Properties

Label 26.8.a.a
Level 2626
Weight 88
Character orbit 26.a
Self dual yes
Analytic conductor 8.1228.122
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [26,8,Mod(1,26)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(26, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("26.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 26=213 26 = 2 \cdot 13
Weight: k k == 8 8
Character orbit: [χ][\chi] == 26.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 8.122010662598.12201066259
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q8q239q3+64q4+385q5+312q6293q7512q8666q93080q105402q112496q12+2197q13+2344q1415015q15+4096q1621011q17++3597732q99+O(q100) q - 8 q^{2} - 39 q^{3} + 64 q^{4} + 385 q^{5} + 312 q^{6} - 293 q^{7} - 512 q^{8} - 666 q^{9} - 3080 q^{10} - 5402 q^{11} - 2496 q^{12} + 2197 q^{13} + 2344 q^{14} - 15015 q^{15} + 4096 q^{16} - 21011 q^{17}+ \cdots + 3597732 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−8.00000 −39.0000 64.0000 385.000 312.000 −293.000 −512.000 −666.000 −3080.00
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 26.8.a.a 1
3.b odd 2 1 234.8.a.d 1
4.b odd 2 1 208.8.a.c 1
13.b even 2 1 338.8.a.c 1
13.d odd 4 2 338.8.b.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.8.a.a 1 1.a even 1 1 trivial
208.8.a.c 1 4.b odd 2 1
234.8.a.d 1 3.b odd 2 1
338.8.a.c 1 13.b even 2 1
338.8.b.b 2 13.d odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3+39 T_{3} + 39 acting on S8new(Γ0(26))S_{8}^{\mathrm{new}}(\Gamma_0(26)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+8 T + 8 Copy content Toggle raw display
33 T+39 T + 39 Copy content Toggle raw display
55 T385 T - 385 Copy content Toggle raw display
77 T+293 T + 293 Copy content Toggle raw display
1111 T+5402 T + 5402 Copy content Toggle raw display
1313 T2197 T - 2197 Copy content Toggle raw display
1717 T+21011 T + 21011 Copy content Toggle raw display
1919 T+27326 T + 27326 Copy content Toggle raw display
2323 T+63072 T + 63072 Copy content Toggle raw display
2929 T122238 T - 122238 Copy content Toggle raw display
3131 T+208396 T + 208396 Copy content Toggle raw display
3737 T+442379 T + 442379 Copy content Toggle raw display
4141 T58000 T - 58000 Copy content Toggle raw display
4343 T+202025 T + 202025 Copy content Toggle raw display
4747 T588511 T - 588511 Copy content Toggle raw display
5353 T1684336 T - 1684336 Copy content Toggle raw display
5959 T+442630 T + 442630 Copy content Toggle raw display
6161 T+1083608 T + 1083608 Copy content Toggle raw display
6767 T3443486 T - 3443486 Copy content Toggle raw display
7171 T2084705 T - 2084705 Copy content Toggle raw display
7373 T5937890 T - 5937890 Copy content Toggle raw display
7979 T+6609256 T + 6609256 Copy content Toggle raw display
8383 T+142740 T + 142740 Copy content Toggle raw display
8989 T+6985286 T + 6985286 Copy content Toggle raw display
9797 T+200762 T + 200762 Copy content Toggle raw display
show more
show less