Properties

Label 261.2.k.b.190.2
Level $261$
Weight $2$
Character 261.190
Analytic conductor $2.084$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [261,2,Mod(82,261)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(261, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("261.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 261 = 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 261.k (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.08409549276\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 5 x^{17} + 15 x^{16} - 32 x^{15} + 66 x^{14} - 115 x^{13} + 272 x^{12} - 387 x^{11} + 762 x^{10} + \cdots + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 190.2
Root \(0.719749 + 0.902536i\) of defining polynomial
Character \(\chi\) \(=\) 261.190
Dual form 261.2.k.b.136.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.04007 + 0.500870i) q^{2} +(-0.416111 - 0.521786i) q^{4} +(-3.10796 - 1.49671i) q^{5} +(2.81664 - 3.53195i) q^{7} +(-0.685187 - 3.00200i) q^{8} +(-2.48283 - 3.11337i) q^{10} +(-0.123323 + 0.540315i) q^{11} +(-0.614154 + 2.69078i) q^{13} +(4.69854 - 2.26270i) q^{14} +(0.493954 - 2.16416i) q^{16} +2.99688 q^{17} +(-0.173453 - 0.217503i) q^{19} +(0.512290 + 2.24449i) q^{20} +(-0.398892 + 0.500195i) q^{22} +(0.836001 - 0.402597i) q^{23} +(4.30181 + 5.39430i) q^{25} +(-1.98649 + 2.49098i) q^{26} -3.01496 q^{28} +(5.37860 - 0.265855i) q^{29} +(-8.21748 - 3.95733i) q^{31} +(-2.24199 + 2.81137i) q^{32} +(3.11696 + 1.50105i) q^{34} +(-14.0403 + 6.76146i) q^{35} +(1.52987 + 6.70278i) q^{37} +(-0.0714618 - 0.313095i) q^{38} +(-2.36360 + 10.3556i) q^{40} +2.85317 q^{41} +(10.1079 - 4.86770i) q^{43} +(0.333245 - 0.160482i) q^{44} +1.07115 q^{46} +(0.933590 - 4.09033i) q^{47} +(-2.98359 - 13.0720i) q^{49} +(1.77233 + 7.76508i) q^{50} +(1.65957 - 0.799207i) q^{52} +(-1.87299 - 0.901986i) q^{53} +(1.19198 - 1.49470i) q^{55} +(-12.5328 - 6.03550i) q^{56} +(5.72726 + 2.41747i) q^{58} +14.2670 q^{59} +(-4.50873 + 5.65377i) q^{61} +(-6.56462 - 8.23177i) q^{62} +(-7.73992 + 3.72735i) q^{64} +(5.93610 - 7.44363i) q^{65} +(2.73383 + 11.9777i) q^{67} +(-1.24704 - 1.56373i) q^{68} -17.9895 q^{70} +(-0.530060 + 2.32234i) q^{71} +(0.822693 - 0.396188i) q^{73} +(-1.76606 + 7.73761i) q^{74} +(-0.0413145 + 0.181010i) q^{76} +(1.56101 + 1.95744i) q^{77} +(-0.460193 - 2.01624i) q^{79} +(-4.77431 + 5.98680i) q^{80} +(2.96749 + 1.42907i) q^{82} +(6.83994 + 8.57702i) q^{83} +(-9.31420 - 4.48548i) q^{85} +12.9510 q^{86} +1.70652 q^{88} +(-6.13283 - 2.95341i) q^{89} +(7.77387 + 9.74812i) q^{91} +(-0.557938 - 0.268689i) q^{92} +(3.01972 - 3.78661i) q^{94} +(0.213544 + 0.935599i) q^{95} +(-2.19244 - 2.74924i) q^{97} +(3.44422 - 15.0901i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{2} - 6 q^{4} + 7 q^{5} - 4 q^{7} + 3 q^{8} + 6 q^{10} + 6 q^{11} - 11 q^{13} + 2 q^{14} + 18 q^{16} + 32 q^{17} + 2 q^{19} - 51 q^{20} + 20 q^{22} + 6 q^{23} + 4 q^{25} + 3 q^{26} - 48 q^{28}+ \cdots + 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/261\mathbb{Z}\right)^\times\).

