Properties

Label 2600.1.br.a
Level $2600$
Weight $1$
Character orbit 2600.br
Analytic conductor $1.298$
Analytic rank $0$
Dimension $2$
Projective image $D_{6}$
CM discriminant -40
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2600,1,Mod(251,2600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2600, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2600.251");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2600.br (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.29756903285\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 520)
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.2.2970344000.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{6}^{2} q^{2} - \zeta_{6} q^{4} + \zeta_{6} q^{7} + q^{8} + \zeta_{6} q^{9} + ( - \zeta_{6} - 1) q^{11} + \zeta_{6} q^{13} - q^{14} + \zeta_{6}^{2} q^{16} - q^{18} + (\zeta_{6}^{2} - 1) q^{19} + \cdots + ( - \zeta_{6}^{2} - \zeta_{6}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} + q^{7} + 2 q^{8} + q^{9} - 3 q^{11} + q^{13} - 2 q^{14} - q^{16} - 2 q^{18} - 3 q^{19} + 3 q^{22} - 2 q^{26} + q^{28} - q^{32} + q^{36} - q^{37} + 2 q^{47} + q^{52} + q^{56}+ \cdots - q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2600\mathbb{Z}\right)^\times\).

\(n\) \(1301\) \(1601\) \(1951\) \(1977\)
\(\chi(n)\) \(-1\) \(\zeta_{6}\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
251.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 + 0.866025i 0 −0.500000 0.866025i 0 0 0.500000 + 0.866025i 1.00000 0.500000 + 0.866025i 0
2051.1 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0 0 0.500000 0.866025i 1.00000 0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.e odd 2 1 CM by \(\Q(\sqrt{-10}) \)
65.l even 6 1 inner
104.p odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2600.1.br.a 2
5.b even 2 1 2600.1.br.b 2
5.c odd 4 2 520.1.cd.a 4
8.d odd 2 1 2600.1.br.b 2
13.e even 6 1 2600.1.br.b 2
20.e even 4 2 2080.1.dj.a 4
40.e odd 2 1 CM 2600.1.br.a 2
40.i odd 4 2 2080.1.dj.a 4
40.k even 4 2 520.1.cd.a 4
65.l even 6 1 inner 2600.1.br.a 2
65.r odd 12 2 520.1.cd.a 4
104.p odd 6 1 inner 2600.1.br.a 2
260.bg even 12 2 2080.1.dj.a 4
520.cd odd 6 1 2600.1.br.b 2
520.co odd 12 2 2080.1.dj.a 4
520.cs even 12 2 520.1.cd.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
520.1.cd.a 4 5.c odd 4 2
520.1.cd.a 4 40.k even 4 2
520.1.cd.a 4 65.r odd 12 2
520.1.cd.a 4 520.cs even 12 2
2080.1.dj.a 4 20.e even 4 2
2080.1.dj.a 4 40.i odd 4 2
2080.1.dj.a 4 260.bg even 12 2
2080.1.dj.a 4 520.co odd 12 2
2600.1.br.a 2 1.a even 1 1 trivial
2600.1.br.a 2 40.e odd 2 1 CM
2600.1.br.a 2 65.l even 6 1 inner
2600.1.br.a 2 104.p odd 6 1 inner
2600.1.br.b 2 5.b even 2 1
2600.1.br.b 2 8.d odd 2 1
2600.1.br.b 2 13.e even 6 1
2600.1.br.b 2 520.cd odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} - T_{7} + 1 \) acting on \(S_{1}^{\mathrm{new}}(2600, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$11$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$13$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( (T - 1)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 3 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less