Properties

Label 26.8.a.c.1.1
Level $26$
Weight $8$
Character 26.1
Self dual yes
Analytic conductor $8.122$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [26,8,Mod(1,26)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(26, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("26.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 26.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.12201066259\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 26.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000 q^{2} -27.0000 q^{3} +64.0000 q^{4} -245.000 q^{5} -216.000 q^{6} -587.000 q^{7} +512.000 q^{8} -1458.00 q^{9} -1960.00 q^{10} -3874.00 q^{11} -1728.00 q^{12} -2197.00 q^{13} -4696.00 q^{14} +6615.00 q^{15} +4096.00 q^{16} +5229.00 q^{17} -11664.0 q^{18} -6522.00 q^{19} -15680.0 q^{20} +15849.0 q^{21} -30992.0 q^{22} -500.000 q^{23} -13824.0 q^{24} -18100.0 q^{25} -17576.0 q^{26} +98415.0 q^{27} -37568.0 q^{28} +226954. q^{29} +52920.0 q^{30} +130156. q^{31} +32768.0 q^{32} +104598. q^{33} +41832.0 q^{34} +143815. q^{35} -93312.0 q^{36} -377769. q^{37} -52176.0 q^{38} +59319.0 q^{39} -125440. q^{40} -539760. q^{41} +126792. q^{42} +13987.0 q^{43} -247936. q^{44} +357210. q^{45} -4000.00 q^{46} -526879. q^{47} -110592. q^{48} -478974. q^{49} -144800. q^{50} -141183. q^{51} -140608. q^{52} -1.64994e6 q^{53} +787320. q^{54} +949130. q^{55} -300544. q^{56} +176094. q^{57} +1.81563e6 q^{58} -81194.0 q^{59} +423360. q^{60} -1.12695e6 q^{61} +1.04125e6 q^{62} +855846. q^{63} +262144. q^{64} +538265. q^{65} +836784. q^{66} +478798. q^{67} +334656. q^{68} +13500.0 q^{69} +1.15052e6 q^{70} +940007. q^{71} -746496. q^{72} +1.67193e6 q^{73} -3.02215e6 q^{74} +488700. q^{75} -417408. q^{76} +2.27404e6 q^{77} +474552. q^{78} -5.80119e6 q^{79} -1.00352e6 q^{80} +531441. q^{81} -4.31808e6 q^{82} +7.39882e6 q^{83} +1.01434e6 q^{84} -1.28110e6 q^{85} +111896. q^{86} -6.12776e6 q^{87} -1.98349e6 q^{88} -953754. q^{89} +2.85768e6 q^{90} +1.28964e6 q^{91} -32000.0 q^{92} -3.51421e6 q^{93} -4.21503e6 q^{94} +1.59789e6 q^{95} -884736. q^{96} -1.03187e7 q^{97} -3.83179e6 q^{98} +5.64829e6 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000 0.707107
\(3\) −27.0000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 64.0000 0.500000
\(5\) −245.000 −0.876539 −0.438269 0.898844i \(-0.644408\pi\)
−0.438269 + 0.898844i \(0.644408\pi\)
\(6\) −216.000 −0.408248
\(7\) −587.000 −0.646837 −0.323419 0.946256i \(-0.604832\pi\)
−0.323419 + 0.946256i \(0.604832\pi\)
\(8\) 512.000 0.353553
\(9\) −1458.00 −0.666667
\(10\) −1960.00 −0.619806
\(11\) −3874.00 −0.877577 −0.438788 0.898590i \(-0.644592\pi\)
−0.438788 + 0.898590i \(0.644592\pi\)
\(12\) −1728.00 −0.288675
\(13\) −2197.00 −0.277350
\(14\) −4696.00 −0.457383
\(15\) 6615.00 0.506070
\(16\) 4096.00 0.250000
\(17\) 5229.00 0.258135 0.129068 0.991636i \(-0.458802\pi\)
0.129068 + 0.991636i \(0.458802\pi\)
\(18\) −11664.0 −0.471405
\(19\) −6522.00 −0.218144 −0.109072 0.994034i \(-0.534788\pi\)
−0.109072 + 0.994034i \(0.534788\pi\)
\(20\) −15680.0 −0.438269
\(21\) 15849.0 0.373452
\(22\) −30992.0 −0.620541
\(23\) −500.000 −0.00856885 −0.00428443 0.999991i \(-0.501364\pi\)
−0.00428443 + 0.999991i \(0.501364\pi\)
\(24\) −13824.0 −0.204124
\(25\) −18100.0 −0.231680
\(26\) −17576.0 −0.196116
\(27\) 98415.0 0.962250
\(28\) −37568.0 −0.323419
\(29\) 226954. 1.72800 0.864002 0.503488i \(-0.167950\pi\)
0.864002 + 0.503488i \(0.167950\pi\)
\(30\) 52920.0 0.357845
\(31\) 130156. 0.784690 0.392345 0.919818i \(-0.371664\pi\)
0.392345 + 0.919818i \(0.371664\pi\)
\(32\) 32768.0 0.176777
\(33\) 104598. 0.506669
\(34\) 41832.0 0.182529
\(35\) 143815. 0.566978
\(36\) −93312.0 −0.333333
\(37\) −377769. −1.22608 −0.613042 0.790050i \(-0.710054\pi\)
−0.613042 + 0.790050i \(0.710054\pi\)
\(38\) −52176.0 −0.154251
\(39\) 59319.0 0.160128
\(40\) −125440. −0.309903
\(41\) −539760. −1.22309 −0.611543 0.791211i \(-0.709451\pi\)
−0.611543 + 0.791211i \(0.709451\pi\)
\(42\) 126792. 0.264070
\(43\) 13987.0 0.0268278 0.0134139 0.999910i \(-0.495730\pi\)
0.0134139 + 0.999910i \(0.495730\pi\)
\(44\) −247936. −0.438788
\(45\) 357210. 0.584359
\(46\) −4000.00 −0.00605909
\(47\) −526879. −0.740233 −0.370116 0.928985i \(-0.620682\pi\)
−0.370116 + 0.928985i \(0.620682\pi\)
\(48\) −110592. −0.144338
\(49\) −478974. −0.581602
\(50\) −144800. −0.163822
\(51\) −141183. −0.149034
\(52\) −140608. −0.138675
\(53\) −1.64994e6 −1.52231 −0.761154 0.648571i \(-0.775367\pi\)
−0.761154 + 0.648571i \(0.775367\pi\)
\(54\) 787320. 0.680414
\(55\) 949130. 0.769230
\(56\) −300544. −0.228691
\(57\) 176094. 0.125945
\(58\) 1.81563e6 1.22188
\(59\) −81194.0 −0.0514685 −0.0257343 0.999669i \(-0.508192\pi\)
−0.0257343 + 0.999669i \(0.508192\pi\)
\(60\) 423360. 0.253035
\(61\) −1.12695e6 −0.635698 −0.317849 0.948141i \(-0.602961\pi\)
−0.317849 + 0.948141i \(0.602961\pi\)
\(62\) 1.04125e6 0.554860
\(63\) 855846. 0.431225
\(64\) 262144. 0.125000
\(65\) 538265. 0.243108
\(66\) 836784. 0.358269
\(67\) 478798. 0.194487 0.0972435 0.995261i \(-0.468997\pi\)
0.0972435 + 0.995261i \(0.468997\pi\)
\(68\) 334656. 0.129068
\(69\) 13500.0 0.00494723
\(70\) 1.15052e6 0.400914
\(71\) 940007. 0.311693 0.155846 0.987781i \(-0.450190\pi\)
0.155846 + 0.987781i \(0.450190\pi\)
\(72\) −746496. −0.235702
\(73\) 1.67193e6 0.503022 0.251511 0.967854i \(-0.419073\pi\)
0.251511 + 0.967854i \(0.419073\pi\)