\(n\) \(118\) \(146\)
\(\chi(n)\) \(e\left(\frac{1}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.04007 + 0.500870i 0.735438 + 0.354169i 0.763821 0.645429i \(-0.223321\pi\)
−0.0283821 + 0.999597i \(0.509036\pi\)
\(3\) 0 0
\(4\) −0.416111 0.521786i −0.208055 0.260893i
\(5\) −3.10796 1.49671i −1.38992 0.669351i −0.418831 0.908064i \(-0.637560\pi\)
−0.971090 + 0.238713i \(0.923274\pi\)
\(6\) 0 0
\(7\) 2.81664 3.53195i 1.06459 1.33495i 0.125187 0.992133i \(-0.460047\pi\)
0.939402 0.342819i \(-0.111382\pi\)
\(8\) −0.685187 3.00200i −0.242250 1.06137i
\(9\) 0 0
\(10\) −2.48283 3.11337i −0.785139 0.984533i
\(11\) −0.123323 + 0.540315i −0.0371834 + 0.162911i −0.990111 0.140287i \(-0.955197\pi\)
0.952927 + 0.303198i \(0.0980545\pi\)
\(12\) 0 0
\(13\) −0.614154 + 2.69078i −0.170336 + 0.746289i 0.815525 + 0.578722i \(0.196448\pi\)
−0.985861 + 0.167567i \(0.946409\pi\)
\(14\) 4.69854 2.26270i 1.25574 0.604731i
\(15\) 0 0
\(16\) 0.493954 2.16416i 0.123489 0.541039i
\(17\) 2.99688 0.726851 0.363426 0.931623i \(-0.381607\pi\)
0.363426 + 0.931623i \(0.381607\pi\)
\(18\) 0 0
\(19\) −0.173453 0.217503i −0.0397928 0.0498985i 0.761537 0.648122i \(-0.224445\pi\)
−0.801330 + 0.598223i \(0.795874\pi\)
\(20\) 0.512290 + 2.24449i 0.114552 + 0.501883i
\(21\) 0 0
\(22\) −0.398892 + 0.500195i −0.0850440 + 0.106642i
\(23\) 0.836001 0.402597i 0.174318 0.0839472i −0.344690 0.938717i \(-0.612016\pi\)
0.519008 + 0.854770i \(0.326302\pi\)
\(24\) 0 0
\(25\) 4.30181 + 5.39430i 0.860362 + 1.07886i
\(26\) −1.98649 + 2.49098i −0.389583 + 0.488522i
\(27\) 0 0
\(28\) −3.01496 −0.569773
\(29\) 5.37860 0.265855i 0.998781 0.0493681i
\(30\) 0 0
\(31\) −8.21748 3.95733i −1.47590 0.710757i −0.489031 0.872266i \(-0.662650\pi\)
−0.986871 + 0.161509i \(0.948364\pi\)
\(32\) −2.24199 + 2.81137i −0.396332 + 0.496985i
\(33\) 0 0
\(34\) 3.11696 + 1.50105i 0.534554 + 0.257428i
\(35\) −14.0403 + 6.76146i −2.37325 + 1.14290i
\(36\) 0 0
\(37\) 1.52987 + 6.70278i 0.251509 + 1.10193i 0.930069 + 0.367386i \(0.119747\pi\)
−0.678560 + 0.734545i \(0.737396\pi\)
\(38\) −0.0714618 0.313095i −0.0115926 0.0507907i
\(39\) 0 0
\(40\) −2.36360 + 10.3556i −0.373718 + 1.63737i
\(41\) 2.85317 0.445591 0.222795 0.974865i \(-0.428482\pi\)
0.222795 + 0.974865i \(0.428482\pi\)
\(42\) 0 0
\(43\) 10.1079 4.86770i 1.54144 0.742317i 0.546004 0.837783i \(-0.316148\pi\)
0.995433 + 0.0954657i \(0.0304340\pi\)
\(44\) 0.333245 0.160482i 0.0502386 0.0241936i
\(45\) 0 0
\(46\) 1.07115 0.157932
