Defining parameters
Level: | \( N \) | \(=\) | \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2600.bm (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 104 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(840\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2600, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 864 | 544 | 320 |
Cusp forms | 816 | 520 | 296 |
Eisenstein series | 48 | 24 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2600, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2600, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2600, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(520, [\chi])\)\(^{\oplus 2}\)