Properties

Label 26.8.a.c.1.1
Level 2626
Weight 88
Character 26.1
Self dual yes
Analytic conductor 8.1228.122
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [26,8,Mod(1,26)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(26, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("26.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 26=213 26 = 2 \cdot 13
Weight: k k == 8 8
Character orbit: [χ][\chi] == 26.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 8.122010662598.12201066259
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Character χ\chi == 26.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+8.00000q227.0000q3+64.0000q4245.000q5216.000q6587.000q7+512.000q81458.00q91960.00q103874.00q111728.00q122197.00q134696.00q14+6615.00q15+4096.00q16+5229.00q1711664.0q186522.00q1915680.0q20+15849.0q2130992.0q22500.000q2313824.0q2418100.0q2517576.0q26+98415.0q2737568.0q28+226954.q29+52920.0q30+130156.q31+32768.0q32+104598.q33+41832.0q34+143815.q3593312.0q36377769.q3752176.0q38+59319.0q39125440.q40539760.q41+126792.q42+13987.0q43247936.q44+357210.q454000.00q46526879.q47110592.q48478974.q49144800.q50141183.q51140608.q521.64994e6q53+787320.q54+949130.q55300544.q56+176094.q57+1.81563e6q5881194.0q59+423360.q601.12695e6q61+1.04125e6q62+855846.q63+262144.q64+538265.q65+836784.q66+478798.q67+334656.q68+13500.0q69+1.15052e6q70+940007.q71746496.q72+1.67193e6q733.02215e6q74+488700.q75417408.q76+2.27404e6q77+474552.q785.80119e6q791.00352e6q80+531441.q814.31808e6q82+7.39882e6q83+1.01434e6q841.28110e6q85+111896.q866.12776e6q871.98349e6q88953754.q89+2.85768e6q90+1.28964e6q9132000.0q923.51421e6q934.21503e6q94+1.59789e6q95884736.q961.03187e7q973.83179e6q98+5.64829e6q99+O(q100)q+8.00000 q^{2} -27.0000 q^{3} +64.0000 q^{4} -245.000 q^{5} -216.000 q^{6} -587.000 q^{7} +512.000 q^{8} -1458.00 q^{9} -1960.00 q^{10} -3874.00 q^{11} -1728.00 q^{12} -2197.00 q^{13} -4696.00 q^{14} +6615.00 q^{15} +4096.00 q^{16} +5229.00 q^{17} -11664.0 q^{18} -6522.00 q^{19} -15680.0 q^{20} +15849.0 q^{21} -30992.0 q^{22} -500.000 q^{23} -13824.0 q^{24} -18100.0 q^{25} -17576.0 q^{26} +98415.0 q^{27} -37568.0 q^{28} +226954. q^{29} +52920.0 q^{30} +130156. q^{31} +32768.0 q^{32} +104598. q^{33} +41832.0 q^{34} +143815. q^{35} -93312.0 q^{36} -377769. q^{37} -52176.0 q^{38} +59319.0 q^{39} -125440. q^{40} -539760. q^{41} +126792. q^{42} +13987.0 q^{43} -247936. q^{44} +357210. q^{45} -4000.00 q^{46} -526879. q^{47} -110592. q^{48} -478974. q^{49} -144800. q^{50} -141183. q^{51} -140608. q^{52} -1.64994e6 q^{53} +787320. q^{54} +949130. q^{55} -300544. q^{56} +176094. q^{57} +1.81563e6 q^{58} -81194.0 q^{59} +423360. q^{60} -1.12695e6 q^{61} +1.04125e6 q^{62} +855846. q^{63} +262144. q^{64} +538265. q^{65} +836784. q^{66} +478798. q^{67} +334656. q^{68} +13500.0 q^{69} +1.15052e6 q^{70} +940007. q^{71} -746496. q^{72} +1.67193e6 q^{73} -3.02215e6 q^{74} +488700. q^{75} -417408. q^{76} +2.27404e6 q^{77} +474552. q^{78} -5.80119e6 q^{79} -1.00352e6 q^{80} +531441. q^{81} -4.31808e6 q^{82} +7.39882e6 q^{83} +1.01434e6 q^{84} -1.28110e6 q^{85} +111896. q^{86} -6.12776e6 q^{87} -1.98349e6 q^{88} -953754. q^{89} +2.85768e6 q^{90} +1.28964e6 q^{91} -32000.0 q^{92} -3.51421e6 q^{93} -4.21503e6 q^{94} +1.59789e6 q^{95} -884736. q^{96} -1.03187e7 q^{97} -3.83179e6 q^{98} +5.64829e6 q^{99} +O(q^{100})

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 8.00000 0.707107
33 −27.0000 −0.577350 −0.288675 0.957427i 0.593215π-0.593215\pi
−0.288675 + 0.957427i 0.593215π0.593215\pi
44 64.0000 0.500000
55 −245.000 −0.876539 −0.438269 0.898844i 0.644408π-0.644408\pi
−0.438269 + 0.898844i 0.644408π0.644408\pi
66 −216.000 −0.408248
77 −587.000 −0.646837 −0.323419 0.946256i 0.604832π-0.604832\pi
−0.323419 + 0.946256i 0.604832π0.604832\pi
88 512.000 0.353553
99 −1458.00 −0.666667
1010 −1960.00 −0.619806
1111 −3874.00 −0.877577 −0.438788 0.898590i 0.644592π-0.644592\pi
−0.438788 + 0.898590i 0.644592π0.644592\pi
1212 −1728.00 −0.288675
1313 −2197.00 −0.277350
1414 −4696.00 −0.457383
1515 6615.00 0.506070
1616 4096.00 0.250000
1717 5229.00 0.258135 0.129068 0.991636i 0.458802π-0.458802\pi
0.129068 + 0.991636i 0.458802π0.458802\pi
1818 −11664.0 −0.471405
1919 −6522.00 −0.218144 −0.109072 0.994034i 0.534788π-0.534788\pi
−0.109072 + 0.994034i 0.534788π0.534788\pi
2020 −15680.0 −0.438269
2121 15849.0 0.373452
2222 −30992.0 −0.620541
2323 −500.000 −0.00856885 −0.00428443 0.999991i 0.501364π-0.501364\pi
−0.00428443 + 0.999991i 0.501364π0.501364\pi
2424 −13824.0 −0.204124
2525 −18100.0 −0.231680
2626 −17576.0 −0.196116
2727 98415.0 0.962250
2828 −37568.0 −0.323419
2929 226954. 1.72800 0.864002 0.503488i 0.167950π-0.167950\pi
0.864002 + 0.503488i 0.167950π0.167950\pi
3030 52920.0 0.357845
3131 130156. 0.784690 0.392345 0.919818i 0.371664π-0.371664\pi
0.392345 + 0.919818i 0.371664π0.371664\pi
3232 32768.0 0.176777
3333 104598. 0.506669
3434 41832.0 0.182529
3535 143815. 0.566978
3636 −93312.0 −0.333333
3737 −377769. −1.22608 −0.613042 0.790050i 0.710054π-0.710054\pi
−0.613042 + 0.790050i 0.710054π0.710054\pi
3838 −52176.0 −0.154251
3939 59319.0 0.160128
4040 −125440. −0.309903
4141 −539760. −1.22309 −0.611543 0.791211i 0.709451π-0.709451\pi
−0.611543 + 0.791211i 0.709451π0.709451\pi
4242 126792. 0.264070
4343 13987.0 0.0268278 0.0134139 0.999910i 0.495730π-0.495730\pi
0.0134139 + 0.999910i 0.495730π0.495730\pi
4444 −247936. −0.438788
4545 357210. 0.584359
4646 −4000.00 −0.00605909
4747 −526879. −0.740233 −0.370116 0.928985i 0.620682π-0.620682\pi
−0.370116 + 0.928985i 0.620682π0.620682\pi
4848 −110592. −0.144338
4949 −478974. −0.581602