\(47\) 0.933590 4.09033i 0.136178 0.596635i −0.860076 0.510165i \(-0.829584\pi\)
0.996254 0.0864700i \(-0.0275587\pi\)
\(48\) 0 0
\(49\) −2.98359 13.0720i −0.426227 1.86742i
\(50\) 1.77233 + 7.76508i 0.250645 + 1.09815i
\(51\) 0 0
\(52\) 1.65957 0.799207i 0.230141 0.110830i
\(53\) −1.87299 0.901986i −0.257275 0.123897i 0.300801 0.953687i \(-0.402746\pi\)
−0.558076 + 0.829790i \(0.688460\pi\)
\(54\) 0 0
\(55\) 1.19198 1.49470i 0.160727 0.201545i
\(56\) −12.5328 6.03550i −1.67477 0.806527i
\(57\) 0 0
\(58\) 5.72726 + 2.41747i 0.752026 + 0.317429i
\(59\) 14.2670 1.85741 0.928703 0.370824i \(-0.120925\pi\)
0.928703 + 0.370824i \(0.120925\pi\)
\(60\) 0 0
\(61\) −4.50873 + 5.65377i −0.577284 + 0.723891i −0.981647 0.190707i \(-0.938922\pi\)
0.404363 + 0.914599i \(0.367493\pi\)
\(62\) −6.56462 8.23177i −0.833708 1.04544i
\(63\) 0 0
\(64\) −7.73992 + 3.72735i −0.967490 + 0.465919i
\(65\) 5.93610 7.44363i 0.736282 0.923269i
\(66\) 0 0
\(67\) 2.73383 + 11.9777i 0.333990 + 1.46331i 0.811330 + 0.584588i \(0.198744\pi\)
−0.477340 + 0.878719i \(0.658399\pi\)
\(68\) −1.24704 1.56373i −0.151225 0.189631i
\(69\) 0 0
\(70\) −17.9895 −2.15015
\(71\) −0.530060 + 2.32234i −0.0629065 + 0.275611i −0.996593 0.0824811i \(-0.973716\pi\)
0.933686 + 0.358092i \(0.116573\pi\)
\(72\) 0 0
\(73\) 0.822693 0.396188i 0.0962889 0.0463703i −0.385119 0.922867i \(-0.625840\pi\)
0.481408 + 0.876496i \(0.340125\pi\)
\(74\) −1.76606 + 7.73761i −0.205300 + 0.899479i
\(75\) 0 0
\(76\) −0.0413145 + 0.181010i −0.00473909 + 0.0207633i
\(77\) 1.56101 + 1.95744i 0.177893 + 0.223071i
\(78\) 0 0
\(79\) −0.460193 2.01624i −0.0517758 0.226845i 0.942420 0.334432i \(-0.108545\pi\)
−0.994196 + 0.107588i \(0.965687\pi\)
\(80\) −4.77431 + 5.98680i −0.533784 + 0.669345i
\(81\) 0 0
\(82\) 2.96749 + 1.42907i 0.327705 + 0.157814i
\(83\) 6.83994 + 8.57702i 0.750781 + 0.941450i 0.999633 0.0270916i \(-0.00862459\pi\)
−0.248852 + 0.968542i \(0.580053\pi\)
\(84\) 0 0
\(85\) −9.31420 4.48548i −1.01027 0.486519i
\(86\) 12.9510 1.39654
\(87\) 0 0
\(88\) 1.70652 0.181916
\(89\) −6.13283 2.95341i −0.650078 0.313061i 0.0796253 0.996825i \(-0.474628\pi\)
−0.729703 + 0.683764i \(0.760342\pi\)
\(90\) 0 0
\(91\) 7.77387 + 9.74812i 0.814923 + 1.02188i
\(92\) −0.557938 0.268689i −0.0581691 0.0280128i
\(93\) 0 0
\(94\) 3.01972 3.78661i 0.311460 0.390559i
\(95\) 0.213544 + 0.935599i 0.0219092 + 0.0959904i
\(96\) 0 0
\(97\) −2.19244 2.74924i −0.222609 0.279143i 0.657968 0.753046i \(-0.271416\pi\)