\(74\) −3.02215e6 −0.866972
\(75\) 488700. 0.133761
\(76\) −417408. −0.109072
\(77\) 2.27404e6 0.567649
\(78\) 474552. 0.113228
\(79\) −5.80119e6 −1.32380 −0.661900 0.749592i \(-0.730249\pi\)
−0.661900 + 0.749592i \(0.730249\pi\)
\(80\) −1.00352e6 −0.219135
\(81\) 531441. 0.111111
\(82\) −4.31808e6 −0.864853
\(83\) 7.39882e6 1.42033 0.710164 0.704036i \(-0.248621\pi\)
0.710164 + 0.704036i \(0.248621\pi\)
\(84\) 1.01434e6 0.186726
\(85\) −1.28110e6 −0.226266
\(86\) 111896. 0.0189701
\(87\) −6.12776e6 −0.997664
\(88\) −1.98349e6 −0.310270
\(89\) −953754. −0.143407 −0.0717037 0.997426i \(-0.522844\pi\)
−0.0717037 + 0.997426i \(0.522844\pi\)
\(90\) 2.85768e6 0.413204
\(91\) 1.28964e6 0.179400
\(92\) −32000.0 −0.00428443
\(93\) −3.51421e6 −0.453041
\(94\) −4.21503e6 −0.523424
\(95\) 1.59789e6 0.191212
\(96\) −884736. −0.102062
\(97\) −1.03187e7 −1.14795 −0.573976 0.818872i \(-0.694600\pi\)
−0.573976 + 0.818872i \(0.694600\pi\)
\(98\) −3.83179e6 −0.411254
\(99\) 5.64829e6 0.585051
\(100\) −1.15840e6 −0.115840
\(101\) 4.73503e6 0.457296 0.228648 0.973509i \(-0.426569\pi\)
0.228648 + 0.973509i \(0.426569\pi\)
\(102\) −1.12946e6 −0.105383
\(103\) 1.60974e7 1.45153 0.725763 0.687945i \(-0.241487\pi\)
0.725763 + 0.687945i \(0.241487\pi\)
\(104\) −1.12486e6 −0.0980581
\(105\) −3.88301e6 −0.327345
\(106\) −1.31995e7 −1.07643
\(107\) 1.77823e7 1.40328 0.701642 0.712530i \(-0.252451\pi\)
0.701642 + 0.712530i \(0.252451\pi\)
\(108\) 6.29856e6 0.481125
\(109\) −2.20506e7 −1.63090 −0.815450 0.578827i \(-0.803511\pi\)
−0.815450 + 0.578827i \(0.803511\pi\)
\(110\) 7.59304e6 0.543928
\(111\) 1.01998e7 0.707880
\(112\) −2.40435e6 −0.161709
\(113\) −1.80880e7 −1.17928 −0.589639 0.807667i \(-0.700730\pi\)
−0.589639 + 0.807667i \(0.700730\pi\)
\(114\) 1.40875e6 0.0890569
\(115\) 122500. 0.00751093
\(116\) 1.45251e7 0.864002
\(117\) 3.20323e6 0.184900
\(118\) −649552. −0.0363938
\(119\) −3.06942e6 −0.166972
\(120\) 3.38688e6 0.178923
\(121\) −4.47930e6 −0.229859
\(122\) −9.01562e6 −0.449507
\(123\) 1.45735e7 0.706149
\(124\) 8.32998e6 0.392345
\(125\) 2.35751e7 1.07962
\(126\) 6.84677e6 0.304922
\(127\) −2.52728e6 −0.109481 −0.0547407 0.998501i \(-0.517433\pi\)
−0.0547407 + 0.998501i \(0.517433\pi\)
\(128\) 2.09715e6 0.0883883
\(129\) −377649. −0.0154890
\(130\) 4.30612e6 0.171903
\(131\) 4.19410e7 1.63001 0.815004 0.579456i \(-0.196735\pi\)
0.815004 + 0.579456i \(0.196735\pi\)
\(132\) 6.69427e6 0.253335
\(133\) 3.82841e6 0.141104
\(134\) 3.83038e6 0.137523
\(135\) −2.41117e7 −0.843450
\(136\) 2.67725e6 0.0912646
\(137\) −2.45947e7 −0.817182 −0.408591 0.912718i \(-0.633980\pi\)
−0.408591 + 0.912718i \(0.633980\pi\)
\(138\) 108000. 0.00349822
\(139\) −5.79349e7 −1.82974 −0.914869 0.403752i \(-0.867706\pi\)
−0.914869 + 0.403752i \(0.867706\pi\)
\(140\) 9.20416e6 0.283489
\(141\) 1.42257e7 0.427374
\(142\) 7.52006e6 0.220400
\(143\) 8.51118e6 0.243396
\(144\) −5.97197e6 −0.166667
\(145\) −5.56037e7 −1.51466
\(146\) 1.33754e7 0.355690
\(147\) 1.29323e7 0.335788
\(148\) −2.41772e7 −0.613042
\(149\) −2.90993e7 −0.720660 −0.360330 0.932825i \(-0.617336\pi\)
−0.360330 + 0.932825i \(0.617336\pi\)
\(150\) 3.90960e6 0.0945830
\(151\) −4.13849e7 −0.978187 −0.489094 0.872231i \(-0.662672\pi\)
−0.489094 + 0.872231i \(0.662672\pi\)
\(152\) −3.33926e6 −0.0771255
\(153\) −7.62388e6 −0.172090
\(154\) 1.81923e7 0.401389
\(155\) −3.18882e7 −0.687811
\(156\) 3.79642e6 0.0800641
\(157\) 8.60728e6 0.177508 0.0887538 0.996054i \(-0.471712\pi\)
0.0887538 + 0.996054i \(0.471712\pi\)
\(158\) −4.64095e7 −0.936067
\(159\) 4.45484e7 0.878905
\(160\) −8.02816e6 −0.154952
\(161\) 293500. 0.00554265
\(162\) 4.25153e6 0.0785674
\(163\) −8.32173e7 −1.50507 −0.752535 0.658552i \(-0.771169\pi\)
−0.752535 + 0.658552i \(0.771169\pi\)
\(164\) −3.45446e7 −0.611543
\(165\) −2.56265e7 −0.444115
\(166\) 5.91905e7 1.00432
\(167\) 1.15768e8 1.92346 0.961729 0.274004i \(-0.0883481\pi\)
0.961729 + 0.274004i \(0.0883481\pi\)
\(168\) 8.11469e6 0.132035
\(169\) 4.82681e6 0.0769231
\(170\) −1.02488e7 −0.159994
\(171\) 9.50908e6 0.145429
\(172\) 895168. 0.0134139
\(173\) 9.10083e7 1.33635 0.668174 0.744005i \(-0.267076\pi\)
0.668174 + 0.744005i \(0.267076\pi\)
\(174\) −4.90221e7 −0.705455
\(175\) 1.06247e7 0.149859
\(176\) −1.58679e7 −0.219394
\(177\) 2.19224e6 0.0297154
\(178\) −7.63003e6 −0.101404
\(179\) 1.38177e8 1.80074 0.900370 0.435124i \(-0.143296\pi\)
0.900370 + 0.435124i \(0.143296\pi\)
\(180\) 2.28614e7 0.292180
\(181\) 1.05517e8 1.32266 0.661332 0.750094i \(-0.269992\pi\)
0.661332 + 0.750094i \(0.269992\pi\)
\(182\) 1.03171e7 0.126855
\(183\) 3.04277e7 0.367021
\(184\) −256000. −0.00302955
\(185\) 9.25534e7 1.07471
\(186\) −2.81137e7 −0.320348
\(187\) −2.02571e7 −0.226534
\(188\) −3.37203e7 −0.370116
\(189\) −5.77696e7 −0.622419
\(190\) 1.27831e7 0.135207
\(191\) −9.36485e7 −0.972487 −0.486244 0.873823i \(-0.661633\pi\)
−0.486244 + 0.873823i \(0.661633\pi\)
\(192\) −7.07789e6 −0.0721688
\(193\) 1.31216e8 1.31382 0.656910 0.753969i \(-0.271863\pi\)
0.656910 + 0.753969i \(0.271863\pi\)
\(194\) −8.25495e7 −0.811724
\(195\) −1.45332e7 −0.140359
\(196\) −3.06543e7 −0.290801
\(197\) −1.35325e8 −1.26109 −0.630546 0.776152i \(-0.717169\pi\)
−0.630546 + 0.776152i \(0.717169\pi\)
\(198\) 4.51863e7 0.413694
\(199\) −1.24505e8 −1.11996 −0.559980 0.828506i \(-0.689191\pi\)
−0.559980 + 0.828506i \(0.689191\pi\)
