Properties

Label 256.8.a.i
Level 256256
Weight 88
Character orbit 256.a
Self dual yes
Analytic conductor 79.97179.971
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,8,Mod(1,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 256=28 256 = 2^{8}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 256.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 79.970566523979.9705665239
Analytic rank: 00
Dimension: 22
Coefficient field: Q(435)\Q(\sqrt{435})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2435 x^{2} - 435 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 233 2^{3}\cdot 3
Twist minimal: no (minimal twist has level 64)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=24435\beta = 24\sqrt{435}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+30q3+βq5+2βq71287q94758q11+13βq13+30βq1513830q17+19006q19+60βq21+182βq23+172435q25104220q27++6123546q99+O(q100) q + 30 q^{3} + \beta q^{5} + 2 \beta q^{7} - 1287 q^{9} - 4758 q^{11} + 13 \beta q^{13} + 30 \beta q^{15} - 13830 q^{17} + 19006 q^{19} + 60 \beta q^{21} + 182 \beta q^{23} + 172435 q^{25} - 104220 q^{27}+ \cdots + 6123546 q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+60q32574q99516q1127660q17+38012q19+344870q25208440q27285480q33+1002240q35+908076q41905740q43+357394q49829800q51+1140360q57++12247092q99+O(q100) 2 q + 60 q^{3} - 2574 q^{9} - 9516 q^{11} - 27660 q^{17} + 38012 q^{19} + 344870 q^{25} - 208440 q^{27} - 285480 q^{33} + 1002240 q^{35} + 908076 q^{41} - 905740 q^{43} + 357394 q^{49} - 829800 q^{51} + 1140360 q^{57}+ \cdots + 12247092 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−20.8567
20.8567
0 30.0000 0 −500.560 0 −1001.12 0 −1287.00 0
1.2 0 30.0000 0 500.560 0 1001.12 0 −1287.00 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 256.8.a.i 2
4.b odd 2 1 256.8.a.e 2
8.b even 2 1 256.8.a.e 2
8.d odd 2 1 inner 256.8.a.i 2
16.e even 4 2 64.8.b.b 4
16.f odd 4 2 64.8.b.b 4
48.i odd 4 2 576.8.d.e 4
48.k even 4 2 576.8.d.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
64.8.b.b 4 16.e even 4 2
64.8.b.b 4 16.f odd 4 2
256.8.a.e 2 4.b odd 2 1
256.8.a.e 2 8.b even 2 1
256.8.a.i 2 1.a even 1 1 trivial
256.8.a.i 2 8.d odd 2 1 inner
576.8.d.e 4 48.i odd 4 2
576.8.d.e 4 48.k even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S8new(Γ0(256))S_{8}^{\mathrm{new}}(\Gamma_0(256)):

T330 T_{3} - 30 Copy content Toggle raw display
T52250560 T_{5}^{2} - 250560 Copy content Toggle raw display
T721002240 T_{7}^{2} - 1002240 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 (T30)2 (T - 30)^{2} Copy content Toggle raw display
55 T2250560 T^{2} - 250560 Copy content Toggle raw display
77 T21002240 T^{2} - 1002240 Copy content Toggle raw display
1111 (T+4758)2 (T + 4758)^{2} Copy content Toggle raw display
1313 T242344640 T^{2} - 42344640 Copy content Toggle raw display
1717 (T+13830)2 (T + 13830)^{2} Copy content Toggle raw display
1919 (T19006)2 (T - 19006)^{2} Copy content Toggle raw display
2323 T28299549440 T^{2} - 8299549440 Copy content Toggle raw display
2929 T21058616000 T^{2} - 1058616000 Copy content Toggle raw display
3131 T267751424000 T^{2} - 67751424000 Copy content Toggle raw display
3737 T236754395840 T^{2} - 36754395840 Copy content Toggle raw display
4141 (T454038)2 (T - 454038)^{2} Copy content Toggle raw display
4343 (T+452870)2 (T + 452870)^{2} Copy content Toggle raw display
4747 T2744708418560 T^{2} - 744708418560 Copy content Toggle raw display
5353 T22074887360 T^{2} - 2074887360 Copy content Toggle raw display
5959 (T2320266)2 (T - 2320266)^{2} Copy content Toggle raw display
6161 T26945579576000 T^{2} - 6945579576000 Copy content Toggle raw display
6767 (T+309010)2 (T + 309010)^{2} Copy content Toggle raw display
7171 T26089835744000 T^{2} - 6089835744000 Copy content Toggle raw display
7373 (T+5883410)2 (T + 5883410)^{2} Copy content Toggle raw display
7979 T26114566016000 T^{2} - 6114566016000 Copy content Toggle raw display
8383 (T3293550)2 (T - 3293550)^{2} Copy content Toggle raw display
8989 (T+3675906)2 (T + 3675906)^{2} Copy content Toggle raw display
9797 (T+11233430)2 (T + 11233430)^{2} Copy content Toggle raw display
show more
show less