Properties

Label 2600.2.bm
Level 26002600
Weight 22
Character orbit 2600.bm
Rep. character χ2600(1451,)\chi_{2600}(1451,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 520520
Sturm bound 840840

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 2600=235213 2600 = 2^{3} \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2600.bm (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 104 104
Character field: Q(i)\Q(i)
Sturm bound: 840840

Dimensions

The following table gives the dimensions of various subspaces of M2(2600,[χ])M_{2}(2600, [\chi]).

Total New Old
Modular forms 864 544 320
Cusp forms 816 520 296
Eisenstein series 48 24 24

Trace form

520q+2q2+8q3+4q6+8q8+504q912q11+20q1420q16+6q18+4q19+16q2244q246q26+32q27+32q288q32+16q33+44q34+60q99+O(q100) 520 q + 2 q^{2} + 8 q^{3} + 4 q^{6} + 8 q^{8} + 504 q^{9} - 12 q^{11} + 20 q^{14} - 20 q^{16} + 6 q^{18} + 4 q^{19} + 16 q^{22} - 44 q^{24} - 6 q^{26} + 32 q^{27} + 32 q^{28} - 8 q^{32} + 16 q^{33} + 44 q^{34}+ \cdots - 60 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(2600,[χ])S_{2}^{\mathrm{new}}(2600, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(2600,[χ])S_{2}^{\mathrm{old}}(2600, [\chi]) into lower level spaces

S2old(2600,[χ]) S_{2}^{\mathrm{old}}(2600, [\chi]) \simeq S2new(104,[χ])S_{2}^{\mathrm{new}}(104, [\chi])3^{\oplus 3}\oplusS2new(520,[χ])S_{2}^{\mathrm{new}}(520, [\chi])2^{\oplus 2}