5050 −144800. −0.163822
5151 −141183. −0.149034
5252 −140608. −0.138675
5353 −1.64994e6 −1.52231 −0.761154 0.648571i 0.775367π-0.775367\pi
−0.761154 + 0.648571i 0.775367π0.775367\pi
5454 787320. 0.680414
5555 949130. 0.769230
5656 −300544. −0.228691
5757 176094. 0.125945
5858 1.81563e6 1.22188
5959 −81194.0 −0.0514685 −0.0257343 0.999669i 0.508192π-0.508192\pi
−0.0257343 + 0.999669i 0.508192π0.508192\pi
6060 423360. 0.253035
6161 −1.12695e6 −0.635698 −0.317849 0.948141i 0.602961π-0.602961\pi
−0.317849 + 0.948141i 0.602961π0.602961\pi
6262 1.04125e6 0.554860
6363 855846. 0.431225
6464 262144. 0.125000
6565 538265. 0.243108
6666 836784. 0.358269
6767 478798. 0.194487 0.0972435 0.995261i 0.468997π-0.468997\pi
0.0972435 + 0.995261i 0.468997π0.468997\pi
6868 334656. 0.129068
6969 13500.0 0.00494723
7070 1.15052e6 0.400914
7171 940007. 0.311693 0.155846 0.987781i 0.450190π-0.450190\pi
0.155846 + 0.987781i 0.450190π0.450190\pi
7272 −746496. −0.235702
7373 1.67193e6 0.503022 0.251511 0.967854i 0.419073π-0.419073\pi
0.251511 + 0.967854i 0.419073π0.419073\pi
7474 −3.02215e6 −0.866972
7575 488700. 0.133761
7676 −417408. −0.109072
7777 2.27404e6 0.567649
7878 474552. 0.113228
7979 −5.80119e6 −1.32380 −0.661900 0.749592i 0.730249π-0.730249\pi
−0.661900 + 0.749592i 0.730249π0.730249\pi
8080 −1.00352e6 −0.219135
8181 531441. 0.111111
8282 −4.31808e6 −0.864853
8383 7.39882e6 1.42033 0.710164 0.704036i 0.248621π-0.248621\pi
0.710164 + 0.704036i 0.248621π0.248621\pi
8484 1.01434e6 0.186726
8585 −1.28110e6 −0.226266
8686 111896. 0.0189701
8787 −6.12776e6 −0.997664
8888 −1.98349e6 −0.310270
8989 −953754. −0.143407 −0.0717037 0.997426i 0.522844π-0.522844\pi
−0.0717037 + 0.997426i 0.522844π0.522844\pi
9090 2.85768e6 0.413204
9191 1.28964e6 0.179400
9292 −32000.0 −0.00428443
9393 −3.51421e6 −0.453041
9494 −4.21503e6 −0.523424
9595 1.59789e6 0.191212
9696 −884736. −0.102062
9797 −1.03187e7 −1.14795 −0.573976 0.818872i 0.694600π-0.694600\pi
−0.573976 + 0.818872i 0.694600π0.694600\pi
9898 −3.83179e6 −0.411254
9999 5.64829e6 0.585051
100100 −1.15840e6 −0.115840
101101 4.73503e6 0.457296 0.228648 0.973509i 0.426569π-0.426569\pi
0.228648 + 0.973509i 0.426569π0.426569\pi
102102 −1.12946e6 −0.105383
103103 1.60974e7 1.45153 0.725763 0.687945i 0.241487π-0.241487\pi
0.725763 + 0.687945i 0.241487π0.241487\pi
104104 −1.12486e6 −0.0980581
105105 −3.88301e6 −0.327345
106106 −1.31995e7 −1.07643
107107 1.77823e7 1.40328 0.701642 0.712530i 0.252451π-0.252451\pi
0.701642 + 0.712530i 0.252451π0.252451\pi
108108 6.29856e6 0.481125
109109 −2.20506e7 −1.63090 −0.815450 0.578827i 0.803511π-0.803511\pi
−0.815450 + 0.578827i 0.803511π0.803511\pi
110110 7.59304e6 0.543928
111111 1.01998e7 0.707880
112112 −2.40435e6 −0.161709
113113 −1.80880e7 −1.17928 −0.589639 0.807667i 0.700730π-0.700730\pi
−0.589639 + 0.807667i 0.700730π0.700730\pi
114114 1.40875e6 0.0890569
115115 122500. 0.00751093
116116 1.45251e7 0.864002
117117 3.20323e6 0.184900
118118 −649552. −0.0363938
119119 −3.06942e6 −0.166972
120120 3.38688e6 0.178923
121121 −4.47930e6 −0.229859
122122 −9.01562e6 −0.449507
123123 1.45735e7 0.706149
124124 8.32998e6 0.392345
125125 2.35751e7 1.07962
126126 6.84677e6 0.304922
127127 −2.52728e6 −0.109481 −0.0547407 0.998501i 0.517433π-0.517433\pi
−0.0547407 + 0.998501i 0.517433π0.517433\pi
128128 2.09715e6 0.0883883
129129 −377649. −0.0154890
130130 4.30612e6 0.171903
131131 4.19410e7 1.63001 0.815004 0.579456i 0.196735π-0.196735\pi
0.815004 + 0.579456i 0.196735π0.196735\pi
132132 6.69427e6 0.253335
133133 3.82841e6 0.141104
134134 3.83038e6 0.137523
135135 −2.41117e7 −0.843450
136136 2.67725e6 0.0912646
137137 −2.45947e7 −0.817182 −0.408591 0.912718i 0.633980π-0.633980\pi
−0.408591 + 0.912718i 0.633980π0.633980\pi
138138 108000. 0.00349822
139139 −5.79349e7 −1.82974 −0.914869 0.403752i 0.867706π-0.867706\pi
−0.914869 + 0.403752i 0.867706π0.867706\pi
140140 9.20416e6 0.283489
141141 1.42257e7 0.427374
142142 7.52006e6 0.220400
143143 8.51118e6 0.243396
144144 −5.97197e6 −0.166667
145145 −5.56037e7 −1.51466
146146 1.33754e7 0.355690
147147 1.29323e7 0.335788
148148 −2.41772e7 −0.613042
149149 −2.90993e7 −0.720660 −0.360330 0.932825i 0.617336π-0.617336\pi
−0.360330 + 0.932825i 0.617336π0.617336\pi
150150 3.90960e6 0.0945830
151151 −4.13849e7 −0.978187 −0.489094 0.872231i 0.662672π-0.662672\pi
−0.489094 + 0.872231i 0.662672π0.662672\pi
152152 −3.33926e6 −0.0771255
153153 −7.62388e6 −0.172090
154154 1.81923e7 0.401389
155155 −3.18882e7 −0.687811
156156 3.79642e6 0.0800641
157157 8.60728e6 0.177508 0.0887538 0.996054i 0.471712π-0.471712\pi
0.0887538 + 0.996054i 0.471712π0.471712\pi
158158 −4.64095e7 −0.936067
159159 4.45484e7 0.878905
160160 −8.02816e6 −0.154952
161161 293500. 0.00554265
162162 4.25153e6 0.0785674
163163 −8.32173e7 −1.50507 −0.752535 0.658552i 0.771169π-0.771169\pi
−0.752535 + 0.658552i 0.771169π0.771169\pi
164164 −3.45446e7 −0.611543
165165 −2.56265e7 −0.444115
166166 5.91905e7 1.00432
167167 1.15768e8 1.92346 0.961729 0.274004i 0.0883481π-0.0883481\pi
0.961729 + 0.274004i 0.0883481π0.0883481\pi
168168 8.11469e6 0.132035
169169 4.82681e6 0.0769231
170170 −1.02488e7 −0.159994
171171 9.50908e6 0.145429
172172 895168. 0.0134139
173173 9.10083e7 1.33635 0.668174 0.744005i 0.267076π-0.267076\pi
0.668174 + 0.744005i 0.267076π0.267076\pi
174174 −4.90221e7 −0.705455
175175 1.06247e7 0.149859
176176 −1.58679e7 −0.219394
177177 2.19224e6 0.0297154
178178 −7.63003e6 −0.101404
179179 1.38177e8 1.80074 0.900370 0.435124i 0.143296π-0.143296\pi
0.900370 + 0.435124i 0.143296π0.143296\pi
180180 2.28614e7 0.292180