\(200\) −9.26720e6 −0.0819112
\(201\) −1.29275e7 −0.112287
\(202\) 3.78802e7 0.323357
\(203\) −1.33222e8 −1.11774
\(204\) −9.03571e6 −0.0745172
\(205\) 1.32241e8 1.07208
\(206\) 1.28779e8 1.02638
\(207\) 729000. 0.00571257
\(208\) −8.99891e6 −0.0693375
\(209\) 2.52662e7 0.191438
\(210\) −3.10640e7 −0.231468
\(211\) 8.06435e7 0.590991 0.295496 0.955344i \(-0.404515\pi\)
0.295496 + 0.955344i \(0.404515\pi\)
\(212\) −1.05596e8 −0.761154
\(213\) −2.53802e7 −0.179956
\(214\) 1.42259e8 0.992271
\(215\) −3.42682e6 −0.0235156
\(216\) 5.03885e7 0.340207
\(217\) −7.64016e7 −0.507567
\(218\) −1.76405e8 −1.15322
\(219\) −4.51420e7 −0.290420
\(220\) 6.07443e7 0.384615
\(221\) −1.14881e7 −0.0715939
\(222\) 8.15981e7 0.500547
\(223\) −1.30612e8 −0.788706 −0.394353 0.918959i \(-0.629031\pi\)
−0.394353 + 0.918959i \(0.629031\pi\)
\(224\) −1.92348e7 −0.114346
\(225\) 2.63898e7 0.154453
\(226\) −1.44704e8 −0.833875
\(227\) −1.44302e8 −0.818809 −0.409405 0.912353i \(-0.634264\pi\)
−0.409405 + 0.912353i \(0.634264\pi\)
\(228\) 1.12700e7 0.0629727
\(229\) −1.03229e8 −0.568039 −0.284019 0.958819i \(-0.591668\pi\)
−0.284019 + 0.958819i \(0.591668\pi\)
\(230\) 980000. 0.00531103
\(231\) −6.13990e7 −0.327733
\(232\) 1.16200e8 0.610942
\(233\) −3.19575e7 −0.165511 −0.0827556 0.996570i \(-0.526372\pi\)
−0.0827556 + 0.996570i \(0.526372\pi\)
\(234\) 2.56258e7 0.130744
\(235\) 1.29085e8 0.648843
\(236\) −5.19642e6 −0.0257343
\(237\) 1.56632e8 0.764296
\(238\) −2.45554e7 −0.118067
\(239\) −1.50183e8 −0.711588 −0.355794 0.934564i \(-0.615790\pi\)
−0.355794 + 0.934564i \(0.615790\pi\)
\(240\) 2.70950e7 0.126517
\(241\) 1.36186e8 0.626718 0.313359 0.949635i \(-0.398546\pi\)
0.313359 + 0.949635i \(0.398546\pi\)
\(242\) −3.58344e7 −0.162535
\(243\) −2.29583e8 −1.02640
\(244\) −7.21249e7 −0.317849
\(245\) 1.17349e8 0.509796
\(246\) 1.16588e8 0.499323
\(247\) 1.43288e7 0.0605022
\(248\) 6.66399e7 0.277430
\(249\) −1.99768e8 −0.820027
\(250\) 1.88601e8 0.763403
\(251\) 1.89898e8 0.757989 0.378995 0.925399i \(-0.376270\pi\)
0.378995 + 0.925399i \(0.376270\pi\)
\(252\) 5.47741e7 0.215612
\(253\) 1.93700e6 0.00751983
\(254\) −2.02182e7 −0.0774150
\(255\) 3.45898e7 0.130634
\(256\) 1.67772e7 0.0625000
\(257\) 1.72850e8 0.635190 0.317595 0.948227i \(-0.397125\pi\)
0.317595 + 0.948227i \(0.397125\pi\)
\(258\) −3.02119e6 −0.0109524
\(259\) 2.21750e8 0.793077
\(260\) 3.44490e7 0.121554
\(261\) −3.30899e8 −1.15200
\(262\) 3.35528e8 1.15259
\(263\) −1.54338e8 −0.523151 −0.261576 0.965183i \(-0.584242\pi\)
−0.261576 + 0.965183i \(0.584242\pi\)
\(264\) 5.35542e7 0.179135
\(265\) 4.04235e8 1.33436
\(266\) 3.06273e7 0.0997753
\(267\) 2.57514e7 0.0827963
\(268\) 3.06431e7 0.0972435
\(269\) −1.34962e7 −0.0422745 −0.0211372 0.999777i \(-0.506729\pi\)
−0.0211372 + 0.999777i \(0.506729\pi\)
\(270\) −1.92893e8 −0.596409
\(271\) −6.48939e8 −1.98067 −0.990333 0.138707i \(-0.955705\pi\)
−0.990333 + 0.138707i \(0.955705\pi\)
\(272\) 2.14180e7 0.0645338
\(273\) −3.48203e7 −0.103577
\(274\) −1.96757e8 −0.577835
\(275\) 7.01194e7 0.203317
\(276\) 864000. 0.00247361
\(277\) 5.55195e8 1.56952 0.784760 0.619800i \(-0.212786\pi\)
0.784760 + 0.619800i \(0.212786\pi\)
\(278\) −4.63479e8 −1.29382
\(279\) −1.89767e8 −0.523127
\(280\) 7.36333e7 0.200457
\(281\) 3.34956e8 0.900565 0.450283 0.892886i \(-0.351323\pi\)
0.450283 + 0.892886i \(0.351323\pi\)
\(282\) 1.13806e8 0.302199
\(283\) 5.76535e8 1.51207 0.756037 0.654529i \(-0.227133\pi\)
0.756037 + 0.654529i \(0.227133\pi\)
\(284\) 6.01604e7 0.155846
\(285\) −4.31430e7 −0.110396
\(286\) 6.80894e7 0.172107
\(287\) 3.16839e8 0.791138
\(288\) −4.77757e7 −0.117851
\(289\) −3.82996e8 −0.933366
\(290\) −4.44830e8 −1.07103
\(291\) 2.78605e8 0.662770
\(292\) 1.07003e8 0.251511
\(293\) −1.77399e8 −0.412016 −0.206008 0.978550i \(-0.566047\pi\)
−0.206008 + 0.978550i \(0.566047\pi\)
\(294\) 1.03458e8 0.237438
\(295\) 1.98925e7 0.0451142
\(296\) −1.93418e8 −0.433486
\(297\) −3.81260e8 −0.844449
\(298\) −2.32794e8 −0.509583
\(299\) 1.09850e6 0.00237657
\(300\) 3.12768e7 0.0668803
\(301\) −8.21037e6 −0.0173532
\(302\) −3.31079e8 −0.691683
\(303\) −1.27846e8 −0.264020
\(304\) −2.67141e7 −0.0545360
\(305\) 2.76103e8 0.557214
\(306\) −6.09911e7 −0.121686
\(307\) 2.94122e8 0.580155 0.290077 0.957003i \(-0.406319\pi\)
0.290077 + 0.957003i \(0.406319\pi\)
\(308\) 1.45538e8 0.283825
\(309\) −4.34629e8 −0.838038
\(310\) −2.55106e8 −0.486356
\(311\) −2.86005e8 −0.539154 −0.269577 0.962979i \(-0.586884\pi\)
−0.269577 + 0.962979i \(0.586884\pi\)
\(312\) 3.03713e7 0.0566139
\(313\) −2.76110e8 −0.508951 −0.254476 0.967079i \(-0.581903\pi\)
−0.254476 + 0.967079i \(0.581903\pi\)
\(314\) 6.88582e7 0.125517
\(315\) −2.09682e8 −0.377985
\(316\) −3.71276e8 −0.661900
\(317\) 5.45989e8 0.962667 0.481334 0.876537i \(-0.340153\pi\)
0.481334 + 0.876537i \(0.340153\pi\)
\(318\) 3.56387e8 0.621480
\(319\) −8.79220e8 −1.51646
\(320\) −6.42253e7 −0.109567
\(321\) −4.80123e8 −0.810186
\(322\) 2.34800e6 0.00391925
\(323\) −3.41035e7 −0.0563107
\(324\) 3.40122e7 0.0555556
\(325\) 3.97657e7 0.0642565
\(326\) −6.65738e8 −1.06425
\(327\) 5.95366e8 0.941601
\(328\) −2.76357e8 −0.432426
\(329\) 3.09278e8 0.478810
\(330\) −2.05012e8 −0.314037
\(331\) −3.60921e8 −0.547034 −0.273517 0.961867i \(-0.588187\pi\)
−0.273517 + 0.961867i \(0.588187\pi\)
\(332\) 4.73524e8 0.710164
\(333\) 5.50787e8 0.817389
\(334\) 9.26148e8 1.36009
