42599i −0.118278 0.118278i 0.645490 0.763768i \(-0.276653\pi\)
−0.763768 + 0.645490i \(0.776653\pi\)
\(840\) 0 0
\(841\) −5.01582 + 5.01582i −0.172959 + 0.172959i
\(842\) 0 0
\(843\) 5.43764 + 2.25234i 0.187282 + 0.0775749i
\(844\) 0 0
\(845\) −2.46094 5.94123i −0.0846588 0.204384i
\(846\) 0 0
\(847\) 42.6827i 1.46660i
\(848\) 0 0
\(849\) 2.56638i 0.0880779i
\(850\) 0 0
\(851\) −1.83460 4.42912i −0.0628893 0.151828i
\(852\) 0 0
\(853\) 33.4739 + 13.8653i 1.14612 + 0.474740i 0.873232 0.487305i \(-0.162020\pi\)
0.272892 + 0.962045i \(0.412020\pi\)
\(854\) 0 0
\(855\) −2.98010 + 2.98010i −0.101917 + 0.101917i
\(856\) 0 0
\(857\) 19.6667 + 19.6667i 0.671800 + 0.671800i 0.958131 0.286331i \(-0.0924356\pi\)
−0.286331 + 0.958131i \(0.592436\pi\)
\(858\) 0 0
\(859\) 15.0121 36.2424i 0.512207 1.23658i −0.430390 0.902643i \(-0.641624\pi\)
0.942597 0.333933i \(-0.108376\pi\)
\(860\) 0 0
\(861\) −17.5658 + 7.27598i −0.598640 + 0.247965i
\(862\) 0 0
\(863\) −28.3727 −0.965819 −0.482909 0.875670i \(-0.660420\pi\)
−0.482909 + 0.875670i \(0.660420\pi\)
\(864\) 0 0
\(865\) −37.9058 −1.28883
\(866\) 0 0
\(867\) −31.3878 + 13.0013i −1.06599 + 0.441546i
\(868\) 0 0
\(869\) −0.396796 + 0.957951i −0.0134604 + 0.0324963i
\(870\) 0 0
\(871\) 33.2473 + 33.2473i 1.12654 + 1.12654i
\(872\) 0 0
\(873\) −7.91558 + 7.91558i −0.267902 + 0.267902i
\(874\) 0 0
\(875\) 43.7096 + 18.1051i 1.47765 + 0.612064i
\(876\) 0 0
\(877\) 10.1396 + 24.4793i 0.342391 + 0.826606i 0.997473 + 0.0710476i \(0.0226342\pi\)
−0.655082 + 0.755558i \(0.727366\pi\)
\(878\) 0 0
\(879\) 38.0427i 1.28315i
\(880\) 0 0
\(881\) 9.35846i 0.315295i 0.987495 + 0.157647i \(0.0503909\pi\)
−0.987495 + 0.157647i \(0.949609\pi\)
\(882\) 0 0
\(883\) 7.09207 + 17.1218i 0.238667 + 0.576193i 0.997145 0.0755050i \(-0.0240569\pi\)
−0.758478 + 0.651698i \(0.774057\pi\)
\(884\) 0 0
\(885\) −8.87579 3.67647i −0.298356 0.123583i
\(886\) 0 0
\(887\) −30.8931 + 30.8931i −1.03729 + 1.03729i −0.0380100 + 0.999277i \(0.512102\pi\)
−0.999277 + 0.0380100i \(0.987898\pi\)
\(888\) 0 0
\(889\) 42.3424 + 42.3424i 1.42012 + 1.42012i
\(890\) 0 0
\(891\) −0.256446 + 0.619115i −0.00859126 + 0.0207411i
\(892\) 0 0
\(893\) 5.18989 2.14972i 0.173673 0.0719378i
\(894\) 0 0
\(895\) −46.3794 −1.55029
\(896\) 0 0
\(897\) 4.52452 0.151069
\(898\) 0 0
\(899\) 5.06608 2.09844i 0.168963 0.0699868i
\(900\) 0 0
\(901\) −4.39903 + 10.6202i −0.146553 + 0.353810i
\(902\) 0 0
\(903\) −25.1547 25.1547i −0.837096 0.837096i
\(904\) 0 0
\(905\) −2.65685 + 2.65685i −0.0883168 + 0.0883168i
\(906\) 0 0
\(907\) 12.6479 + 5.23891i 0.419965 + 0.173955i 0.582651 0.812723i \(-0.302016\pi\)
−0.162686 + 0.986678i \(0.552016\pi\)
\(908\) 0 0