181181 1.05517e8 1.32266 0.661332 0.750094i 0.269992π-0.269992\pi
0.661332 + 0.750094i 0.269992π0.269992\pi
182182 1.03171e7 0.126855
183183 3.04277e7 0.367021
184184 −256000. −0.00302955
185185 9.25534e7 1.07471
186186 −2.81137e7 −0.320348
187187 −2.02571e7 −0.226534
188188 −3.37203e7 −0.370116
189189 −5.77696e7 −0.622419
190190 1.27831e7 0.135207
191191 −9.36485e7 −0.972487 −0.486244 0.873823i 0.661633π-0.661633\pi
−0.486244 + 0.873823i 0.661633π0.661633\pi
192192 −7.07789e6 −0.0721688
193193 1.31216e8 1.31382 0.656910 0.753969i 0.271863π-0.271863\pi
0.656910 + 0.753969i 0.271863π0.271863\pi
194194 −8.25495e7 −0.811724
195195 −1.45332e7 −0.140359
196196 −3.06543e7 −0.290801
197197 −1.35325e8 −1.26109 −0.630546 0.776152i 0.717169π-0.717169\pi
−0.630546 + 0.776152i 0.717169π0.717169\pi
198198 4.51863e7 0.413694
199199 −1.24505e8 −1.11996 −0.559980 0.828506i 0.689191π-0.689191\pi
−0.559980 + 0.828506i 0.689191π0.689191\pi
200200 −9.26720e6 −0.0819112
201201 −1.29275e7 −0.112287
202202 3.78802e7 0.323357
203203 −1.33222e8 −1.11774
204204 −9.03571e6 −0.0745172
205205 1.32241e8 1.07208
206206 1.28779e8 1.02638
207207 729000. 0.00571257
208208 −8.99891e6 −0.0693375
209209 2.52662e7 0.191438
210210 −3.10640e7 −0.231468
211211 8.06435e7 0.590991 0.295496 0.955344i 0.404515π-0.404515\pi
0.295496 + 0.955344i 0.404515π0.404515\pi
212212 −1.05596e8 −0.761154
213213 −2.53802e7 −0.179956
214214 1.42259e8 0.992271
215215 −3.42682e6 −0.0235156
216216 5.03885e7 0.340207
217217 −7.64016e7 −0.507567
218218 −1.76405e8 −1.15322
219219 −4.51420e7 −0.290420
220220 6.07443e7 0.384615
221221 −1.14881e7 −0.0715939
222222 8.15981e7 0.500547
223223 −1.30612e8 −0.788706 −0.394353 0.918959i 0.629031π-0.629031\pi
−0.394353 + 0.918959i 0.629031π0.629031\pi
224224 −1.92348e7 −0.114346
225225 2.63898e7 0.154453
226226 −1.44704e8 −0.833875
227227 −1.44302e8 −0.818809 −0.409405 0.912353i 0.634264π-0.634264\pi
−0.409405 + 0.912353i 0.634264π0.634264\pi
228228 1.12700e7 0.0629727
229229 −1.03229e8 −0.568039 −0.284019 0.958819i 0.591668π-0.591668\pi
−0.284019 + 0.958819i 0.591668π0.591668\pi
230230 980000. 0.00531103
231231 −6.13990e7 −0.327733
232232 1.16200e8 0.610942
233233 −3.19575e7 −0.165511 −0.0827556 0.996570i 0.526372π-0.526372\pi
−0.0827556 + 0.996570i 0.526372π0.526372\pi
234234 2.56258e7 0.130744
235235 1.29085e8 0.648843
236236 −5.19642e6 −0.0257343
237237 1.56632e8 0.764296
238238 −2.45554e7 −0.118067
239239 −1.50183e8 −0.711588 −0.355794 0.934564i 0.615790π-0.615790\pi
−0.355794 + 0.934564i 0.615790π0.615790\pi
240240 2.70950e7 0.126517
241241 1.36186e8 0.626718 0.313359 0.949635i 0.398546π-0.398546\pi
0.313359 + 0.949635i 0.398546π0.398546\pi
242242 −3.58344e7 −0.162535
243243 −2.29583e8 −1.02640
244244 −7.21249e7 −0.317849
245245 1.17349e8 0.509796
246246 1.16588e8 0.499323
247247 1.43288e7 0.0605022
248248 6.66399e7 0.277430
249249 −1.99768e8 −0.820027
250250 1.88601e8 0.763403
251251 1.89898e8 0.757989 0.378995 0.925399i 0.376270π-0.376270\pi
0.378995 + 0.925399i 0.376270π0.376270\pi
252252 5.47741e7 0.215612
253253 1.93700e6 0.00751983
254254 −2.02182e7 −0.0774150
255255 3.45898e7 0.130634
256256 1.67772e7 0.0625000
257257 1.72850e8 0.635190 0.317595 0.948227i 0.397125π-0.397125\pi
0.317595 + 0.948227i 0.397125π0.397125\pi
258258 −3.02119e6 −0.0109524
259259 2.21750e8 0.793077
260260 3.44490e7 0.121554
261261 −3.30899e8 −1.15200
262262 3.35528e8 1.15259
263263 −1.54338e8 −0.523151 −0.261576 0.965183i 0.584242π-0.584242\pi
−0.261576 + 0.965183i 0.584242π0.584242\pi
264264 5.35542e7 0.179135
265265 4.04235e8 1.33436
266266 3.06273e7 0.0997753
267267 2.57514e7 0.0827963
268268 3.06431e7 0.0972435
269269 −1.34962e7 −0.0422745 −0.0211372 0.999777i 0.506729π-0.506729\pi
−0.0211372 + 0.999777i 0.506729π0.506729\pi
270270 −1.92893e8 −0.596409
271271 −6.48939e8 −1.98067 −0.990333 0.138707i 0.955705π-0.955705\pi
−0.990333 + 0.138707i 0.955705π0.955705\pi
272272 2.14180e7 0.0645338
273273 −3.48203e7 −0.103577
274274 −1.96757e8 −0.577835
275275 7.01194e7 0.203317
276276 864000. 0.00247361
277277 5.55195e8 1.56952 0.784760 0.619800i 0.212786π-0.212786\pi
0.784760 + 0.619800i 0.212786π0.212786\pi
278278 −4.63479e8 −1.29382
279279 −1.89767e8 −0.523127
280280 7.36333e7 0.200457
281281 3.34956e8 0.900565 0.450283 0.892886i 0.351323π-0.351323\pi
0.450283 + 0.892886i 0.351323π0.351323\pi
282282 1.13806e8 0.302199
283283 5.76535e8 1.51207 0.756037 0.654529i 0.227133π-0.227133\pi
0.756037 + 0.654529i 0.227133π0.227133\pi
284284 6.01604e7 0.155846
285285 −4.31430e7 −0.110396
286286 6.80894e7 0.172107
287287 3.16839e8 0.791138
288288 −4.77757e7 −0.117851
289289 −3.82996e8 −0.933366
290290 −4.44830e8 −1.07103
291291 2.78605e8 0.662770
292292 1.07003e8 0.251511
293293 −1.77399e8 −0.412016 −0.206008 0.978550i 0.566047π-0.566047\pi
−0.206008 + 0.978550i 0.566047π0.566047\pi
294294 1.03458e8 0.237438
295295 1.98925e7 0.0451142
296296 −1.93418e8 −0.433486
297297 −3.81260e8 −0.844449
298298 −2.32794e8 −0.509583
299299 1.09850e6 0.00237657
300300 3.12768e7 0.0668803
301301 −8.21037e6 −0.0173532
302302 −3.31079e8 −0.691683
303303 −1.27846e8 −0.264020
304304 −2.67141e7 −0.0545360
305305 2.76103e8 0.557214
306306 −6.09911e7 −0.121686
307307 2.94122e8 0.580155 0.290077 0.957003i 0.406319π-0.406319\pi
0.290077 + 0.957003i 0.406319π0.406319\pi
308308 1.45538e8 0.283825
309309 −4.34629e8 −0.838038
310310 −2.55106e8 −0.486356
311311 −2.86005e8 −0.539154 −0.269577 0.962979i 0.586884π-0.586884\pi
−0.269577 + 0.962979i 0.586884π0.586884\pi
312312 3.03713e7 0.0566139
313313 −2.76110e8 −0.508951 −0.254476 0.967079i 0.581903π-0.581903\pi