\(335\) −1.17306e8 −0.170475
\(336\) 6.49175e7 0.0933629
\(337\) 4.27270e8 0.608132 0.304066 0.952651i \(-0.401656\pi\)
0.304066 + 0.952651i \(0.401656\pi\)
\(338\) 3.86145e7 0.0543928
\(339\) 4.88376e8 0.680856
\(340\) −8.19907e7 −0.113133
\(341\) −5.04224e8 −0.688626
\(342\) 7.60726e7 0.102834
\(343\) 7.64577e8 1.02304
\(344\) 7.16134e6 0.00948506
\(345\) −3.30750e6 −0.00433644
\(346\) 7.28067e8 0.944941
\(347\) 1.31637e9 1.69131 0.845656 0.533728i \(-0.179209\pi\)
0.845656 + 0.533728i \(0.179209\pi\)
\(348\) −3.92177e8 −0.498832
\(349\) −1.26585e9 −1.59402 −0.797012 0.603963i \(-0.793587\pi\)
−0.797012 + 0.603963i \(0.793587\pi\)
\(350\) 8.49976e7 0.105966
\(351\) −2.16218e8 −0.266880
\(352\) −1.26943e8 −0.155135
\(353\) 1.10618e9 1.33848 0.669241 0.743046i \(-0.266619\pi\)
0.669241 + 0.743046i \(0.266619\pi\)
\(354\) 1.75379e7 0.0210119
\(355\) −2.30302e8 −0.273211
\(356\) −6.10403e7 −0.0717037
\(357\) 8.28744e7 0.0964010
\(358\) 1.10542e9 1.27332
\(359\) −1.02959e9 −1.17445 −0.587223 0.809425i \(-0.699779\pi\)
−0.587223 + 0.809425i \(0.699779\pi\)
\(360\) 1.82892e8 0.206602
\(361\) −8.51335e8 −0.952413
\(362\) 8.44140e8 0.935264
\(363\) 1.20941e8 0.132709
\(364\) 8.25369e7 0.0897002
\(365\) −4.09622e8 −0.440918
\(366\) 2.43422e8 0.259523
\(367\) 7.84516e8 0.828458 0.414229 0.910173i \(-0.364051\pi\)
0.414229 + 0.910173i \(0.364051\pi\)
\(368\) −2.04800e6 −0.00214221
\(369\) 7.86970e8 0.815391
\(370\) 7.40427e8 0.759935
\(371\) 9.68515e8 0.984686
\(372\) −2.24910e8 −0.226521
\(373\) −5.52719e8 −0.551472 −0.275736 0.961233i \(-0.588922\pi\)
−0.275736 + 0.961233i \(0.588922\pi\)
\(374\) −1.62057e8 −0.160183
\(375\) −6.36528e8 −0.623316
\(376\) −2.69762e8 −0.261712
\(377\) −4.98618e8 −0.479262
\(378\) −4.62157e8 −0.440117
\(379\) 6.93760e8 0.654594 0.327297 0.944921i \(-0.393862\pi\)
0.327297 + 0.944921i \(0.393862\pi\)
\(380\) 1.02265e8 0.0956058
\(381\) 6.82366e7 0.0632091
\(382\) −7.49188e8 −0.687652
\(383\) −1.56765e9 −1.42578 −0.712890 0.701276i \(-0.752614\pi\)
−0.712890 + 0.701276i \(0.752614\pi\)
\(384\) −5.66231e7 −0.0510310
\(385\) −5.57139e8 −0.497567
\(386\) 1.04973e9 0.929010
\(387\) −2.03930e7 −0.0178852
\(388\) −6.60396e8 −0.573976
\(389\) −2.11817e9 −1.82447 −0.912235 0.409668i \(-0.865645\pi\)
−0.912235 + 0.409668i \(0.865645\pi\)
\(390\) −1.16265e8 −0.0992485
\(391\) −2.61450e6 −0.00221192
\(392\) −2.45235e8 −0.205627
\(393\) −1.13241e9 −0.941085
\(394\) −1.08260e9 −0.891727
\(395\) 1.42129e9 1.16036
\(396\) 3.61491e8 0.292526
\(397\) 3.65973e8 0.293550 0.146775 0.989170i \(-0.453111\pi\)
0.146775 + 0.989170i \(0.453111\pi\)
\(398\) −9.96043e8 −0.791931
\(399\) −1.03367e8 −0.0814662
\(400\) −7.41376e7 −0.0579200
\(401\) −5.66697e8 −0.438880 −0.219440 0.975626i \(-0.570423\pi\)
−0.219440 + 0.975626i \(0.570423\pi\)
\(402\) −1.03420e8 −0.0793990
\(403\) −2.85953e8 −0.217634
\(404\) 3.03042e8 0.228648
\(405\) −1.30203e8 −0.0973932
\(406\) −1.06578e9 −0.790360
\(407\) 1.46348e9 1.07598
\(408\) −7.22857e7 −0.0526916
\(409\) −1.64659e9 −1.19002 −0.595011 0.803717i \(-0.702852\pi\)
−0.595011 + 0.803717i \(0.702852\pi\)
\(410\) 1.05793e9 0.758077
\(411\) 6.64056e8 0.471800
\(412\) 1.03023e9 0.725763
\(413\) 4.76609e7 0.0332918
\(414\) 5.83200e6 0.00403939
\(415\) −1.81271e9 −1.24497
\(416\) −7.19913e7 −0.0490290
\(417\) 1.56424e9 1.05640
\(418\) 2.02130e8 0.135367
\(419\) −2.07538e8 −0.137831 −0.0689157 0.997622i \(-0.521954\pi\)
−0.0689157 + 0.997622i \(0.521954\pi\)
\(420\) −2.48512e8 −0.163672
\(421\) 1.28086e9 0.836590 0.418295 0.908311i \(-0.362628\pi\)
0.418295 + 0.908311i \(0.362628\pi\)
\(422\) 6.45148e8 0.417894
\(423\) 7.68190e8 0.493489
\(424\) −8.44769e8 −0.538217
\(425\) −9.46449e7 −0.0598048
\(426\) −2.03042e8 −0.127248
\(427\) 6.61521e8 0.411193
\(428\) 1.13807e9 0.701642
\(429\) −2.29802e8 −0.140525
\(430\) −2.74145e7 −0.0166280
\(431\) −1.30893e8 −0.0787494 −0.0393747 0.999225i \(-0.512537\pi\)
−0.0393747 + 0.999225i \(0.512537\pi\)
\(432\) 4.03108e8 0.240563
\(433\) −3.01643e8 −0.178560 −0.0892802 0.996007i \(-0.528457\pi\)
−0.0892802 + 0.996007i \(0.528457\pi\)
\(434\) −6.11213e8 −0.358904
\(435\) 1.50130e9 0.874491
\(436\) −1.41124e9 −0.815450
\(437\) 3.26100e6 0.00186924
\(438\) −3.61136e8 −0.205358
\(439\) 8.03991e8 0.453550 0.226775 0.973947i \(-0.427182\pi\)
0.226775 + 0.973947i \(0.427182\pi\)
\(440\) 4.85955e8 0.271964
\(441\) 6.98344e8 0.387734
\(442\) −9.19049e7 −0.0506245
\(443\) 1.78013e8 0.0972832 0.0486416 0.998816i \(-0.484511\pi\)
0.0486416 + 0.998816i \(0.484511\pi\)
\(444\) 6.52785e8 0.353940
\(445\) 2.33670e8 0.125702
\(446\) −1.04489e9 −0.557699
\(447\) 7.85680e8 0.416073
\(448\) −1.53879e8 −0.0808546
\(449\) −1.61622e9 −0.842634 −0.421317 0.906914i \(-0.638432\pi\)
−0.421317 + 0.906914i \(0.638432\pi\)
\(450\) 2.11118e8 0.109215
\(451\) 2.09103e9 1.07335
\(452\) −1.15763e9 −0.589639
\(453\) 1.11739e9 0.564757
\(454\) −1.15442e9 −0.578986
\(455\) −3.15962e8 −0.157251
\(456\) 9.01601e7 0.0445284
\(457\) 1.23751e9 0.606517 0.303258 0.952908i \(-0.401926\pi\)
0.303258 + 0.952908i \(0.401926\pi\)
\(458\) −8.25833e8 −0.401664
\(459\) 5.14612e8 0.248391
\(460\) 7.84000e6 0.00375546
\(461\) 1.25678e8 0.0597457 0.0298729 0.999554i \(-0.490490\pi\)
0.0298729 + 0.999554i \(0.490490\pi\)
\(462\) −4.91192e8 −0.231742
\(463\) −1.01176e9 −0.473743 −0.236872 0.971541i \(-0.576122\pi\)
−0.236872 + 0.971541i \(0.576122\pi\)