\(909\) 4.68027 + 11.2992i 0.155235 + 0.374770i
\(910\) 0 0
\(911\) 35.3498i 1.17119i 0.810604 + 0.585595i \(0.199139\pi\)
−0.810604 + 0.585595i \(0.800861\pi\)
\(912\) 0 0
\(913\) 1.14829i 0.0380030i
\(914\) 0 0
\(915\) −3.67362 8.86890i −0.121446 0.293197i
\(916\) 0 0
\(917\) −11.5228 4.77292i −0.380518 0.157616i
\(918\) 0 0
\(919\) 30.0652 30.0652i 0.991759 0.991759i −0.00820720 0.999966i \(-0.502612\pi\)
0.999966 + 0.00820720i \(0.00261246\pi\)
\(920\) 0 0
\(921\) 14.8386 + 14.8386i 0.488949 + 0.488949i
\(922\) 0 0
\(923\) 5.69321 13.7446i 0.187394 0.452410i
\(924\) 0 0
\(925\) −6.62975 + 2.74613i −0.217985 + 0.0902923i
\(926\) 0 0
\(927\) 20.4100 0.670352
\(928\) 0 0
\(929\) 7.62858 0.250286 0.125143 0.992139i \(-0.460061\pi\)
0.125143 + 0.992139i \(0.460061\pi\)
\(930\) 0 0
\(931\) −15.7755 + 6.53442i −0.517020 + 0.214157i
\(932\) 0 0
\(933\) −5.35979 + 12.9397i −0.175472 + 0.423626i
\(934\) 0 0
\(935\) −1.23412 1.23412i −0.0403600 0.0403600i
\(936\) 0 0
\(937\) −21.2074 + 21.2074i −0.692817 + 0.692817i −0.962851 0.270034i \(-0.912965\pi\)
0.270034 + 0.962851i \(0.412965\pi\)
\(938\) 0 0
\(939\) −21.4332 8.87793i −0.699446 0.289720i
\(940\) 0 0
\(941\) −13.0249 31.4448i −0.424599 1.02507i −0.980974 0.194141i \(-0.937808\pi\)
0.556375 0.830931i \(-0.312192\pi\)
\(942\) 0 0
\(943\) 3.74294i 0.121887i
\(944\) 0 0
\(945\) 40.6104i 1.32106i
\(946\) 0 0
\(947\) −18.6229 44.9596i −0.605162 1.46099i −0.868205 0.496206i \(-0.834726\pi\)
0.263043 0.964784i \(-0.415274\pi\)
\(948\) 0 0
\(949\) 1.78324 + 0.738644i 0.0578866 + 0.0239774i
\(950\) 0 0
\(951\) −20.0628 + 20.0628i −0.650582 + 0.650582i
\(952\) 0 0
\(953\) −33.7784 33.7784i −1.09419 1.09419i −0.995076 0.0991142i \(-0.968399\pi\)
−0.0991142 0.995076i \(-0.531601\pi\)
\(954\) 0 0
\(955\) −6.40569 + 15.4647i −0.207283 + 0.500426i
\(956\) 0 0
\(957\) −0.877140 + 0.363323i −0.0283539 + 0.0117446i
\(958\) 0 0
\(959\) 59.2472 1.91319
\(960\) 0 0
\(961\) −29.6274 −0.955723
\(962\) 0 0
\(963\) −14.3640 + 5.94977i −0.462874 + 0.191729i
\(964\) 0 0
\(965\) 4.41735 10.6644i 0.142199 0.343300i
\(966\) 0 0
\(967\) −19.3234 19.3234i −0.621399 0.621399i 0.324490 0.945889i \(-0.394807\pi\)
−0.945889 + 0.324490i \(0.894807\pi\)
\(968\) 0 0
\(969\) 13.2739 13.2739i 0.426420 0.426420i
\(970\) 0 0
\(971\) −52.9160 21.9185i −1.69816 0.703399i −0.698234 0.715869i \(-0.746031\pi\)
−0.999922 + 0.0124699i \(0.996031\pi\)
\(972\) 0 0
\(973\) 7.70369 + 18.5983i 0.246969 + 0.596236i
\(974\) 0 0
\(975\) 6.77254i 0.216895i
\(976\) 0 0
\(977\) 12.2792i 0.392848i 0.980519 + 0.196424i \(0.0629329\pi\)
−0.980519 + 0.196424i \(0.937067\pi\)
\(978\) 0 0
\(979\) −0.334530 0.807628i −0.0106916 0.0258119i
\(980\) 0 0