−0.254476 + 0.967079i 0.581903π0.581903\pi
314314 6.88582e7 0.125517
315315 −2.09682e8 −0.377985
316316 −3.71276e8 −0.661900
317317 5.45989e8 0.962667 0.481334 0.876537i 0.340153π-0.340153\pi
0.481334 + 0.876537i 0.340153π0.340153\pi
318318 3.56387e8 0.621480
319319 −8.79220e8 −1.51646
320320 −6.42253e7 −0.109567
321321 −4.80123e8 −0.810186
322322 2.34800e6 0.00391925
323323 −3.41035e7 −0.0563107
324324 3.40122e7 0.0555556
325325 3.97657e7 0.0642565
326326 −6.65738e8 −1.06425
327327 5.95366e8 0.941601
328328 −2.76357e8 −0.432426
329329 3.09278e8 0.478810
330330 −2.05012e8 −0.314037
331331 −3.60921e8 −0.547034 −0.273517 0.961867i 0.588187π-0.588187\pi
−0.273517 + 0.961867i 0.588187π0.588187\pi
332332 4.73524e8 0.710164
333333 5.50787e8 0.817389
334334 9.26148e8 1.36009
335335 −1.17306e8 −0.170475
336336 6.49175e7 0.0933629
337337 4.27270e8 0.608132 0.304066 0.952651i 0.401656π-0.401656\pi
0.304066 + 0.952651i 0.401656π0.401656\pi
338338 3.86145e7 0.0543928
339339 4.88376e8 0.680856
340340 −8.19907e7 −0.113133
341341 −5.04224e8 −0.688626
342342 7.60726e7 0.102834
343343 7.64577e8 1.02304
344344 7.16134e6 0.00948506
345345 −3.30750e6 −0.00433644
346346 7.28067e8 0.944941
347347 1.31637e9 1.69131 0.845656 0.533728i 0.179209π-0.179209\pi
0.845656 + 0.533728i 0.179209π0.179209\pi
348348 −3.92177e8 −0.498832
349349 −1.26585e9 −1.59402 −0.797012 0.603963i 0.793587π-0.793587\pi
−0.797012 + 0.603963i 0.793587π0.793587\pi
350350 8.49976e7 0.105966
351351 −2.16218e8 −0.266880
352352 −1.26943e8 −0.155135
353353 1.10618e9 1.33848 0.669241 0.743046i 0.266619π-0.266619\pi
0.669241 + 0.743046i 0.266619π0.266619\pi
354354 1.75379e7 0.0210119
355355 −2.30302e8 −0.273211
356356 −6.10403e7 −0.0717037
357357 8.28744e7 0.0964010
358358 1.10542e9 1.27332
359359 −1.02959e9 −1.17445 −0.587223 0.809425i 0.699779π-0.699779\pi
−0.587223 + 0.809425i 0.699779π0.699779\pi
360360 1.82892e8 0.206602
361361 −8.51335e8 −0.952413
362362 8.44140e8 0.935264
363363 1.20941e8 0.132709
364364 8.25369e7 0.0897002
365365 −4.09622e8 −0.440918
366366 2.43422e8 0.259523
367367 7.84516e8 0.828458 0.414229 0.910173i 0.364051π-0.364051\pi
0.414229 + 0.910173i 0.364051π0.364051\pi
368368 −2.04800e6 −0.00214221
369369 7.86970e8 0.815391
370370 7.40427e8 0.759935
371371 9.68515e8 0.984686
372372 −2.24910e8 −0.226521
373373 −5.52719e8 −0.551472 −0.275736 0.961233i 0.588922π-0.588922\pi
−0.275736 + 0.961233i 0.588922π0.588922\pi
374374 −1.62057e8 −0.160183
375375 −6.36528e8 −0.623316
376376 −2.69762e8 −0.261712
377377 −4.98618e8 −0.479262
378378 −4.62157e8 −0.440117
379379 6.93760e8 0.654594 0.327297 0.944921i 0.393862π-0.393862\pi
0.327297 + 0.944921i 0.393862π0.393862\pi
380380 1.02265e8 0.0956058
381381 6.82366e7 0.0632091
382382 −7.49188e8 −0.687652
383383 −1.56765e9 −1.42578 −0.712890 0.701276i 0.752614π-0.752614\pi
−0.712890 + 0.701276i 0.752614π0.752614\pi
384384 −5.66231e7 −0.0510310
385385 −5.57139e8 −0.497567
386386 1.04973e9 0.929010
387387 −2.03930e7 −0.0178852
388388 −6.60396e8 −0.573976
389389 −2.11817e9 −1.82447 −0.912235 0.409668i 0.865645π-0.865645\pi
−0.912235 + 0.409668i 0.865645π0.865645\pi
390390 −1.16265e8 −0.0992485
391391 −2.61450e6 −0.00221192
392392 −2.45235e8 −0.205627
393393 −1.13241e9 −0.941085
394394 −1.08260e9 −0.891727
395395 1.42129e9 1.16036
396396 3.61491e8 0.292526
397397 3.65973e8 0.293550 0.146775 0.989170i 0.453111π-0.453111\pi
0.146775 + 0.989170i 0.453111π0.453111\pi
398398 −9.96043e8 −0.791931
399399 −1.03367e8 −0.0814662
400400 −7.41376e7 −0.0579200
401401 −5.66697e8 −0.438880 −0.219440 0.975626i 0.570423π-0.570423\pi
−0.219440 + 0.975626i 0.570423π0.570423\pi
402402 −1.03420e8 −0.0793990
403403 −2.85953e8 −0.217634
404404 3.03042e8 0.228648
405405 −1.30203e8 −0.0973932
406406 −1.06578e9 −0.790360
407407 1.46348e9 1.07598
408408 −7.22857e7 −0.0526916
409409 −1.64659e9 −1.19002 −0.595011 0.803717i 0.702852π-0.702852\pi
−0.595011 + 0.803717i 0.702852π0.702852\pi
410410 1.05793e9 0.758077
411411 6.64056e8 0.471800
412412 1.03023e9 0.725763
413413 4.76609e7 0.0332918
414414 5.83200e6 0.00403939
415415 −1.81271e9 −1.24497
416416 −7.19913e7 −0.0490290
417417 1.56424e9 1.05640
418418 2.02130e8 0.135367
419419 −2.07538e8 −0.137831 −0.0689157 0.997622i 0.521954π-0.521954\pi
−0.0689157 + 0.997622i 0.521954π0.521954\pi
420420 −2.48512e8 −0.163672
421421 1.28086e9 0.836590 0.418295 0.908311i 0.362628π-0.362628\pi
0.418295 + 0.908311i 0.362628π0.362628\pi
422422 6.45148e8 0.417894
423423 7.68190e8 0.493489
424424 −8.44769e8 −0.538217
425425 −9.46449e7 −0.0598048
426426 −2.03042e8 −0.127248
427427 6.61521e8 0.411193
428428 1.13807e9 0.701642
429429 −2.29802e8 −0.140525
430430 −2.74145e7 −0.0166280
431431 −1.30893e8 −0.0787494 −0.0393747 0.999225i 0.512537π-0.512537\pi
−0.0393747 + 0.999225i 0.512537π0.512537\pi
432432 4.03108e8 0.240563
433433 −3.01643e8 −0.178560 −0.0892802 0.996007i 0.528457π-0.528457\pi
−0.0892802 + 0.996007i 0.528457π0.528457\pi
434434 −6.11213e8 −0.358904
435435 1.50130e9 0.874491
436436 −1.41124e9 −0.815450
437437 3.26100e6 0.00186924
438438 −3.61136e8 −0.205358
439439 8.03991e8 0.453550 0.226775 0.973947i 0.427182π-0.427182\pi
0.226775 + 0.973947i 0.427182π0.427182\pi
440440 4.85955e8 0.271964
441441 6.98344e8 0.387734
442442 −9.19049e7 −0.0506245
443443 1.78013e8 0.0972832 0.0486416 0.998816i 0.484511π-0.484511\pi
0.0486416 + 0.998816i 0.484511π0.484511\pi
444444 6.52785e8 0.353940
445445 2.33670e8 0.125702
446446 −1.04489e9 −0.557699
447447 7.85680e8 0.416073
448448 −1.53879e8 −0.0808546
449449 −1.61622e9 −0.842634 −0.421317 0.906914i 0.638432π-0.638432\pi
−0.421317 + 0.906914i 0.638432π0.638432\pi
