Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [260,2,Mod(23,260)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(260, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([6, 9, 10]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("260.23");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 260 = 2^{2} \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 260.bg (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.07611045255\) |
Analytic rank: | \(0\) |
Dimension: | \(144\) |
Relative dimension: | \(36\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23.1 | −1.39962 | − | 0.202672i | −0.654675 | − | 0.175420i | 1.91785 | + | 0.567327i | 1.99368 | + | 1.01254i | 0.880741 | + | 0.378205i | 0.970879 | + | 3.62337i | −2.56927 | − | 1.18273i | −2.20025 | − | 1.27031i | −2.58517 | − | 1.82123i |
23.2 | −1.38580 | + | 0.282082i | 2.11574 | + | 0.566910i | 1.84086 | − | 0.781815i | −0.526400 | − | 2.17322i | −3.09190 | − | 0.188811i | 1.32407 | + | 4.94149i | −2.33052 | + | 1.60271i | 1.55689 | + | 0.898869i | 1.34251 | + | 2.86316i |
23.3 | −1.37541 | + | 0.329025i | 1.27282 | + | 0.341051i | 1.78348 | − | 0.905087i | −2.19727 | − | 0.414735i | −1.86286 | − | 0.0502939i | −1.05068 | − | 3.92118i | −2.15522 | + | 1.83167i | −1.09432 | − | 0.631809i | 3.15860 | − | 0.152528i |
23.4 | −1.35231 | + | 0.413846i | −2.09023 | − | 0.560075i | 1.65746 | − | 1.11929i | 0.553491 | − | 2.16648i | 3.05841 | − | 0.107639i | −0.371776 | − | 1.38749i | −1.77818 | + | 2.19956i | 1.45729 | + | 0.841367i | 0.148100 | + | 3.15881i |
23.5 | −1.33237 | − | 0.474120i | −1.74962 | − | 0.468810i | 1.55042 | + | 1.26341i | −2.23215 | + | 0.132344i | 2.10887 | + | 1.45416i | −0.184185 | − | 0.687388i | −1.46673 | − | 2.41841i | 0.243315 | + | 0.140478i | 3.03679 | + | 0.881975i |
23.6 | −1.31533 | − | 0.519519i | 3.04677 | + | 0.816378i | 1.46020 | + | 1.36668i | −0.215330 | + | 2.22568i | −3.58339 | − | 2.65666i | −0.0424015 | − | 0.158244i | −1.21063 | − | 2.55624i | 6.01823 | + | 3.47463i | 1.43951 | − | 2.81564i |
23.7 | −1.26807 | − | 0.626106i | 1.34938 | + | 0.361566i | 1.21598 | + | 1.58789i | 1.82758 | − | 1.28839i | −1.48473 | − | 1.30335i | −0.711458 | − | 2.65520i | −0.547758 | − | 2.77488i | −0.907969 | − | 0.524216i | −3.12416 | + | 0.489502i |
23.8 | −1.23451 | + | 0.689918i | −2.57063 | − | 0.688800i | 1.04803 | − | 1.70342i | −1.36165 | + | 1.77367i | 3.64869 | − | 0.923198i | 0.948066 | + | 3.53823i | −0.118577 | + | 2.82594i | 3.53564 | + | 2.04130i | 0.457283 | − | 3.12904i |
23.9 | −1.08563 | + | 0.906314i | −0.274584 | − | 0.0735746i | 0.357191 | − | 1.96785i | 2.19604 | − | 0.421205i | 0.364779 | − | 0.168984i | −0.487864 | − | 1.82073i | 1.39571 | + | 2.46008i | −2.52809 | − | 1.45960i | −2.00235 | + | 2.44757i |
23.10 | −0.941226 | + | 1.05551i | 1.16081 | + | 0.311038i | −0.228185 | − | 1.98694i | −1.13827 | + | 1.92466i | −1.42089 | + | 0.932484i | 0.352983 | + | 1.31735i | 2.31200 | + | 1.62931i | −1.34734 | − | 0.777889i | −0.960121 | − | 3.01300i |
23.11 | −0.932110 | − | 1.06357i | −0.450342 | − | 0.120669i | −0.262342 | + | 1.98272i | −0.808965 | − | 2.08460i | 0.291429 | + | 0.591445i | 0.415219 | + | 1.54962i | 2.35328 | − | 1.56909i | −2.40983 | − | 1.39132i | −1.46307 | + | 2.80347i |
23.12 | −0.849309 | − | 1.13078i | −0.754665 | − | 0.202212i | −0.557348 | + | 1.92077i | 0.282716 | + | 2.21812i | 0.412286 | + | 1.02510i | −0.814984 | − | 3.04156i | 2.64534 | − | 1.00109i | −2.06945 | − | 1.19480i | 2.26811 | − | 2.20356i |