−0.880577 + 0.473903i \(0.842845\pi\)
\(98\) 3.44422 15.0901i 0.347918 1.52433i
\(99\) 0 0
\(100\) 1.02464 4.48925i 0.102464 0.448925i
\(101\) −11.4159 + 5.49760i −1.13592 + 0.547032i −0.904776 0.425887i \(-0.859962\pi\)
−0.231147 + 0.972919i \(0.574248\pi\)
\(102\) 0 0
\(103\) −0.448946 + 1.96696i −0.0442359 + 0.193810i −0.992218 0.124514i \(-0.960263\pi\)
0.947982 + 0.318324i \(0.103120\pi\)
\(104\) 8.49854 0.833350
\(105\) 0 0
\(106\) −1.49626 1.87625i −0.145330 0.182238i
\(107\) −0.127292 0.557702i −0.0123058 0.0539151i 0.968402 0.249393i \(-0.0802312\pi\)
−0.980708 + 0.195478i \(0.937374\pi\)
\(108\) 0 0
\(109\) 12.1384 15.2210i 1.16264 1.45791i 0.298682 0.954353i \(-0.403453\pi\)
0.863962 0.503557i \(-0.167976\pi\)
\(110\) 1.98839 0.957557i 0.189585 0.0912995i
\(111\) 0 0
\(112\) −6.25240 7.84026i −0.590797 0.740835i
\(113\) −1.51936 + 1.90522i −0.142929 + 0.179228i −0.848143 0.529767i \(-0.822279\pi\)
0.705214 + 0.708994i \(0.250851\pi\)
\(114\) 0 0
\(115\) −3.20083 −0.298479
\(116\) −2.37681 2.69585i −0.220681 0.250304i
\(117\) 0 0
\(118\) 14.8386 + 7.14592i 1.36601 + 0.657835i
\(119\) 8.44114 10.5849i 0.773798 0.970312i
\(120\) 0 0
\(121\) 9.63393 + 4.63945i 0.875811 + 0.421769i
\(122\) −7.52119 + 3.62201i −0.680936 + 0.327922i
\(123\) 0 0
\(124\) 1.35450 + 5.93446i 0.121638 + 0.532930i
\(125\) −1.45811 6.38840i −0.130417 0.571396i
\(126\) 0 0
\(127\) 2.04476 8.95869i 0.181443 0.794955i −0.799501 0.600665i \(-0.794903\pi\)
0.980944 0.194290i \(-0.0622403\pi\)
\(128\) −2.72519 −0.240875
\(129\) 0 0
\(130\) 9.90223 4.76866i 0.868483 0.418240i
\(131\) −11.7972 + 5.68123i −1.03073 + 0.496372i −0.871255 0.490831i \(-0.836693\pi\)
−0.159471 + 0.987203i \(0.550979\pi\)
\(132\) 0 0
\(133\) −1.25676 −0.108975
\(134\) −3.15590 + 13.8269i −0.272628 + 1.19446i
\(135\) 0 0
\(136\) −2.05343 8.99665i −0.176080 0.771456i
\(137\) −1.69127 7.40992i −0.144495 0.633072i −0.994359 0.106070i \(-0.966173\pi\)
0.849864 0.527002i \(-0.176684\pi\)
\(138\) 0 0
\(139\) −7.97635 + 3.84121i −0.676545 + 0.325807i −0.740414 0.672151i \(-0.765370\pi\)
0.0638687 + 0.997958i \(0.479656\pi\)
\(140\) 9.37036 + 4.51253i 0.791940 + 0.381378i
\(141\) 0 0
\(142\) −1.71449 + 2.14990i −0.143877 + 0.180416i
\(143\) −1.37813 0.663673i −0.115245 0.0554991i
\(144\) 0 0
\(145\) −17.1144 7.22396i −1.42127 0.599917i
\(146\) 1.05409 0.0872375
\(147\) 0 0
\(148\) 2.86083 3.58736i 0.235159 0.294879i