\(464\) 9.29604e8 0.432001
\(465\) 8.60982e8 0.397108
\(466\) −2.55660e8 −0.117034
\(467\) −1.61515e9 −0.733846 −0.366923 0.930251i \(-0.619589\pi\)
−0.366923 + 0.930251i \(0.619589\pi\)
\(468\) 2.05006e8 0.0924500
\(469\) −2.81054e8 −0.125801
\(470\) 1.03268e9 0.458801
\(471\) −2.32397e8 −0.102484
\(472\) −4.15713e7 −0.0181969
\(473\) −5.41856e7 −0.0235435
\(474\) 1.25306e9 0.540439
\(475\) 1.18048e8 0.0505396
\(476\) −1.96443e8 −0.0834858
\(477\) 2.40561e9 1.01487
\(478\) −1.20147e9 −0.503169
\(479\) 4.98553e8 0.207270 0.103635 0.994615i \(-0.466953\pi\)
0.103635 + 0.994615i \(0.466953\pi\)
\(480\) 2.16760e8 0.0894614
\(481\) 8.29958e8 0.340055
\(482\) 1.08949e9 0.443157
\(483\) −7.92450e6 −0.00320005
\(484\) −2.86675e8 −0.114929
\(485\) 2.52808e9 1.00622
\(486\) −1.83666e9 −0.725775
\(487\) −4.81147e9 −1.88767 −0.943836 0.330413i \(-0.892812\pi\)
−0.943836 + 0.330413i \(0.892812\pi\)
\(488\) −5.76999e8 −0.224753
\(489\) 2.24687e9 0.868953
\(490\) 9.38789e8 0.360480
\(491\) 1.50724e9 0.574643 0.287322 0.957834i \(-0.407235\pi\)
0.287322 + 0.957834i \(0.407235\pi\)
\(492\) 9.32705e8 0.353075
\(493\) 1.18674e9 0.446059
\(494\) 1.14631e8 0.0427816
\(495\) −1.38383e9 −0.512820
\(496\) 5.33119e8 0.196173
\(497\) −5.51784e8 −0.201615
\(498\) −1.59814e9 −0.579847
\(499\) −3.47961e9 −1.25366 −0.626829 0.779157i \(-0.715647\pi\)
−0.626829 + 0.779157i \(0.715647\pi\)
\(500\) 1.50881e9 0.539808
\(501\) −3.12575e9 −1.11051
\(502\) 1.51919e9 0.535979
\(503\) −1.65804e9 −0.580907 −0.290454 0.956889i \(-0.593806\pi\)
−0.290454 + 0.956889i \(0.593806\pi\)
\(504\) 4.38193e8 0.152461
\(505\) −1.16008e9 −0.400838
\(506\) 1.54960e7 0.00531732
\(507\) −1.30324e8 −0.0444116
\(508\) −1.61746e8 −0.0547407
\(509\) −8.62799e8 −0.289999 −0.145000 0.989432i \(-0.546318\pi\)
−0.145000 + 0.989432i \(0.546318\pi\)
\(510\) 2.76719e8 0.0923725
\(511\) −9.81421e8 −0.325373
\(512\) 1.34218e8 0.0441942
\(513\) −6.41863e8 −0.209909
\(514\) 1.38280e9 0.449147
\(515\) −3.94386e9 −1.27232
\(516\) −2.41695e7 −0.00774452
\(517\) 2.04113e9 0.649611
\(518\) 1.77400e9 0.560790
\(519\) −2.45723e9 −0.771541
\(520\) 2.75592e8 0.0859517
\(521\) −1.33343e9 −0.413085 −0.206542 0.978438i \(-0.566221\pi\)
−0.206542 + 0.978438i \(0.566221\pi\)
\(522\) −2.64719e9 −0.814589
\(523\) 942900. 0.000288210 0 0.000144105 1.00000i \(-0.499954\pi\)
0.000144105 1.00000i \(0.499954\pi\)
\(524\) 2.68423e9 0.815004
\(525\) −2.86867e8 −0.0865213
\(526\) −1.23470e9 −0.369924
\(527\) 6.80586e8 0.202556
\(528\) 4.28433e8 0.126667
\(529\) −3.40458e9 −0.999927
\(530\) 3.23388e9 0.943536
\(531\) 1.18381e8 0.0343124
\(532\) 2.45018e8 0.0705518
\(533\) 1.18585e9 0.339223
\(534\) 2.06011e8 0.0585458
\(535\) −4.35667e9 −1.23003
\(536\) 2.45145e8 0.0687615
\(537\) −3.73079e9 −1.03966
\(538\) −1.07969e8 −0.0298926
\(539\) 1.85555e9 0.510400
\(540\) −1.54315e9 −0.421725
\(541\) 3.42111e9 0.928916 0.464458 0.885595i \(-0.346249\pi\)
0.464458 + 0.885595i \(0.346249\pi\)
\(542\) −5.19151e9 −1.40054
\(543\) −2.84897e9 −0.763640
\(544\) 1.71344e8 0.0456323
\(545\) 5.40240e9 1.42955
\(546\) −2.78562e8 −0.0732399
\(547\) 4.07726e9 1.06515 0.532577 0.846381i \(-0.321224\pi\)
0.532577 + 0.846381i \(0.321224\pi\)
\(548\) −1.57406e9 −0.408591
\(549\) 1.64310e9 0.423799
\(550\) 5.60955e8 0.143767
\(551\) −1.48019e9 −0.376954
\(552\) 6.91200e6 0.00174911
\(553\) 3.40530e9 0.856283
\(554\) 4.44156e9 1.10982
\(555\) −2.49894e9 −0.620484
\(556\) −3.70784e9 −0.914869
\(557\) −5.23587e9 −1.28379 −0.641897 0.766791i \(-0.721852\pi\)
−0.641897 + 0.766791i \(0.721852\pi\)
\(558\) −1.51814e9 −0.369907
\(559\) −3.07294e7 −0.00744069
\(560\) 5.89066e8 0.141744
\(561\) 5.46943e8 0.130789
\(562\) 2.67965e9 0.636796
\(563\) 7.04236e9 1.66318 0.831589 0.555392i \(-0.187432\pi\)
0.831589 + 0.555392i \(0.187432\pi\)
\(564\) 9.10447e8 0.213687
\(565\) 4.43156e9 1.03368
\(566\) 4.61228e9 1.06920
\(567\) −3.11956e8 −0.0718708
\(568\) 4.81284e8 0.110200
\(569\) 8.80025e8 0.200264 0.100132 0.994974i \(-0.468074\pi\)
0.100132 + 0.994974i \(0.468074\pi\)
\(570\) −3.45144e8 −0.0780618
\(571\) 8.46430e9 1.90267 0.951337 0.308151i \(-0.0997102\pi\)
0.951337 + 0.308151i \(0.0997102\pi\)
\(572\) 5.44715e8 0.121698
\(573\) 2.52851e9 0.561466
\(574\) 2.53471e9 0.559419
\(575\) 9.05000e6 0.00198523
\(576\) −3.82206e8 −0.0833333
\(577\) −2.74152e8 −0.0594122 −0.0297061 0.999559i \(-0.509457\pi\)
−0.0297061 + 0.999559i \(0.509457\pi\)
\(578\) −3.06397e9 −0.659990
\(579\) −3.54283e9 −0.758534
\(580\) −3.55864e9 −0.757331
\(581\) −4.34310e9 −0.918721
\(582\) 2.22884e9 0.468649
\(583\) 6.39187e9 1.33594
\(584\) 8.56026e8 0.177845
\(585\) −7.84790e8 −0.162072
\(586\) −1.41919e9 −0.291339
\(587\) −4.71162e9 −0.961472 −0.480736 0.876865i \(-0.659631\pi\)
−0.480736 + 0.876865i \(0.659631\pi\)
\(588\) 8.27667e8 0.167894
\(589\) −8.48877e8 −0.171175
\(590\) 1.59140e8 0.0319005
\(591\) 3.65378e9 0.728092
\(592\) −1.54734e9 −0.306521
\(593\) −4.59365e9 −0.904620 −0.452310 0.891861i \(-0.649400\pi\)
−0.452310 + 0.891861i \(0.649400\pi\)
\(594\) −3.05008e9 −0.597115
\(595\) 7.52009e8 0.146357
\(596\) −1.86235e9 −0.360330
\(597\) 3.36164e9 0.646609
\(598\) 8.78800e6 0.00168049
\(599\) −2.06624e9 −0.392815 −0.196407 0.980522i \(-0.562927\pi\)
−0.196407 + 0.980522i \(0.562927\pi\)
\(600\) 2.50214e8 0.0472915
\(601\) 8.75128e9 1.64441 0.822206 0.569190i \(-0.192743\pi\)
0.822206 + 0.569190i \(0.192743\pi\)