450450 2.11118e8 0.109215
451451 2.09103e9 1.07335
452452 −1.15763e9 −0.589639
453453 1.11739e9 0.564757
454454 −1.15442e9 −0.578986
455455 −3.15962e8 −0.157251
456456 9.01601e7 0.0445284
457457 1.23751e9 0.606517 0.303258 0.952908i 0.401926π-0.401926\pi
0.303258 + 0.952908i 0.401926π0.401926\pi
458458 −8.25833e8 −0.401664
459459 5.14612e8 0.248391
460460 7.84000e6 0.00375546
461461 1.25678e8 0.0597457 0.0298729 0.999554i 0.490490π-0.490490\pi
0.0298729 + 0.999554i 0.490490π0.490490\pi
462462 −4.91192e8 −0.231742
463463 −1.01176e9 −0.473743 −0.236872 0.971541i 0.576122π-0.576122\pi
−0.236872 + 0.971541i 0.576122π0.576122\pi
464464 9.29604e8 0.432001
465465 8.60982e8 0.397108
466466 −2.55660e8 −0.117034
467467 −1.61515e9 −0.733846 −0.366923 0.930251i 0.619589π-0.619589\pi
−0.366923 + 0.930251i 0.619589π0.619589\pi
468468 2.05006e8 0.0924500
469469 −2.81054e8 −0.125801
470470 1.03268e9 0.458801
471471 −2.32397e8 −0.102484
472472 −4.15713e7 −0.0181969
473473 −5.41856e7 −0.0235435
474474 1.25306e9 0.540439
475475 1.18048e8 0.0505396
476476 −1.96443e8 −0.0834858
477477 2.40561e9 1.01487
478478 −1.20147e9 −0.503169
479479 4.98553e8 0.207270 0.103635 0.994615i 0.466953π-0.466953\pi
0.103635 + 0.994615i 0.466953π0.466953\pi
480480 2.16760e8 0.0894614
481481 8.29958e8 0.340055
482482 1.08949e9 0.443157
483483 −7.92450e6 −0.00320005
484484 −2.86675e8 −0.114929
485485 2.52808e9 1.00622
486486 −1.83666e9 −0.725775
487487 −4.81147e9 −1.88767 −0.943836 0.330413i 0.892812π-0.892812\pi
−0.943836 + 0.330413i 0.892812π0.892812\pi
488488 −5.76999e8 −0.224753
489489 2.24687e9 0.868953
490490 9.38789e8 0.360480
491491 1.50724e9 0.574643 0.287322 0.957834i 0.407235π-0.407235\pi
0.287322 + 0.957834i 0.407235π0.407235\pi
492492 9.32705e8 0.353075
493493 1.18674e9 0.446059
494494 1.14631e8 0.0427816
495495 −1.38383e9 −0.512820
496496 5.33119e8 0.196173
497497 −5.51784e8 −0.201615
498498 −1.59814e9 −0.579847
499499 −3.47961e9 −1.25366 −0.626829 0.779157i 0.715647π-0.715647\pi
−0.626829 + 0.779157i 0.715647π0.715647\pi
500500 1.50881e9 0.539808
501501 −3.12575e9 −1.11051
502502 1.51919e9 0.535979
503503 −1.65804e9 −0.580907 −0.290454 0.956889i 0.593806π-0.593806\pi
−0.290454 + 0.956889i 0.593806π0.593806\pi
504504 4.38193e8 0.152461
505505 −1.16008e9 −0.400838
506506 1.54960e7 0.00531732
507507 −1.30324e8 −0.0444116
508508 −1.61746e8 −0.0547407
509509 −8.62799e8 −0.289999 −0.145000 0.989432i 0.546318π-0.546318\pi
−0.145000 + 0.989432i 0.546318π0.546318\pi
510510 2.76719e8 0.0923725
511511 −9.81421e8 −0.325373
512512 1.34218e8 0.0441942
513513 −6.41863e8 −0.209909
514514 1.38280e9 0.449147
515515 −3.94386e9 −1.27232
516516 −2.41695e7 −0.00774452
517517 2.04113e9 0.649611
518518 1.77400e9 0.560790
519519 −2.45723e9 −0.771541
520520 2.75592e8 0.0859517
521521 −1.33343e9 −0.413085 −0.206542 0.978438i 0.566221π-0.566221\pi
−0.206542 + 0.978438i 0.566221π0.566221\pi
522522 −2.64719e9 −0.814589
523523 942900. 0.000288210 0 0.000144105 1.00000i 0.499954π-0.499954\pi
0.000144105 1.00000i 0.499954π0.499954\pi
524524 2.68423e9 0.815004
525525 −2.86867e8 −0.0865213
526526 −1.23470e9 −0.369924
527527 6.80586e8 0.202556
528528 4.28433e8 0.126667
529529 −3.40458e9 −0.999927
530530 3.23388e9 0.943536
531531 1.18381e8 0.0343124
532532 2.45018e8 0.0705518
533533 1.18585e9 0.339223
534534 2.06011e8 0.0585458
535535 −4.35667e9 −1.23003
536536 2.45145e8 0.0687615
537537 −3.73079e9 −1.03966
538538 −1.07969e8 −0.0298926
539539 1.85555e9 0.510400
540540 −1.54315e9 −0.421725
541541 3.42111e9 0.928916 0.464458 0.885595i 0.346249π-0.346249\pi
0.464458 + 0.885595i 0.346249π0.346249\pi
542542 −5.19151e9 −1.40054
543543 −2.84897e9 −0.763640
544544 1.71344e8 0.0456323
545545 5.40240e9 1.42955
546546 −2.78562e8 −0.0732399
547547 4.07726e9 1.06515 0.532577 0.846381i 0.321224π-0.321224\pi
0.532577 + 0.846381i 0.321224π0.321224\pi
548548 −1.57406e9 −0.408591
549549 1.64310e9 0.423799
550550 5.60955e8 0.143767
551551 −1.48019e9 −0.376954
552552 6.91200e6 0.00174911
553553 3.40530e9 0.856283
554554 4.44156e9 1.10982
555555 −2.49894e9 −0.620484
556556 −3.70784e9 −0.914869
557557 −5.23587e9 −1.28379 −0.641897 0.766791i 0.721852π-0.721852\pi
−0.641897 + 0.766791i 0.721852π0.721852\pi
558558 −1.51814e9 −0.369907
559559 −3.07294e7 −0.00744069
560560 5.89066e8 0.141744
561561 5.46943e8 0.130789
562562 2.67965e9 0.636796
563563 7.04236e9 1.66318 0.831589 0.555392i 0.187432π-0.187432\pi
0.831589 + 0.555392i 0.187432π0.187432\pi
564564 9.10447e8 0.213687
565565 4.43156e9 1.03368
566566 4.61228e9 1.06920
567567 −3.11956e8 −0.0718708
568568 4.81284e8 0.110200
569569 8.80025e8 0.200264 0.100132 0.994974i 0.468074π-0.468074\pi
0.100132 + 0.994974i 0.468074π0.468074\pi
570570 −3.45144e8 −0.0780618
571571 8.46430e9 1.90267 0.951337 0.308151i 0.0997102π-0.0997102\pi
0.951337 + 0.308151i 0.0997102π0.0997102\pi
572572 5.44715e8 0.121698
573573 2.52851e9 0.561466
574574 2.53471e9 0.559419
575575 9.05000e6 0.00198523
576576 −3.82206e8 −0.0833333
577577 −2.74152e8 −0.0594122 −0.0297061 0.999559i 0.509457π-0.509457\pi
−0.0297061 + 0.999559i 0.509457π0.509457\pi
578578 −3.06397e9 −0.659990
579579 −3.54283e9 −0.758534
580580 −3.55864e9 −0.757331
581581 −4.34310e9 −0.918721
582582 2.22884e9 0.468649
583583 6.39187e9 1.33594
584584 8.56026e8 0.177845
585585 −7.84790e8 −0.162072
586586 −1.41919e9 −0.291339
587587 −4.71162e9 −0.961472 −0.480736 0.876865i 0.659631π-0.659631\pi
−0.480736 + 0.876865i 0.659631π0.659631\pi
588588 8.27667e8 0.167894
589589 −8.48877e8 −0.171175
590590 1.59140e8 0.0319005
591591 3.65378e9 0.728092
592592 −1.54734e9 −0.306521