\(981\) −12.7586 5.28477i −0.407349 0.168730i
\(982\) 0 0
\(983\) 14.1052 14.1052i 0.449887 0.449887i −0.445430 0.895317i \(-0.646949\pi\)
0.895317 + 0.445430i \(0.146949\pi\)
\(984\) 0 0
\(985\) −6.18989 6.18989i −0.197226 0.197226i
\(986\) 0 0
\(987\) 5.49824 13.2739i 0.175011 0.422513i
\(988\) 0 0
\(989\) 6.47010 2.68000i 0.205737 0.0852191i
\(990\) 0 0
\(991\) −39.8015 −1.26434 −0.632169 0.774831i \(-0.717835\pi\)
−0.632169 + 0.774831i \(0.717835\pi\)
\(992\) 0 0
\(993\) 14.8491 0.471222
\(994\) 0 0
\(995\) −14.8278 + 6.14186i −0.470071 + 0.194710i
\(996\) 0 0
\(997\) −2.57111 + 6.20720i −0.0814278 + 0.196584i −0.959350 0.282219i \(-0.908929\pi\)
0.877922 + 0.478803i \(0.158929\pi\)
\(998\) 0 0
\(999\) −18.0886 18.0886i −0.572299 0.572299i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.2.g.c.97.2 8
4.3 odd 2 256.2.g.d.97.1 8
8.3 odd 2 32.2.g.b.21.1 8
8.5 even 2 128.2.g.b.49.1 8
16.3 odd 4 512.2.g.e.449.1 8
16.5 even 4 512.2.g.f.449.1 8
16.11 odd 4 512.2.g.h.449.2 8
16.13 even 4 512.2.g.g.449.2 8
24.5 odd 2 1152.2.v.b.433.2 8
24.11 even 2 288.2.v.b.181.2 8
32.3 odd 8 256.2.g.d.161.1 8
32.5 even 8 512.2.g.f.65.1 8
32.11 odd 8 512.2.g.e.65.1 8
32.13 even 8 128.2.g.b.81.1 8
32.19 odd 8 32.2.g.b.29.1 yes 8
32.21 even 8 512.2.g.g.65.2 8
32.27 odd 8 512.2.g.h.65.2 8
32.29 even 8 inner 256.2.g.c.161.2 8
40.3 even 4 800.2.ba.d.149.2 8
40.19 odd 2 800.2.y.b.501.2 8
40.27 even 4 800.2.ba.c.149.1 8
64.3 odd 16 4096.2.a.k.1.6 8
64.29 even 16 4096.2.a.q.1.6 8
64.35 odd 16 4096.2.a.k.1.3 8
64.61 even 16 4096.2.a.q.1.3 8
96.77 odd 8 1152.2.v.b.721.2 8
96.83 even 8 288.2.v.b.253.2 8
160.19 odd 8 800.2.y.b.701.2 8
160.83 even 8 800.2.ba.c.349.1 8
160.147 even 8 800.2.ba.d.349.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
32.2.g.b.21.1 8 8.3 odd 2
32.2.g.b.29.1 yes 8 32.19 odd 8
128.2.g.b.49.1 8 8.5 even 2
128.2.g.b.81.1 8 32.13 even 8
256.2.g.c.97.2 8 1.1 even 1 trivial
256.2.g.c.161.2 8 32.29 even 8 inner
256.2.g.d.97.1 8 4.3 odd 2
256.2.g.d.161.1 8 32.3 odd 8
288.2.v.b.181.2 8 24.11 even 2
288.2.v.b.253.2 8 96.83 even 8
512.2.g.e.65.1 8 32.11 odd 8
512.2.g.e.449.1 8 16.3 odd 4
512.2.g.f.65.1 8 32.5 even 8
512.2.g.f.449.1 8 16.5 even 4
512.2.g.g.65.2 8 32.21 even 8
512.2.g.g.449.2 8 16.13 even 4
512.2.g.h.65.2 8 32.27 odd 8
512.2.g.h.449.2 8 16.11 odd 4
800.2.y.b.501.2 8 40.19 odd 2
800.2.y.b.701.2 8 160.19 odd 8
800.2.ba.c.149.1 8 40.27 even 4
800.2.ba.c.349.1 8 160.83 even 8
800.2.ba.d.149.2 8 40.3 even 4
800.2.ba.d.349.2 8 160.147 even 8
1152.2.v.b.433.2 8 24.5 odd 2
1152.2.v.b.721.2 8 96.77 odd 8
4096.2.a.k.1.3 8 64.35 odd 16
4096.2.a.k.1.6 8 64.3 odd 16
4096.2.a.q.1.3 8 64.61 even 16
4096.2.a.q.1.6 8 64.29 even 16