\(602\) −6.56830e7 −0.0122706
\(603\) −6.98087e8 −0.129658
\(604\) −2.64863e9 −0.489094
\(605\) 1.09743e9 0.201480
\(606\) −1.02277e9 −0.186690
\(607\) −5.99457e9 −1.08792 −0.543961 0.839111i \(-0.683076\pi\)
−0.543961 + 0.839111i \(0.683076\pi\)
\(608\) −2.13713e8 −0.0385628
\(609\) 3.59699e9 0.645326
\(610\) 2.20883e9 0.394010
\(611\) 1.15755e9 0.205304
\(612\) −4.87928e8 −0.0860451
\(613\) −3.28777e9 −0.576487 −0.288244 0.957557i \(-0.593071\pi\)
−0.288244 + 0.957557i \(0.593071\pi\)
\(614\) 2.35298e9 0.410231
\(615\) −3.57051e9 −0.618967
\(616\) 1.16431e9 0.200694
\(617\) 2.90178e9 0.497355 0.248677 0.968586i \(-0.420004\pi\)
0.248677 + 0.968586i \(0.420004\pi\)
\(618\) −3.47703e9 −0.592583
\(619\) 6.02255e9 1.02062 0.510309 0.859991i \(-0.329531\pi\)
0.510309 + 0.859991i \(0.329531\pi\)
\(620\) −2.04085e9 −0.343906
\(621\) −4.92075e7 −0.00824538
\(622\) −2.28804e9 −0.381239
\(623\) 5.59854e8 0.0927612
\(624\) 2.42971e8 0.0400320
\(625\) −4.36184e9 −0.714644
\(626\) −2.20888e9 −0.359883
\(627\) −6.82188e8 −0.110527
\(628\) 5.50866e8 0.0887538
\(629\) −1.97535e9 −0.316496
\(630\) −1.67746e9 −0.267276
\(631\) −2.50727e8 −0.0397282 −0.0198641 0.999803i \(-0.506323\pi\)
−0.0198641 + 0.999803i \(0.506323\pi\)
\(632\) −2.97021e9 −0.468034
\(633\) −2.17738e9 −0.341209
\(634\) 4.36791e9 0.680709
\(635\) 6.19184e8 0.0959647
\(636\) 2.85110e9 0.439453
\(637\) 1.05231e9 0.161307
\(638\) −7.03376e9 −1.07230
\(639\) −1.37053e9 −0.207795
\(640\) −5.13802e8 −0.0774758
\(641\) −1.25739e10 −1.88568 −0.942839 0.333248i \(-0.891856\pi\)
−0.942839 + 0.333248i \(0.891856\pi\)
\(642\) −3.84098e9 −0.572888
\(643\) 1.95354e9 0.289790 0.144895 0.989447i \(-0.453716\pi\)
0.144895 + 0.989447i \(0.453716\pi\)
\(644\) 1.87840e7 0.00277133
\(645\) 9.25240e7 0.0135767
\(646\) −2.72828e8 −0.0398176
\(647\) −7.96393e9 −1.15601 −0.578006 0.816032i \(-0.696169\pi\)
−0.578006 + 0.816032i \(0.696169\pi\)
\(648\) 2.72098e8 0.0392837
\(649\) 3.14546e8 0.0451676
\(650\) 3.18126e8 0.0454362
\(651\) 2.06284e9 0.293044
\(652\) −5.32591e9 −0.752535
\(653\) 7.42841e8 0.104400 0.0521999 0.998637i \(-0.483377\pi\)
0.0521999 + 0.998637i \(0.483377\pi\)
\(654\) 4.76293e9 0.665812
\(655\) −1.02756e10 −1.42876
\(656\) −2.21086e9 −0.305772
\(657\) −2.43767e9 −0.335348
\(658\) 2.47422e9 0.338570
\(659\) −4.38274e9 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(660\) −1.64010e9 −0.222058
\(661\) 1.01201e10 1.36296 0.681478 0.731839i \(-0.261338\pi\)
0.681478 + 0.731839i \(0.261338\pi\)
\(662\) −2.88737e9 −0.386812
\(663\) 3.10179e8 0.0413347
\(664\) 3.78819e9 0.502162
\(665\) −9.37961e8 −0.123683
\(666\) 4.40630e9 0.577982
\(667\) −1.13477e8 −0.0148070
\(668\) 7.40918e9 0.961729
\(669\) 3.52651e9 0.455359
\(670\) −9.38444e8 −0.120544
\(671\) 4.36581e9 0.557874
\(672\) 5.19340e8 0.0660175
\(673\) 1.41044e10 1.78362 0.891808 0.452415i \(-0.149437\pi\)
0.891808 + 0.452415i \(0.149437\pi\)
\(674\) 3.41816e9 0.430014
\(675\) −1.78131e9 −0.222934
\(676\) 3.08916e8 0.0384615
\(677\) −1.31550e10 −1.62942 −0.814708 0.579872i \(-0.803103\pi\)
−0.814708 + 0.579872i \(0.803103\pi\)
\(678\) 3.90701e9 0.481438
\(679\) 6.05707e9 0.742538
\(680\) −6.55926e8 −0.0799970
\(681\) 3.89616e9 0.472740
\(682\) −4.03379e9 −0.486932
\(683\) 8.18437e9 0.982907 0.491454 0.870904i \(-0.336466\pi\)
0.491454 + 0.870904i \(0.336466\pi\)
\(684\) 6.08581e8 0.0727147
\(685\) 6.02569e9 0.716292
\(686\) 6.11662e9 0.723398
\(687\) 2.78718e9 0.327957
\(688\) 5.72908e7 0.00670695
\(689\) 3.62492e9 0.422212
\(690\) −2.64600e7 −0.00306632
\(691\) −6.59230e9 −0.760088 −0.380044 0.924968i \(-0.624091\pi\)
−0.380044 + 0.924968i \(0.624091\pi\)
\(692\) 5.82453e9 0.668174
\(693\) −3.31555e9 −0.378433
\(694\) 1.05309e10 1.19594
\(695\) 1.41941e10 1.60384
\(696\) −3.13741e9 −0.352727
\(697\) −2.82241e9 −0.315722
\(698\) −1.01268e10 −1.12715
\(699\) 8.62853e8 0.0955580
\(700\) 6.79981e8 0.0749296
\(701\) −7.42154e9 −0.813731 −0.406866 0.913488i \(-0.633378\pi\)
−0.406866 + 0.913488i \(0.633378\pi\)
\(702\) −1.72974e9 −0.188713
\(703\) 2.46381e9 0.267463
\(704\) −1.01555e9 −0.109697
\(705\) −3.48530e9 −0.374610
\(706\) 8.84940e9 0.946449
\(707\) −2.77946e9 −0.295796
\(708\) 1.40303e8 0.0148577
\(709\) −1.28256e10 −1.35150 −0.675748 0.737133i \(-0.736179\pi\)
−0.675748 + 0.737133i \(0.736179\pi\)
\(710\) −1.84241e9 −0.193189
\(711\) 8.45813e9 0.882533
\(712\) −4.88322e8 −0.0507021
\(713\) −6.50780e7 −0.00672389
\(714\) 6.62995e8 0.0681658
\(715\) −2.08524e9 −0.213346
\(716\) 8.84335e9 0.900370
\(717\) 4.05495e9 0.410836
\(718\) −8.23671e9 −0.830459
\(719\) −1.34066e8 −0.0134514 −0.00672568 0.999977i \(-0.502141\pi\)
−0.00672568 + 0.999977i \(0.502141\pi\)
\(720\) 1.46313e9 0.146090
\(721\) −9.44916e9 −0.938900
\(722\) −6.81068e9 −0.673458
\(723\) −3.67702e9 −0.361836
\(724\) 6.75312e9 0.661332
\(725\) −4.10787e9 −0.400344
\(726\) 9.67528e8 0.0938394
\(727\) 8.04352e8 0.0776383 0.0388191 0.999246i \(-0.487640\pi\)
0.0388191 + 0.999246i \(0.487640\pi\)
\(728\) 6.60295e8 0.0634276
\(729\) 5.03647e9 0.481481
\(730\) −3.27697e9 −0.311776
\(731\) 7.31380e7 0.00692520
\(732\) 1.94737e9 0.183510
\(733\) −1.64250e10 −1.54043 −0.770213 0.637786i \(-0.779850\pi\)
−0.770213 + 0.637786i \(0.779850\pi\)
\(734\) 6.27613e9 0.585808
\(735\) −3.16841e9 −0.294331
\(736\) −1.63840e7 −0.00151477
\(737\) −1.85486e9 −0.170677
\(738\) 6.29576e9 0.576569