593593 −4.59365e9 −0.904620 −0.452310 0.891861i 0.649400π-0.649400\pi
−0.452310 + 0.891861i 0.649400π0.649400\pi
594594 −3.05008e9 −0.597115
595595 7.52009e8 0.146357
596596 −1.86235e9 −0.360330
597597 3.36164e9 0.646609
598598 8.78800e6 0.00168049
599599 −2.06624e9 −0.392815 −0.196407 0.980522i 0.562927π-0.562927\pi
−0.196407 + 0.980522i 0.562927π0.562927\pi
600600 2.50214e8 0.0472915
601601 8.75128e9 1.64441 0.822206 0.569190i 0.192743π-0.192743\pi
0.822206 + 0.569190i 0.192743π0.192743\pi
602602 −6.56830e7 −0.0122706
603603 −6.98087e8 −0.129658
604604 −2.64863e9 −0.489094
605605 1.09743e9 0.201480
606606 −1.02277e9 −0.186690
607607 −5.99457e9 −1.08792 −0.543961 0.839111i 0.683076π-0.683076\pi
−0.543961 + 0.839111i 0.683076π0.683076\pi
608608 −2.13713e8 −0.0385628
609609 3.59699e9 0.645326
610610 2.20883e9 0.394010
611611 1.15755e9 0.205304
612612 −4.87928e8 −0.0860451
613613 −3.28777e9 −0.576487 −0.288244 0.957557i 0.593071π-0.593071\pi
−0.288244 + 0.957557i 0.593071π0.593071\pi
614614 2.35298e9 0.410231
615615 −3.57051e9 −0.618967
616616 1.16431e9 0.200694
617617 2.90178e9 0.497355 0.248677 0.968586i 0.420004π-0.420004\pi
0.248677 + 0.968586i 0.420004π0.420004\pi
618618 −3.47703e9 −0.592583
619619 6.02255e9 1.02062 0.510309 0.859991i 0.329531π-0.329531\pi
0.510309 + 0.859991i 0.329531π0.329531\pi
620620 −2.04085e9 −0.343906
621621 −4.92075e7 −0.00824538
622622 −2.28804e9 −0.381239
623623 5.59854e8 0.0927612
624624 2.42971e8 0.0400320
625625 −4.36184e9 −0.714644
626626 −2.20888e9 −0.359883
627627 −6.82188e8 −0.110527
628628 5.50866e8 0.0887538
629629 −1.97535e9 −0.316496
630630 −1.67746e9 −0.267276
631631 −2.50727e8 −0.0397282 −0.0198641 0.999803i 0.506323π-0.506323\pi
−0.0198641 + 0.999803i 0.506323π0.506323\pi
632632 −2.97021e9 −0.468034
633633 −2.17738e9 −0.341209
634634 4.36791e9 0.680709
635635 6.19184e8 0.0959647
636636 2.85110e9 0.439453
637637 1.05231e9 0.161307
638638 −7.03376e9 −1.07230
639639 −1.37053e9 −0.207795
640640 −5.13802e8 −0.0774758
641641 −1.25739e10 −1.88568 −0.942839 0.333248i 0.891856π-0.891856\pi
−0.942839 + 0.333248i 0.891856π0.891856\pi
642642 −3.84098e9 −0.572888
643643 1.95354e9 0.289790 0.144895 0.989447i 0.453716π-0.453716\pi
0.144895 + 0.989447i 0.453716π0.453716\pi
644644 1.87840e7 0.00277133
645645 9.25240e7 0.0135767
646646 −2.72828e8 −0.0398176
647647 −7.96393e9 −1.15601 −0.578006 0.816032i 0.696169π-0.696169\pi
−0.578006 + 0.816032i 0.696169π0.696169\pi
648648 2.72098e8 0.0392837
649649 3.14546e8 0.0451676
650650 3.18126e8 0.0454362
651651 2.06284e9 0.293044
652652 −5.32591e9 −0.752535
653653 7.42841e8 0.104400 0.0521999 0.998637i 0.483377π-0.483377\pi
0.0521999 + 0.998637i 0.483377π0.483377\pi
654654 4.76293e9 0.665812
655655 −1.02756e10 −1.42876
656656 −2.21086e9 −0.305772
657657 −2.43767e9 −0.335348
658658 2.47422e9 0.338570
659659 −4.38274e9 −0.596550 −0.298275 0.954480i 0.596411π-0.596411\pi
−0.298275 + 0.954480i 0.596411π0.596411\pi
660660 −1.64010e9 −0.222058
661661 1.01201e10 1.36296 0.681478 0.731839i 0.261338π-0.261338\pi
0.681478 + 0.731839i 0.261338π0.261338\pi
662662 −2.88737e9 −0.386812
663663 3.10179e8 0.0413347
664664 3.78819e9 0.502162
665665 −9.37961e8 −0.123683
666666 4.40630e9 0.577982
667667 −1.13477e8 −0.0148070
668668 7.40918e9 0.961729
669669 3.52651e9 0.455359
670670 −9.38444e8 −0.120544
671671 4.36581e9 0.557874
672672 5.19340e8 0.0660175
673673 1.41044e10 1.78362 0.891808 0.452415i 0.149437π-0.149437\pi
0.891808 + 0.452415i 0.149437π0.149437\pi
674674 3.41816e9 0.430014
675675 −1.78131e9 −0.222934
676676 3.08916e8 0.0384615
677677 −1.31550e10 −1.62942 −0.814708 0.579872i 0.803103π-0.803103\pi
−0.814708 + 0.579872i 0.803103π0.803103\pi
678678 3.90701e9 0.481438
679679 6.05707e9 0.742538
680680 −6.55926e8 −0.0799970
681681 3.89616e9 0.472740
682682 −4.03379e9 −0.486932
683683 8.18437e9 0.982907 0.491454 0.870904i 0.336466π-0.336466\pi
0.491454 + 0.870904i 0.336466π0.336466\pi
684684 6.08581e8 0.0727147
685685 6.02569e9 0.716292
686686 6.11662e9 0.723398
687687 2.78718e9 0.327957
688688 5.72908e7 0.00670695
689689 3.62492e9 0.422212
690690 −2.64600e7 −0.00306632
691691 −6.59230e9 −0.760088 −0.380044 0.924968i 0.624091π-0.624091\pi
−0.380044 + 0.924968i 0.624091π0.624091\pi
692692 5.82453e9 0.668174
693693 −3.31555e9 −0.378433
694694 1.05309e10 1.19594
695695 1.41941e10 1.60384
696696 −3.13741e9 −0.352727
697697 −2.82241e9 −0.315722
698698 −1.01268e10 −1.12715
699699 8.62853e8 0.0955580
700700 6.79981e8 0.0749296
701701 −7.42154e9 −0.813731 −0.406866 0.913488i 0.633378π-0.633378\pi
−0.406866 + 0.913488i 0.633378π0.633378\pi
702702 −1.72974e9 −0.188713
703703 2.46381e9 0.267463
704704 −1.01555e9 −0.109697
705705 −3.48530e9 −0.374610
706706 8.84940e9 0.946449
707707 −2.77946e9 −0.295796
708708 1.40303e8 0.0148577
709709 −1.28256e10 −1.35150 −0.675748 0.737133i 0.736179π-0.736179\pi
−0.675748 + 0.737133i 0.736179π0.736179\pi
710710 −1.84241e9 −0.193189
711711 8.45813e9 0.882533
712712 −4.88322e8 −0.0507021
713713 −6.50780e7 −0.00672389
714714 6.62995e8 0.0681658
715715 −2.08524e9 −0.213346
716716 8.84335e9 0.900370
717717 4.05495e9 0.410836
718718 −8.23671e9 −0.830459
719719 −1.34066e8 −0.0134514 −0.00672568 0.999977i 0.502141π-0.502141\pi
−0.00672568 + 0.999977i 0.502141π0.502141\pi
720720 1.46313e9 0.146090
721721 −9.44916e9 −0.938900
722722 −6.81068e9 −0.673458
723723 −3.67702e9 −0.361836
724724 6.75312e9 0.661332
725725 −4.10787e9 −0.400344
726726 9.67528e8 0.0938394
727727 8.04352e8 0.0776383 0.0388191 0.999246i 0.487640π-0.487640\pi
0.0388191 + 0.999246i 0.487640π0.487640\pi
728728 6.60295e8 0.0634276
729729 5.03647e9 0.481481
