Properties

Label 260.2.o
Level 260260
Weight 22
Character orbit 260.o
Rep. character χ260(27,)\chi_{260}(27,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 7272
Newform subspaces 11
Sturm bound 8484
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 260=22513 260 = 2^{2} \cdot 5 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 260.o (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 20 20
Character field: Q(i)\Q(i)
Newform subspaces: 1 1
Sturm bound: 8484
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(260,[χ])M_{2}(260, [\chi]).

Total New Old
Modular forms 92 72 20
Cusp forms 76 72 4
Eisenstein series 16 0 16

Trace form

72q8q612q88q108q128q16+28q1816q218q2220q2832q3040q32+16q33+32q3612q388q4040q428q46+60q48+32q98+O(q100) 72 q - 8 q^{6} - 12 q^{8} - 8 q^{10} - 8 q^{12} - 8 q^{16} + 28 q^{18} - 16 q^{21} - 8 q^{22} - 20 q^{28} - 32 q^{30} - 40 q^{32} + 16 q^{33} + 32 q^{36} - 12 q^{38} - 8 q^{40} - 40 q^{42} - 8 q^{46} + 60 q^{48}+ \cdots - 32 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(260,[χ])S_{2}^{\mathrm{new}}(260, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
260.2.o.a 260.o 20.e 7272 2.0762.076 None 260.2.o.a 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}]

Decomposition of S2old(260,[χ])S_{2}^{\mathrm{old}}(260, [\chi]) into lower level spaces

S2old(260,[χ]) S_{2}^{\mathrm{old}}(260, [\chi]) \simeq S2new(20,[χ])S_{2}^{\mathrm{new}}(20, [\chi])2^{\oplus 2}