\(739\) −3.94761e9 −0.359815 −0.179907 0.983684i \(-0.557580\pi\)
−0.179907 + 0.983684i \(0.557580\pi\)
\(740\) 5.92342e9 0.537355
\(741\) −3.86879e8 −0.0349310
\(742\) 7.74812e9 0.696278
\(743\) 1.81094e10 1.61974 0.809868 0.586612i \(-0.199539\pi\)
0.809868 + 0.586612i \(0.199539\pi\)
\(744\) −1.79928e9 −0.160174
\(745\) 7.12932e9 0.631686
\(746\) −4.42175e9 −0.389950
\(747\) −1.07875e10 −0.946886
\(748\) −1.29646e9 −0.113267
\(749\) −1.04382e10 −0.907696
\(750\) −5.09223e9 −0.440751
\(751\) −7.45449e9 −0.642211 −0.321106 0.947043i \(-0.604054\pi\)
−0.321106 + 0.947043i \(0.604054\pi\)
\(752\) −2.15810e9 −0.185058
\(753\) −5.12726e9 −0.437625
\(754\) −3.98894e9 −0.338890
\(755\) 1.01393e10 0.857419
\(756\) −3.69725e9 −0.311210
\(757\) −1.20015e10 −1.00554 −0.502770 0.864420i \(-0.667686\pi\)
−0.502770 + 0.864420i \(0.667686\pi\)
\(758\) 5.55008e9 0.462868
\(759\) −5.22990e7 −0.00434157
\(760\) 8.18120e8 0.0676035
\(761\) 1.21973e10 1.00327 0.501635 0.865080i \(-0.332732\pi\)
0.501635 + 0.865080i \(0.332732\pi\)
\(762\) 5.45892e8 0.0446956
\(763\) 1.29437e10 1.05493
\(764\) −5.99350e9 −0.486244
\(765\) 1.86785e9 0.150844
\(766\) −1.25412e10 −1.00818
\(767\) 1.78383e8 0.0142748
\(768\) −4.52985e8 −0.0360844
\(769\) −7.65065e8 −0.0606675 −0.0303338 0.999540i \(-0.509657\pi\)
−0.0303338 + 0.999540i \(0.509657\pi\)
\(770\) −4.45711e9 −0.351833
\(771\) −4.66695e9 −0.366727
\(772\) 8.39781e9 0.656910
\(773\) −5.75818e8 −0.0448391 −0.0224195 0.999749i \(-0.507137\pi\)
−0.0224195 + 0.999749i \(0.507137\pi\)
\(774\) −1.63144e8 −0.0126467
\(775\) −2.35582e9 −0.181797
\(776\) −5.28317e9 −0.405862
\(777\) −5.98726e9 −0.457883
\(778\) −1.69453e10 −1.29009
\(779\) 3.52031e9 0.266809
\(780\) −9.30122e8 −0.0701793
\(781\) −3.64159e9 −0.273534
\(782\) −2.09160e7 −0.00156407
\(783\) 2.23357e10 1.66277
\(784\) −1.96188e9 −0.145400
\(785\) −2.10878e9 −0.155592
\(786\) −9.05926e9 −0.665448
\(787\) 5.85027e9 0.427823 0.213912 0.976853i \(-0.431380\pi\)
0.213912 + 0.976853i \(0.431380\pi\)
\(788\) −8.66081e9 −0.630546
\(789\) 4.16712e9 0.302041
\(790\) 1.13703e10 0.820499
\(791\) 1.06177e10 0.762800
\(792\) 2.89193e9 0.206847
\(793\) 2.47591e9 0.176311
\(794\) 2.92779e9 0.207571
\(795\) −1.09144e10 −0.770394
\(796\) −7.96834e9 −0.559980
\(797\) 7.90313e9 0.552962 0.276481 0.961019i \(-0.410832\pi\)
0.276481 + 0.961019i \(0.410832\pi\)
\(798\) −8.26937e8 −0.0576053
\(799\) −2.75505e9 −0.191080
\(800\) −5.93101e8 −0.0409556
\(801\) 1.39057e9 0.0956049
\(802\) −4.53358e9 −0.310335
\(803\) −6.47704e9 −0.441441
\(804\) −8.27363e8 −0.0561436
\(805\) −7.19075e7 −0.00485835
\(806\) −2.28762e9 −0.153890
\(807\) 3.64397e8 0.0244072
\(808\) 2.42433e9 0.161679
\(809\) −1.36831e10 −0.908582 −0.454291 0.890853i \(-0.650107\pi\)
−0.454291 + 0.890853i \(0.650107\pi\)
\(810\) −1.04162e9 −0.0688674
\(811\) −2.02619e10 −1.33385 −0.666924 0.745126i \(-0.732389\pi\)
−0.666924 + 0.745126i \(0.732389\pi\)
\(812\) −8.52621e9 −0.558869
\(813\) 1.75214e10 1.14354
\(814\) 1.17078e10 0.760835
\(815\) 2.03882e10 1.31925
\(816\) −5.78286e8 −0.0372586
\(817\) −9.12232e7 −0.00585232
\(818\) −1.31728e10 −0.841473
\(819\) −1.88029e9 −0.119600
\(820\) 8.46344e9 0.536041
\(821\) 1.27444e10 0.803742 0.401871 0.915696i \(-0.368360\pi\)
0.401871 + 0.915696i \(0.368360\pi\)
\(822\) 5.31245e9 0.333613
\(823\) 1.30392e9 0.0815366 0.0407683 0.999169i \(-0.487019\pi\)
0.0407683 + 0.999169i \(0.487019\pi\)
\(824\) 8.24185e9 0.513192
\(825\) −1.89322e9 −0.117385
\(826\) 3.81287e8 0.0235408
\(827\) 6.58079e9 0.404584 0.202292 0.979325i \(-0.435161\pi\)
0.202292 + 0.979325i \(0.435161\pi\)
\(828\) 4.66560e7 0.00285628
\(829\) −1.84124e10 −1.12246 −0.561229 0.827661i \(-0.689671\pi\)
−0.561229 + 0.827661i \(0.689671\pi\)
\(830\) −1.45017e10 −0.880329
\(831\) −1.49903e10 −0.906162
\(832\) −5.75930e8 −0.0346688
\(833\) −2.50456e9 −0.150132
\(834\) 1.25139e10 0.746987
\(835\) −2.83633e10 −1.68598
\(836\) 1.61704e9 0.0957191
\(837\) 1.28093e10 0.755069
\(838\) −1.66030e9 −0.0974616
\(839\) 3.25291e10 1.90154 0.950769 0.309901i \(-0.100296\pi\)
0.950769 + 0.309901i \(0.100296\pi\)
\(840\) −1.98810e9 −0.115734
\(841\) 3.42582e10 1.98600
\(842\) 1.02468e10 0.591559
\(843\) −9.04380e9 −0.519942
\(844\) 5.16119e9 0.295496
\(845\) −1.18257e9 −0.0674260
\(846\) 6.14552e9 0.348949
\(847\) 2.62935e9 0.148681
\(848\) −6.75815e9 −0.380577
\(849\) −1.55664e10 −0.872996
\(850\) −7.57159e8 −0.0422884
\(851\) 1.88884e8 0.0105061
\(852\) −1.62433e9 −0.0899780
\(853\) 2.08665e10 1.15114 0.575569 0.817753i \(-0.304780\pi\)
0.575569 + 0.817753i \(0.304780\pi\)
\(854\) 5.29217e9 0.290758
\(855\) −2.32972e9 −0.127474
\(856\) 9.10455e9 0.496136
\(857\) −4.27453e9 −0.231983 −0.115991 0.993250i \(-0.537004\pi\)
−0.115991 + 0.993250i \(0.537004\pi\)
\(858\) −1.83841e9 −0.0993660
\(859\) −3.16915e8 −0.0170595 −0.00852976 0.999964i \(-0.502715\pi\)
−0.00852976 + 0.999964i \(0.502715\pi\)
\(860\) −2.19316e8 −0.0117578
\(861\) −8.55466e9 −0.456764
\(862\) −1.04715e9 −0.0556842
\(863\) 2.64396e10 1.40029 0.700144 0.714002i \(-0.253119\pi\)
0.700144 + 0.714002i \(0.253119\pi\)
\(864\) 3.22486e9 0.170103
\(865\) −2.22970e10 −1.17136
\(866\) −2.41314e9 −0.126261
\(867\) 1.03409e10 0.538879
\(868\) −4.88970e9 −0.253783
\(869\) 2.24738e10 1.16174
\(870\) 1.20104e10 0.618358
\(871\) −1.05192e9 −0.0539410
\(872\) −1.12899e10 −0.576610
\(873\) 1.50447e10 0.765301
