Properties

Label 256.8.a.l
Level 256256
Weight 88
Character orbit 256.a
Self dual yes
Analytic conductor 79.97179.971
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,8,Mod(1,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 256=28 256 = 2^{8}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 256.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 79.970566523979.9705665239
Analytic rank: 00
Dimension: 44
Coefficient field: Q(2,5)\Q(\sqrt{2}, \sqrt{5})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x46x2+4 x^{4} - 6x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 210 2^{10}
Twist minimal: no (minimal twist has level 128)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q3β1q317β3q5+29β2q71827q91157β1q11481β3q13+255β2q158890q17+377β1q19696β3q21++2113839β1q99+O(q100) q - 3 \beta_1 q^{3} - 17 \beta_{3} q^{5} + 29 \beta_{2} q^{7} - 1827 q^{9} - 1157 \beta_1 q^{11} - 481 \beta_{3} q^{13} + 255 \beta_{2} q^{15} - 8890 q^{17} + 377 \beta_1 q^{19} - 696 \beta_{3} q^{21}+ \cdots + 2113839 \beta_1 q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q7308q935560q17+57420q25+555360q33+491608q411571804q49180960q57+10466560q65+15396680q73+10202436q81+21742344q89+24716120q97+O(q100) 4 q - 7308 q^{9} - 35560 q^{17} + 57420 q^{25} + 555360 q^{33} + 491608 q^{41} - 1571804 q^{49} - 180960 q^{57} + 10466560 q^{65} + 15396680 q^{73} + 10202436 q^{81} + 21742344 q^{89} + 24716120 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x46x2+4 x^{4} - 6x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== ν3+8ν -\nu^{3} + 8\nu Copy content Toggle raw display
β2\beta_{2}== 8ν332ν 8\nu^{3} - 32\nu Copy content Toggle raw display
β3\beta_{3}== 8ν224 8\nu^{2} - 24 Copy content Toggle raw display
ν\nu== (β2+8β1)/32 ( \beta_{2} + 8\beta_1 ) / 32 Copy content Toggle raw display
ν2\nu^{2}== (β3+24)/8 ( \beta_{3} + 24 ) / 8 Copy content Toggle raw display
ν3\nu^{3}== (β2+4β1)/4 ( \beta_{2} + 4\beta_1 ) / 4 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.28825
0.874032
−2.28825
−0.874032
0 −18.9737 0 −304.105 0 656.195 0 −1827.00 0
1.2 0 −18.9737 0 304.105 0 −656.195 0 −1827.00 0
1.3 0 18.9737 0 −304.105 0 −656.195 0 −1827.00 0
1.4 0 18.9737 0 304.105 0 656.195 0 −1827.00 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 256.8.a.l 4
4.b odd 2 1 inner 256.8.a.l 4
8.b even 2 1 inner 256.8.a.l 4
8.d odd 2 1 inner 256.8.a.l 4
16.e even 4 2 128.8.b.f 4
16.f odd 4 2 128.8.b.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
128.8.b.f 4 16.e even 4 2
128.8.b.f 4 16.f odd 4 2
256.8.a.l 4 1.a even 1 1 trivial
256.8.a.l 4 4.b odd 2 1 inner
256.8.a.l 4 8.b even 2 1 inner
256.8.a.l 4 8.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S8new(Γ0(256))S_{8}^{\mathrm{new}}(\Gamma_0(256)):

T32360 T_{3}^{2} - 360 Copy content Toggle raw display
T5292480 T_{5}^{2} - 92480 Copy content Toggle raw display
T72430592 T_{7}^{2} - 430592 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T2360)2 (T^{2} - 360)^{2} Copy content Toggle raw display
55 (T292480)2 (T^{2} - 92480)^{2} Copy content Toggle raw display
77 (T2430592)2 (T^{2} - 430592)^{2} Copy content Toggle raw display
1111 (T253545960)2 (T^{2} - 53545960)^{2} Copy content Toggle raw display
1313 (T274035520)2 (T^{2} - 74035520)^{2} Copy content Toggle raw display
1717 (T+8890)4 (T + 8890)^{4} Copy content Toggle raw display
1919 (T25685160)2 (T^{2} - 5685160)^{2} Copy content Toggle raw display
2323 (T21972924928)2 (T^{2} - 1972924928)^{2} Copy content Toggle raw display
2929 (T229056589120)2 (T^{2} - 29056589120)^{2} Copy content Toggle raw display
3131 (T211796480000)2 (T^{2} - 11796480000)^{2} Copy content Toggle raw display
3737 (T264352243520)2 (T^{2} - 64352243520)^{2} Copy content Toggle raw display
4141 (T122902)4 (T - 122902)^{4} Copy content Toggle raw display
4343 (T2755777073960)2 (T^{2} - 755777073960)^{2} Copy content Toggle raw display
4747 (T21722011666432)2 (T^{2} - 1722011666432)^{2} Copy content Toggle raw display
5353 (T21340667049280)2 (T^{2} - 1340667049280)^{2} Copy content Toggle raw display
5959 (T22341456609960)2 (T^{2} - 2341456609960)^{2} Copy content Toggle raw display
6161 (T21676019725120)2 (T^{2} - 1676019725120)^{2} Copy content Toggle raw display
6767 (T2638017081000)2 (T^{2} - 638017081000)^{2} Copy content Toggle raw display
7171 (T219988394099200)2 (T^{2} - 19988394099200)^{2} Copy content Toggle raw display
7373 (T3849170)4 (T - 3849170)^{4} Copy content Toggle raw display
7979 (T253777575987200)2 (T^{2} - 53777575987200)^{2} Copy content Toggle raw display
8383 (T2204713140840)2 (T^{2} - 204713140840)^{2} Copy content Toggle raw display
8989 (T5435586)4 (T - 5435586)^{4} Copy content Toggle raw display
9797 (T6179030)4 (T - 6179030)^{4} Copy content Toggle raw display
show more
show less