730730 −3.27697e9 −0.311776
731731 7.31380e7 0.00692520
732732 1.94737e9 0.183510
733733 −1.64250e10 −1.54043 −0.770213 0.637786i 0.779850π-0.779850\pi
−0.770213 + 0.637786i 0.779850π0.779850\pi
734734 6.27613e9 0.585808
735735 −3.16841e9 −0.294331
736736 −1.63840e7 −0.00151477
737737 −1.85486e9 −0.170677
738738 6.29576e9 0.576569
739739 −3.94761e9 −0.359815 −0.179907 0.983684i 0.557580π-0.557580\pi
−0.179907 + 0.983684i 0.557580π0.557580\pi
740740 5.92342e9 0.537355
741741 −3.86879e8 −0.0349310
742742 7.74812e9 0.696278
743743 1.81094e10 1.61974 0.809868 0.586612i 0.199539π-0.199539\pi
0.809868 + 0.586612i 0.199539π0.199539\pi
744744 −1.79928e9 −0.160174
745745 7.12932e9 0.631686
746746 −4.42175e9 −0.389950
747747 −1.07875e10 −0.946886
748748 −1.29646e9 −0.113267
749749 −1.04382e10 −0.907696
750750 −5.09223e9 −0.440751
751751 −7.45449e9 −0.642211 −0.321106 0.947043i 0.604054π-0.604054\pi
−0.321106 + 0.947043i 0.604054π0.604054\pi
752752 −2.15810e9 −0.185058
753753 −5.12726e9 −0.437625
754754 −3.98894e9 −0.338890
755755 1.01393e10 0.857419
756756 −3.69725e9 −0.311210
757757 −1.20015e10 −1.00554 −0.502770 0.864420i 0.667686π-0.667686\pi
−0.502770 + 0.864420i 0.667686π0.667686\pi
758758 5.55008e9 0.462868
759759 −5.22990e7 −0.00434157
760760 8.18120e8 0.0676035
761761 1.21973e10 1.00327 0.501635 0.865080i 0.332732π-0.332732\pi
0.501635 + 0.865080i 0.332732π0.332732\pi
762762 5.45892e8 0.0446956
763763 1.29437e10 1.05493
764764 −5.99350e9 −0.486244
765765 1.86785e9 0.150844
766766 −1.25412e10 −1.00818
767767 1.78383e8 0.0142748
768768 −4.52985e8 −0.0360844
769769 −7.65065e8 −0.0606675 −0.0303338 0.999540i 0.509657π-0.509657\pi
−0.0303338 + 0.999540i 0.509657π0.509657\pi
770770 −4.45711e9 −0.351833
771771 −4.66695e9 −0.366727
772772 8.39781e9 0.656910
773773 −5.75818e8 −0.0448391 −0.0224195 0.999749i 0.507137π-0.507137\pi
−0.0224195 + 0.999749i 0.507137π0.507137\pi
774774 −1.63144e8 −0.0126467
775775 −2.35582e9 −0.181797
776776 −5.28317e9 −0.405862
777777 −5.98726e9 −0.457883
778778 −1.69453e10 −1.29009
779779 3.52031e9 0.266809
780780 −9.30122e8 −0.0701793
781781 −3.64159e9 −0.273534
782782 −2.09160e7 −0.00156407
783783 2.23357e10 1.66277
784784 −1.96188e9 −0.145400
785785 −2.10878e9 −0.155592
786786 −9.05926e9 −0.665448
787787 5.85027e9 0.427823 0.213912 0.976853i 0.431380π-0.431380\pi
0.213912 + 0.976853i 0.431380π0.431380\pi
788788 −8.66081e9 −0.630546
789789 4.16712e9 0.302041
790790 1.13703e10 0.820499
791791 1.06177e10 0.762800
792792 2.89193e9 0.206847
793793 2.47591e9 0.176311
794794 2.92779e9 0.207571
795795 −1.09144e10 −0.770394
796796 −7.96834e9 −0.559980
797797 7.90313e9 0.552962 0.276481 0.961019i 0.410832π-0.410832\pi
0.276481 + 0.961019i 0.410832π0.410832\pi
798798 −8.26937e8 −0.0576053
799799 −2.75505e9 −0.191080
800800 −5.93101e8 −0.0409556
801801 1.39057e9 0.0956049
802802 −4.53358e9 −0.310335
803803 −6.47704e9 −0.441441
804804 −8.27363e8 −0.0561436
805805 −7.19075e7 −0.00485835
806806 −2.28762e9 −0.153890
807807 3.64397e8 0.0244072
808808 2.42433e9 0.161679
809809 −1.36831e10 −0.908582 −0.454291 0.890853i 0.650107π-0.650107\pi
−0.454291 + 0.890853i 0.650107π0.650107\pi
810810 −1.04162e9 −0.0688674
811811 −2.02619e10 −1.33385 −0.666924 0.745126i 0.732389π-0.732389\pi
−0.666924 + 0.745126i 0.732389π0.732389\pi
812812 −8.52621e9 −0.558869
813813 1.75214e10 1.14354
814814 1.17078e10 0.760835
815815 2.03882e10 1.31925
816816 −5.78286e8 −0.0372586
817817 −9.12232e7 −0.00585232
818818 −1.31728e10 −0.841473
819819 −1.88029e9 −0.119600
820820 8.46344e9 0.536041
821821 1.27444e10 0.803742 0.401871 0.915696i 0.368360π-0.368360\pi
0.401871 + 0.915696i 0.368360π0.368360\pi
822822 5.31245e9 0.333613
823823 1.30392e9 0.0815366 0.0407683 0.999169i 0.487019π-0.487019\pi
0.0407683 + 0.999169i 0.487019π0.487019\pi
824824 8.24185e9 0.513192
825825 −1.89322e9 −0.117385
826826 3.81287e8 0.0235408
827827 6.58079e9 0.404584 0.202292 0.979325i 0.435161π-0.435161\pi
0.202292 + 0.979325i 0.435161π0.435161\pi
828828 4.66560e7 0.00285628
829829 −1.84124e10 −1.12246 −0.561229 0.827661i 0.689671π-0.689671\pi
−0.561229 + 0.827661i 0.689671π0.689671\pi
830830 −1.45017e10 −0.880329
831831 −1.49903e10 −0.906162
832832 −5.75930e8 −0.0346688
833833 −2.50456e9 −0.150132
834834 1.25139e10 0.746987
835835 −2.83633e10 −1.68598
836836 1.61704e9 0.0957191
837837 1.28093e10 0.755069
838838 −1.66030e9 −0.0974616
839839 3.25291e10 1.90154 0.950769 0.309901i 0.100296π-0.100296\pi
0.950769 + 0.309901i 0.100296π0.100296\pi
840840 −1.98810e9 −0.115734
841841 3.42582e10 1.98600
842842 1.02468e10 0.591559
843843 −9.04380e9 −0.519942
844844 5.16119e9 0.295496
845845 −1.18257e9 −0.0674260
846846 6.14552e9 0.348949
847847 2.62935e9 0.148681
848848 −6.75815e9 −0.380577
849849 −1.55664e10 −0.872996
850850 −7.57159e8 −0.0422884
851851 1.88884e8 0.0105061
852852 −1.62433e9 −0.0899780
853853 2.08665e10 1.15114 0.575569 0.817753i 0.304780π-0.304780\pi
0.575569 + 0.817753i 0.304780π0.304780\pi
854854 5.29217e9 0.290758
855855 −2.32972e9 −0.127474
856856 9.10455e9 0.496136
857857 −4.27453e9 −0.231983 −0.115991 0.993250i 0.537004π-0.537004\pi
−0.115991 + 0.993250i 0.537004π0.537004\pi
858858 −1.83841e9 −0.0993660
859859 −3.16915e8 −0.0170595 −0.00852976 0.999964i 0.502715π-0.502715\pi
−0.00852976 + 0.999964i 0.502715π0.502715\pi
860860 −2.19316e8 −0.0117578
861861 −8.55466e9 −0.456764
862862 −1.04715e9 −0.0556842
863863 2.64396e10 1.40029 0.700144 0.714002i 0.253119π-0.253119\pi
0.700144 + 0.714002i 0.253119π0.253119\pi
864864 3.22486e9 0.170103
865865 −2.22970e10 −1.17136
866866 −2.41314e9 −0.126261
867867 1.03409e10 0.538879