\(874\) 2.60880e7 0.00132175
\(875\) −1.38386e10 −0.698335
\(876\) −2.88909e9 −0.145210
\(877\) −1.09380e9 −0.0547568 −0.0273784 0.999625i \(-0.508716\pi\)
−0.0273784 + 0.999625i \(0.508716\pi\)
\(878\) 6.43193e9 0.320708
\(879\) 4.78977e9 0.237878
\(880\) 3.88764e9 0.192308
\(881\) −5.62114e8 −0.0276955 −0.0138477 0.999904i \(-0.504408\pi\)
−0.0138477 + 0.999904i \(0.504408\pi\)
\(882\) 5.58675e9 0.274170
\(883\) 6.92318e8 0.0338410 0.0169205 0.999857i \(-0.494614\pi\)
0.0169205 + 0.999857i \(0.494614\pi\)
\(884\) −7.35239e8 −0.0357969
\(885\) −5.37098e8 −0.0260467
\(886\) 1.42410e9 0.0687896
\(887\) 9.12313e9 0.438946 0.219473 0.975619i \(-0.429566\pi\)
0.219473 + 0.975619i \(0.429566\pi\)
\(888\) 5.22228e9 0.250273
\(889\) 1.48351e9 0.0708166
\(890\) 1.86936e9 0.0888848
\(891\) −2.05880e9 −0.0975086
\(892\) −8.35915e9 −0.394353
\(893\) 3.43630e9 0.161477
\(894\) 6.28544e9 0.294208
\(895\) −3.38534e10 −1.57842
\(896\) −1.23103e9 −0.0571729
\(897\) −2.96595e7 −0.00137211
\(898\) −1.29298e10 −0.595832
\(899\) 2.95394e10 1.35595
\(900\) 1.68895e9 0.0772267
\(901\) −8.62754e9 −0.392962
\(902\) 1.67282e10 0.758975
\(903\) 2.21680e8 0.0100189
\(904\) −9.26105e9 −0.416937
\(905\) −2.58518e10 −1.15937
\(906\) 8.93913e9 0.399343
\(907\) −3.52627e10 −1.56924 −0.784622 0.619975i \(-0.787143\pi\)
−0.784622 + 0.619975i \(0.787143\pi\)
\(908\) −9.23535e9 −0.409405
\(909\) −6.90367e9 −0.304864
\(910\) −2.52769e9 −0.111193
\(911\) −2.42397e10 −1.06222 −0.531108 0.847304i \(-0.678224\pi\)
−0.531108 + 0.847304i \(0.678224\pi\)
\(912\) 7.21281e8 0.0314864
\(913\) −2.86630e10 −1.24645
\(914\) 9.90009e9 0.428872
\(915\) −7.45479e9 −0.321708
\(916\) −6.60666e9 −0.284019
\(917\) −2.46194e10 −1.05435
\(918\) 4.11690e9 0.175639
\(919\) −2.87487e10 −1.22184 −0.610920 0.791692i \(-0.709200\pi\)
−0.610920 + 0.791692i \(0.709200\pi\)
\(920\) 6.27200e7 0.00265551
\(921\) −7.94131e9 −0.334952
\(922\) 1.00543e9 0.0422466
\(923\) −2.06520e9 −0.0864480
\(924\) −3.92954e9 −0.163866
\(925\) 6.83762e9 0.284059
\(926\) −8.09406e9 −0.334987
\(927\) −2.34700e10 −0.967683
\(928\) 7.43683e9 0.305471
\(929\) 1.67658e10 0.686072 0.343036 0.939322i \(-0.388545\pi\)
0.343036 + 0.939322i \(0.388545\pi\)
\(930\) 6.88786e9 0.280798
\(931\) 3.12387e9 0.126873
\(932\) −2.04528e9 −0.0827556
\(933\) 7.72214e9 0.311281
\(934\) −1.29212e10 −0.518907
\(935\) 4.96300e9 0.198565
\(936\) 1.64005e9 0.0653720
\(937\) 4.14519e9 0.164610 0.0823049 0.996607i \(-0.473772\pi\)
0.0823049 + 0.996607i \(0.473772\pi\)
\(938\) −2.24844e9 −0.0889550
\(939\) 7.45496e9 0.293843
\(940\) 8.26146e9 0.324421
\(941\) 2.40106e10 0.939376 0.469688 0.882833i \(-0.344366\pi\)
0.469688 + 0.882833i \(0.344366\pi\)
\(942\) −1.85917e9 −0.0724672
\(943\) 2.69880e8 0.0104804
\(944\) −3.32571e8 −0.0128671
\(945\) 1.41536e10 0.545575
\(946\) −4.33485e8 −0.0166477
\(947\) −5.10040e10 −1.95155 −0.975774 0.218783i \(-0.929791\pi\)
−0.975774 + 0.218783i \(0.929791\pi\)
\(948\) 1.00245e10 0.382148
\(949\) −3.67322e9 −0.139513
\(950\) 9.44386e8 0.0357369
\(951\) −1.47417e10 −0.555796
\(952\) −1.57154e9 −0.0590333
\(953\) 1.53610e10 0.574902 0.287451 0.957795i \(-0.407192\pi\)
0.287451 + 0.957795i \(0.407192\pi\)
\(954\) 1.92449e10 0.717623
\(955\) 2.29439e10 0.852423
\(956\) −9.61172e9 −0.355794
\(957\) 2.37389e10 0.875527
\(958\) 3.98842e9 0.146562
\(959\) 1.44371e10 0.528584
\(960\) 1.73408e9 0.0632587
\(961\) −1.05720e10 −0.384261
\(962\) 6.63967e9 0.240455
\(963\) −2.59266e10 −0.935522
\(964\) 8.71589e9 0.313359
\(965\) −3.21479e10 −1.15161
\(966\) −6.33960e7 −0.00226278
\(967\) 3.46233e10 1.23133 0.615666 0.788007i \(-0.288887\pi\)
0.615666 + 0.788007i \(0.288887\pi\)
\(968\) −2.29340e9 −0.0812673
\(969\) 9.20796e8 0.0325110
\(970\) 2.02246e10 0.711508
\(971\) −2.01887e10 −0.707688 −0.353844 0.935304i \(-0.615126\pi\)
−0.353844 + 0.935304i \(0.615126\pi\)
\(972\) −1.46933e10 −0.513200
\(973\) 3.40078e10 1.18354
\(974\) −3.84918e10 −1.33479
\(975\) −1.07367e9 −0.0370985
\(976\) −4.61600e9 −0.158925
\(977\) 3.10610e10 1.06558 0.532788 0.846249i \(-0.321144\pi\)
0.532788 + 0.846249i \(0.321144\pi\)
\(978\) 1.79749e10 0.614442
\(979\) 3.69484e9 0.125851
\(980\) 7.51031e9 0.254898
\(981\) 3.21498e10 1.08727
\(982\) 1.20580e10 0.406334
\(983\) −3.95227e10 −1.32712 −0.663559 0.748124i \(-0.730955\pi\)
−0.663559 + 0.748124i \(0.730955\pi\)
\(984\) 7.46164e9 0.249662
\(985\) 3.31547e10 1.10540
\(986\) 9.49394e9 0.315411
\(987\) −8.35051e9 −0.276441
\(988\) 9.17045e8 0.0302511
\(989\) −6.99350e6 −0.000229883 0
\(990\) −1.10707e10 −0.362619
\(991\) 3.60450e10 1.17649 0.588244 0.808684i \(-0.299820\pi\)
0.588244 + 0.808684i \(0.299820\pi\)
\(992\) 4.26495e9 0.138715
\(993\) 9.74488e9 0.315830
\(994\) −4.41427e9 −0.142563
\(995\) 3.05038e10 0.981688
\(996\) −1.27852e10 −0.410014
\(997\) 1.64165e10 0.524623 0.262311 0.964983i \(-0.415515\pi\)
0.262311 + 0.964983i \(0.415515\pi\)
\(998\) −2.78369e10 −0.886470
\(999\) −3.71781e10 −1.17980
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 26.8.a.c.1.1 1
3.2 odd 2 234.8.a.b.1.1 1
4.3 odd 2 208.8.a.a.1.1 1
13.5 odd 4 338.8.b.c.337.1 2
13.8 odd 4 338.8.b.c.337.2 2
13.12 even 2 338.8.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.8.a.c.1.1 1 1.1 even 1 trivial
208.8.a.a.1.1 1 4.3 odd 2
234.8.a.b.1.1 1 3.2 odd 2
338.8.a.b.1.1 1 13.12 even 2
338.8.b.c.337.1 2 13.5 odd 4
338.8.b.c.337.2 2 13.8 odd 4