Properties

Label 2600.2.bm
Level $2600$
Weight $2$
Character orbit 2600.bm
Rep. character $\chi_{2600}(1451,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $520$
Sturm bound $840$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2600.bm (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 104 \)
Character field: \(\Q(i)\)
Sturm bound: \(840\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2600, [\chi])\).

Total New Old
Modular forms 864 544 320
Cusp forms 816 520 296
Eisenstein series 48 24 24

Trace form

\( 520 q + 2 q^{2} + 8 q^{3} + 4 q^{6} + 8 q^{8} + 504 q^{9} - 12 q^{11} + 20 q^{14} - 20 q^{16} + 6 q^{18} + 4 q^{19} + 16 q^{22} - 44 q^{24} - 6 q^{26} + 32 q^{27} + 32 q^{28} - 8 q^{32} + 16 q^{33} + 44 q^{34}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2600, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2600, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2600, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(520, [\chi])\)\(^{\oplus 2}\)