Properties

Label 256.3.c.a
Level 256256
Weight 33
Character orbit 256.c
Self dual yes
Analytic conductor 6.9756.975
Analytic rank 00
Dimension 11
CM discriminant -4
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,3,Mod(255,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.255");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 256=28 256 = 2^{8}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 256.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 6.975494767626.97549476762
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 128)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q8q5+9q9+24q13+30q17+39q2540q29+24q3718q4172q45+49q49+56q53+120q61192q65110q73+81q81240q8578q89+130q97+O(q100) q - 8 q^{5} + 9 q^{9} + 24 q^{13} + 30 q^{17} + 39 q^{25} - 40 q^{29} + 24 q^{37} - 18 q^{41} - 72 q^{45} + 49 q^{49} + 56 q^{53} + 120 q^{61} - 192 q^{65} - 110 q^{73} + 81 q^{81} - 240 q^{85} - 78 q^{89}+ \cdots - 130 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/256Z)×\left(\mathbb{Z}/256\mathbb{Z}\right)^\times.

nn 55 255255
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
255.1
0
0 0 0 −8.00000 0 0 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 256.3.c.a 1
3.b odd 2 1 2304.3.g.f 1
4.b odd 2 1 CM 256.3.c.a 1
8.b even 2 1 256.3.c.b 1
8.d odd 2 1 256.3.c.b 1
12.b even 2 1 2304.3.g.f 1
16.e even 4 2 128.3.d.a 2
16.f odd 4 2 128.3.d.a 2
24.f even 2 1 2304.3.g.a 1
24.h odd 2 1 2304.3.g.a 1
48.i odd 4 2 1152.3.b.a 2
48.k even 4 2 1152.3.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
128.3.d.a 2 16.e even 4 2
128.3.d.a 2 16.f odd 4 2
256.3.c.a 1 1.a even 1 1 trivial
256.3.c.a 1 4.b odd 2 1 CM
256.3.c.b 1 8.b even 2 1
256.3.c.b 1 8.d odd 2 1
1152.3.b.a 2 48.i odd 4 2
1152.3.b.a 2 48.k even 4 2
2304.3.g.a 1 24.f even 2 1
2304.3.g.a 1 24.h odd 2 1
2304.3.g.f 1 3.b odd 2 1
2304.3.g.f 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(256,[χ])S_{3}^{\mathrm{new}}(256, [\chi]):

T3 T_{3} Copy content Toggle raw display
T5+8 T_{5} + 8 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T+8 T + 8 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T T Copy content Toggle raw display
1313 T24 T - 24 Copy content Toggle raw display
1717 T30 T - 30 Copy content Toggle raw display
1919 T T Copy content Toggle raw display
2323 T T Copy content Toggle raw display
2929 T+40 T + 40 Copy content Toggle raw display
3131 T T Copy content Toggle raw display
3737 T24 T - 24 Copy content Toggle raw display
4141 T+18 T + 18 Copy content Toggle raw display
4343 T T Copy content Toggle raw display
4747 T T Copy content Toggle raw display
5353 T56 T - 56 Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T120 T - 120 Copy content Toggle raw display
6767 T T Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T+110 T + 110 Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T+78 T + 78 Copy content Toggle raw display
9797 T+130 T + 130 Copy content Toggle raw display
show more
show less