23.13 | −0.633301 | − | 1.26449i | 1.48318 | + | 0.397416i | −1.19786 | + | 1.60160i | −1.88795 | + | 1.19818i | −0.436769 | − | 2.12715i | 0.726248 | + | 2.71040i | 2.78381 | + | 0.500385i | −0.556198 | − | 0.321121i | 2.71072 | + | 1.62849i |
23.14 | −0.595380 | + | 1.28278i | −2.12058 | − | 0.568207i | −1.29105 | − | 1.52748i | 1.57238 | + | 1.58985i | 1.99143 | − | 2.38193i | −0.751521 | − | 2.80471i | 2.72808 | − | 0.746695i | 1.57591 | + | 0.909854i | −2.97559 | + | 1.07045i |
23.15 | −0.565829 | + | 1.29609i | 2.90282 | + | 0.777809i | −1.35968 | − | 1.46672i | 0.446275 | − | 2.19108i | −2.65061 | + | 3.32220i | −0.874770 | − | 3.26469i | 2.67034 | − | 0.932342i | 5.22332 | + | 3.01568i | 2.58731 | + | 1.81819i |
23.16 | −0.300622 | − | 1.38189i | 2.28888 | + | 0.613303i | −1.81925 | + | 0.830853i | 2.18429 | − | 0.478409i | 0.159433 | − | 3.34735i | 0.371096 | + | 1.38495i | 1.69506 | + | 2.26424i | 2.26474 | + | 1.30755i | −1.31776 | − | 2.87463i |
23.17 | −0.173304 | − | 1.40355i | −3.13012 | − | 0.838713i | −1.93993 | + | 0.486484i | −2.04631 | − | 0.901445i | −0.634717 | + | 4.53865i | −0.315858 | − | 1.17880i | 1.01900 | + | 2.63849i | 6.49613 | + | 3.75054i | −0.910593 | + | 3.02834i |
23.18 | −0.158021 | + | 1.40536i | −2.90282 | − | 0.777809i | −1.95006 | − | 0.444152i | 0.446275 | − | 2.19108i | 1.55181 | − | 3.95659i | 0.874770 | + | 3.26469i | 0.932342 | − | 2.67034i | 5.22332 | + | 3.01568i | 3.00873 | + | 0.973413i |
23.19 | −0.125776 | + | 1.40861i | 2.12058 | + | 0.568207i | −1.96836 | − | 0.354338i | 1.57238 | + | 1.58985i | −1.06710 | + | 2.91560i | 0.751521 | + | 2.80471i | 0.746695 | − | 2.72808i | 1.57591 | + | 0.909854i | −2.43725 | + | 2.01490i |
23.20 | −0.0281072 | − | 1.41393i | −1.77624 | − | 0.475943i | −1.99842 | + | 0.0794833i | 1.35785 | + | 1.77658i | −0.623027 | + | 2.52487i | 0.755969 | + | 2.82131i | 0.168554 | + | 2.82340i | 0.330446 | + | 0.190783i | 2.47380 | − | 1.96985i |
See next 80 embeddings (of 144 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
13.e | even | 6 | 1 | inner |
20.e | even | 4 | 1 | inner |
52.i | odd | 6 | 1 | inner |
65.r | odd | 12 | 1 | inner |
260.bg | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 260.2.bg.c | ✓ | 144 |
4.b | odd | 2 | 1 | inner | 260.2.bg.c | ✓ | 144 |
5.c | odd | 4 | 1 | inner | 260.2.bg.c | ✓ | 144 |
13.e | even | 6 | 1 | inner | 260.2.bg.c | ✓ | 144 |
20.e | even | 4 | 1 | inner | 260.2.bg.c | ✓ | 144 |
52.i | odd | 6 | 1 | inner | 260.2.bg.c | ✓ | 144 |
65.r | odd | 12 | 1 | inner | 260.2.bg.c | ✓ | 144 |
260.bg | even | 12 | 1 | inner | 260.2.bg.c | ✓ | 144 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
260.2.bg.c | ✓ | 144 | 1.a | even | 1 | 1 | trivial |
260.2.bg.c | ✓ | 144 | 4.b | odd | 2 | 1 | inner |
260.2.bg.c | ✓ | 144 | 5.c | odd | 4 | 1 | inner |
260.2.bg.c | ✓ | 144 | 13.e | even | 6 | 1 | inner |
260.2.bg.c | ✓ | 144 | 20.e | even | 4 | 1 | inner |
260.2.bg.c | ✓ | 144 | 52.i | odd | 6 | 1 | inner |
260.2.bg.c | ✓ | 144 | 65.r | odd | 12 | 1 | inner |
260.2.bg.c | ✓ | 144 | 260.bg | even | 12 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(260, [\chi])\):
\( T_{3}^{144} - 478 T_{3}^{140} + 131231 T_{3}^{136} - 24290390 T_{3}^{132} + 3362718895 T_{3}^{128} + \cdots + 43\!\cdots\!96 \) |
\( T_{17}^{72} + 12 T_{17}^{71} + 72 T_{17}^{70} + 520 T_{17}^{69} + 474 T_{17}^{68} + \cdots + 27\!\cdots\!00 \) |