Properties

Label 256.8.a.i
Level $256$
Weight $8$
Character orbit 256.a
Self dual yes
Analytic conductor $79.971$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,8,Mod(1,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 256.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.9705665239\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{435}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 435 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3 \)
Twist minimal: no (minimal twist has level 64)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 24\sqrt{435}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 30 q^{3} + \beta q^{5} + 2 \beta q^{7} - 1287 q^{9} - 4758 q^{11} + 13 \beta q^{13} + 30 \beta q^{15} - 13830 q^{17} + 19006 q^{19} + 60 \beta q^{21} + 182 \beta q^{23} + 172435 q^{25} - 104220 q^{27}+ \cdots + 6123546 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 60 q^{3} - 2574 q^{9} - 9516 q^{11} - 27660 q^{17} + 38012 q^{19} + 344870 q^{25} - 208440 q^{27} - 285480 q^{33} + 1002240 q^{35} + 908076 q^{41} - 905740 q^{43} + 357394 q^{49} - 829800 q^{51} + 1140360 q^{57}+ \cdots + 12247092 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−20.8567
20.8567
0 30.0000 0 −500.560 0 −1001.12 0 −1287.00 0
1.2 0 30.0000 0 500.560 0 1001.12 0 −1287.00 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 256.8.a.i 2
4.b odd 2 1 256.8.a.e 2
8.b even 2 1 256.8.a.e 2
8.d odd 2 1 inner 256.8.a.i 2
16.e even 4 2 64.8.b.b 4
16.f odd 4 2 64.8.b.b 4
48.i odd 4 2 576.8.d.e 4
48.k even 4 2 576.8.d.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
64.8.b.b 4 16.e even 4 2
64.8.b.b 4 16.f odd 4 2
256.8.a.e 2 4.b odd 2 1
256.8.a.e 2 8.b even 2 1
256.8.a.i 2 1.a even 1 1 trivial
256.8.a.i 2 8.d odd 2 1 inner
576.8.d.e 4 48.i odd 4 2
576.8.d.e 4 48.k even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(256))\):

\( T_{3} - 30 \) Copy content Toggle raw display
\( T_{5}^{2} - 250560 \) Copy content Toggle raw display
\( T_{7}^{2} - 1002240 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 30)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 250560 \) Copy content Toggle raw display
$7$ \( T^{2} - 1002240 \) Copy content Toggle raw display
$11$ \( (T + 4758)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 42344640 \) Copy content Toggle raw display
$17$ \( (T + 13830)^{2} \) Copy content Toggle raw display
$19$ \( (T - 19006)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 8299549440 \) Copy content Toggle raw display
$29$ \( T^{2} - 1058616000 \) Copy content Toggle raw display
$31$ \( T^{2} - 67751424000 \) Copy content Toggle raw display
$37$ \( T^{2} - 36754395840 \) Copy content Toggle raw display
$41$ \( (T - 454038)^{2} \) Copy content Toggle raw display
$43$ \( (T + 452870)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 744708418560 \) Copy content Toggle raw display
$53$ \( T^{2} - 2074887360 \) Copy content Toggle raw display
$59$ \( (T - 2320266)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 6945579576000 \) Copy content Toggle raw display
$67$ \( (T + 309010)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 6089835744000 \) Copy content Toggle raw display
$73$ \( (T + 5883410)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 6114566016000 \) Copy content Toggle raw display
$83$ \( (T - 3293550)^{2} \) Copy content Toggle raw display
$89$ \( (T + 3675906)^{2} \) Copy content Toggle raw display
$97$ \( (T + 11233430)^{2} \) Copy content Toggle raw display
show more
show less