Properties

Label 260.6.a.a
Level $260$
Weight $6$
Character orbit 260.a
Self dual yes
Analytic conductor $41.700$
Analytic rank $2$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [260,6,Mod(1,260)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(260, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("260.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 260 = 2^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 260.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.6997931514\)
Analytic rank: \(2\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 14 q^{3} - 25 q^{5} - 212 q^{7} - 47 q^{9} - 402 q^{11} - 169 q^{13} + 350 q^{15} - 1022 q^{17} - 2090 q^{19} + 2968 q^{21} - 1402 q^{23} + 625 q^{25} + 4060 q^{27} - 3022 q^{29} - 5126 q^{31} + 5628 q^{33}+ \cdots + 18894 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −14.0000 0 −25.0000 0 −212.000 0 −47.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 260.6.a.a 1
4.b odd 2 1 1040.6.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
260.6.a.a 1 1.a even 1 1 trivial
1040.6.a.b 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 14 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(260))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 14 \) Copy content Toggle raw display
$5$ \( T + 25 \) Copy content Toggle raw display
$7$ \( T + 212 \) Copy content Toggle raw display
$11$ \( T + 402 \) Copy content Toggle raw display
$13$ \( T + 169 \) Copy content Toggle raw display
$17$ \( T + 1022 \) Copy content Toggle raw display
$19$ \( T + 2090 \) Copy content Toggle raw display
$23$ \( T + 1402 \) Copy content Toggle raw display
$29$ \( T + 3022 \) Copy content Toggle raw display
$31$ \( T + 5126 \) Copy content Toggle raw display
$37$ \( T - 5966 \) Copy content Toggle raw display
$41$ \( T + 10038 \) Copy content Toggle raw display
$43$ \( T + 21594 \) Copy content Toggle raw display
$47$ \( T - 10980 \) Copy content Toggle raw display
$53$ \( T - 8626 \) Copy content Toggle raw display
$59$ \( T + 28806 \) Copy content Toggle raw display
$61$ \( T + 2446 \) Copy content Toggle raw display
$67$ \( T + 11596 \) Copy content Toggle raw display
$71$ \( T - 59882 \) Copy content Toggle raw display
$73$ \( T - 81834 \) Copy content Toggle raw display
$79$ \( T + 27620 \) Copy content Toggle raw display
$83$ \( T - 116960 \) Copy content Toggle raw display
$89$ \( T + 105614 \) Copy content Toggle raw display
$97$ \( T + 306 \) Copy content Toggle raw display
show more
show less