868868 −4.88970e9 −0.253783
869869 2.24738e10 1.16174
870870 1.20104e10 0.618358
871871 −1.05192e9 −0.0539410
872872 −1.12899e10 −0.576610
873873 1.50447e10 0.765301
874874 2.60880e7 0.00132175
875875 −1.38386e10 −0.698335
876876 −2.88909e9 −0.145210
877877 −1.09380e9 −0.0547568 −0.0273784 0.999625i 0.508716π-0.508716\pi
−0.0273784 + 0.999625i 0.508716π0.508716\pi
878878 6.43193e9 0.320708
879879 4.78977e9 0.237878
880880 3.88764e9 0.192308
881881 −5.62114e8 −0.0276955 −0.0138477 0.999904i 0.504408π-0.504408\pi
−0.0138477 + 0.999904i 0.504408π0.504408\pi
882882 5.58675e9 0.274170
883883 6.92318e8 0.0338410 0.0169205 0.999857i 0.494614π-0.494614\pi
0.0169205 + 0.999857i 0.494614π0.494614\pi
884884 −7.35239e8 −0.0357969
885885 −5.37098e8 −0.0260467
886886 1.42410e9 0.0687896
887887 9.12313e9 0.438946 0.219473 0.975619i 0.429566π-0.429566\pi
0.219473 + 0.975619i 0.429566π0.429566\pi
888888 5.22228e9 0.250273
889889 1.48351e9 0.0708166
890890 1.86936e9 0.0888848
891891 −2.05880e9 −0.0975086
892892 −8.35915e9 −0.394353
893893 3.43630e9 0.161477
894894 6.28544e9 0.294208
895895 −3.38534e10 −1.57842
896896 −1.23103e9 −0.0571729
897897 −2.96595e7 −0.00137211
898898 −1.29298e10 −0.595832
899899 2.95394e10 1.35595
900900 1.68895e9 0.0772267
901901 −8.62754e9 −0.392962
902902 1.67282e10 0.758975
903903 2.21680e8 0.0100189
904904 −9.26105e9 −0.416937
905905 −2.58518e10 −1.15937
906906 8.93913e9 0.399343
907907 −3.52627e10 −1.56924 −0.784622 0.619975i 0.787143π-0.787143\pi
−0.784622 + 0.619975i 0.787143π0.787143\pi
908908 −9.23535e9 −0.409405
909909 −6.90367e9 −0.304864
910910 −2.52769e9 −0.111193
911911 −2.42397e10 −1.06222 −0.531108 0.847304i 0.678224π-0.678224\pi
−0.531108 + 0.847304i 0.678224π0.678224\pi
912912 7.21281e8 0.0314864
913913 −2.86630e10 −1.24645
914914 9.90009e9 0.428872
915915 −7.45479e9 −0.321708
916916 −6.60666e9 −0.284019
917917 −2.46194e10 −1.05435
918918 4.11690e9 0.175639
919919 −2.87487e10 −1.22184 −0.610920 0.791692i 0.709200π-0.709200\pi
−0.610920 + 0.791692i 0.709200π0.709200\pi
920920 6.27200e7 0.00265551
921921 −7.94131e9 −0.334952
922922 1.00543e9 0.0422466
923923 −2.06520e9 −0.0864480
924924 −3.92954e9 −0.163866
925925 6.83762e9 0.284059
926926 −8.09406e9 −0.334987
927927 −2.34700e10 −0.967683
928928 7.43683e9 0.305471
929929 1.67658e10 0.686072 0.343036 0.939322i 0.388545π-0.388545\pi
0.343036 + 0.939322i 0.388545π0.388545\pi
930930 6.88786e9 0.280798
931931 3.12387e9 0.126873
932932 −2.04528e9 −0.0827556
933933 7.72214e9 0.311281
934934 −1.29212e10 −0.518907
935935 4.96300e9 0.198565
936936 1.64005e9 0.0653720
937937 4.14519e9 0.164610 0.0823049 0.996607i 0.473772π-0.473772\pi
0.0823049 + 0.996607i 0.473772π0.473772\pi
938938 −2.24844e9 −0.0889550
939939 7.45496e9 0.293843
940940 8.26146e9 0.324421
941941 2.40106e10 0.939376 0.469688 0.882833i 0.344366π-0.344366\pi
0.469688 + 0.882833i 0.344366π0.344366\pi
942942 −1.85917e9 −0.0724672
943943 2.69880e8 0.0104804
944944 −3.32571e8 −0.0128671
945945 1.41536e10 0.545575
946946 −4.33485e8 −0.0166477
947947 −5.10040e10 −1.95155 −0.975774 0.218783i 0.929791π-0.929791\pi
−0.975774 + 0.218783i 0.929791π0.929791\pi
948948 1.00245e10 0.382148
949949 −3.67322e9 −0.139513
950950 9.44386e8 0.0357369
951951 −1.47417e10 −0.555796
952952 −1.57154e9 −0.0590333
953953 1.53610e10 0.574902 0.287451 0.957795i 0.407192π-0.407192\pi
0.287451 + 0.957795i 0.407192π0.407192\pi
954954 1.92449e10 0.717623
955955 2.29439e10 0.852423
956956 −9.61172e9 −0.355794
957957 2.37389e10 0.875527
958958 3.98842e9 0.146562
959959 1.44371e10 0.528584
960960 1.73408e9 0.0632587
961961 −1.05720e10 −0.384261
962962 6.63967e9 0.240455
963963 −2.59266e10 −0.935522
964964 8.71589e9 0.313359
965965 −3.21479e10 −1.15161
966966 −6.33960e7 −0.00226278
967967 3.46233e10 1.23133 0.615666 0.788007i 0.288887π-0.288887\pi
0.615666 + 0.788007i 0.288887π0.288887\pi
968968 −2.29340e9 −0.0812673
969969 9.20796e8 0.0325110
970970 2.02246e10 0.711508
971971 −2.01887e10 −0.707688 −0.353844 0.935304i 0.615126π-0.615126\pi
−0.353844 + 0.935304i 0.615126π0.615126\pi
972972 −1.46933e10 −0.513200
973973 3.40078e10 1.18354
974974 −3.84918e10 −1.33479
975975 −1.07367e9 −0.0370985
976976 −4.61600e9 −0.158925
977977 3.10610e10 1.06558 0.532788 0.846249i 0.321144π-0.321144\pi
0.532788 + 0.846249i 0.321144π0.321144\pi
978978 1.79749e10 0.614442
979979 3.69484e9 0.125851
980980 7.51031e9 0.254898
981981 3.21498e10 1.08727
982982 1.20580e10 0.406334
983983 −3.95227e10 −1.32712 −0.663559 0.748124i 0.730955π-0.730955\pi
−0.663559 + 0.748124i 0.730955π0.730955\pi
984984 7.46164e9 0.249662
985985 3.31547e10 1.10540
986986 9.49394e9 0.315411
987987 −8.35051e9 −0.276441
988988 9.17045e8 0.0302511
989989 −6.99350e6 −0.000229883 0
990990 −1.10707e10 −0.362619
991991 3.60450e10 1.17649 0.588244 0.808684i 0.299820π-0.299820\pi
0.588244 + 0.808684i 0.299820π0.299820\pi
992992 4.26495e9 0.138715
993993 9.74488e9 0.315830
994994 −4.41427e9 −0.142563
995995 3.05038e10 0.981688
996996 −1.27852e10 −0.410014
997997 1.64165e10 0.524623 0.262311 0.964983i 0.415515π-0.415515\pi
0.262311 + 0.964983i 0.415515π0.415515\pi
998998 −2.78369e10 −0.886470
999999 −3.71781e10 −1.17980
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 26.8.a.c.1.1 1
3.2 odd 2 234.8.a.b.1.1 1
4.3 odd 2 208.8.a.a.1.1 1
13.5 odd 4 338.8.b.c.337.1 2
13.8 odd 4 338.8.b.c.337.2 2
13.12 even 2 338.8.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.8.a.c.1.1 1 1.1 even 1 trivial
208.8.a.a.1.1 1 4.3 odd 2
234.8.a.b.1.1 1 3.2 odd 2
338.8.a.b.1.1 1 13.12 even 2
338.8.b.c.337.1 2 13.5 odd 4
338.8.b.c.337.2 2 13.8 odd 4