\(149\) −4.96925 6.23124i −0.407097 0.510483i 0.535446 0.844570i \(-0.320144\pi\)
−0.942542 + 0.334087i \(0.891572\pi\)
\(150\) 0 0
\(151\) 0.0950717 0.0457841i 0.00773683 0.00372586i −0.430011 0.902823i \(-0.641490\pi\)
0.437748 + 0.899098i \(0.355776\pi\)
\(152\) −0.534096 + 0.669735i −0.0433209 + 0.0543226i
\(153\) 0 0
\(154\) 0.643129 + 2.81773i 0.0518248 + 0.227059i
\(155\) 19.6166 + 24.5984i 1.57564 + 1.97579i
\(156\) 0 0
\(157\) −13.5037 −1.07771 −0.538857 0.842397i \(-0.681144\pi\)
−0.538857 + 0.842397i \(0.681144\pi\)
\(158\) 0.531241 2.32752i 0.0422633 0.185168i
\(159\) 0 0
\(160\) 11.1758 5.38201i 0.883528 0.425485i
\(161\) 0.932758 4.08668i 0.0735117 0.322076i
\(162\) 0 0
\(163\) 0.581624 2.54826i 0.0455563 0.199595i −0.947028 0.321150i \(-0.895931\pi\)
0.992585 + 0.121554i \(0.0387879\pi\)
\(164\) −1.18724 1.48875i −0.0927076 0.116252i
\(165\) 0 0
\(166\) 2.81803 + 12.3466i 0.218722 + 0.958282i
\(167\) 6.37129 7.98935i 0.493026 0.618235i −0.471615 0.881805i \(-0.656329\pi\)
0.964640 + 0.263570i \(0.0849001\pi\)
\(168\) 0 0
\(169\) 4.84946 + 2.33538i 0.373036 + 0.179645i
\(170\) −7.44075 9.33040i −0.570679 0.715609i
\(171\) 0 0
\(172\) −6.74589 3.24865i −0.514370 0.247707i
\(173\) −23.0919 −1.75564 −0.877822 0.478987i \(-0.841004\pi\)
−0.877822 + 0.478987i \(0.841004\pi\)
\(174\) 0 0
\(175\) 31.1690 2.35616
\(176\) 1.10841 + 0.533782i 0.0835495 + 0.0402353i
\(177\) 0 0
\(178\) −4.89927 6.14350i −0.367216 0.460474i
\(179\) 13.3241 + 6.41655i 0.995891 + 0.479596i 0.859542 0.511065i \(-0.170749\pi\)
0.136349 + 0.990661i \(0.456463\pi\)
\(180\) 0 0
\(181\) 1.80146 2.25895i 0.133901 0.167907i −0.710360 0.703838i \(-0.751468\pi\)
0.844261 + 0.535931i \(0.180039\pi\)
\(182\) 3.20280 + 14.0324i 0.237408 + 1.04015i
\(183\) 0 0
\(184\) −1.78141 2.23382i −0.131327 0.164679i
\(185\) 5.27739 23.1218i 0.388001 1.69994i
\(186\) 0 0
\(187\) −0.369586 + 1.61926i −0.0270268 + 0.118412i
\(188\) −2.52275 + 1.21489i −0.183991 + 0.0886052i
\(189\) 0 0
\(190\) −0.246513 + 1.08004i −0.0178839 + 0.0783546i
\(191\) 4.66376 0.337458 0.168729 0.985663i \(-0.446034\pi\)
0.168729 + 0.985663i \(0.446034\pi\)
\(192\) 0 0
\(193\) −9.09293 11.4022i −0.654523 0.820746i 0.338212 0.941070i \(-0.390178\pi\)
−0.992735 + 0.120324i \(0.961607\pi\)
\(194\) −0.903278 3.95752i −0.0648516 0.284133i
\(195\) 0 0
\(196\) −5.57926 + 6.99618i −0.398519 + 0.499727i
\(197\) 2.60517 1.25458i 0.185611 0.0893855i −0.338770 0.940869i \(-0.610011\pi\)
0.524381 + 0.851484i \(0.324297\pi\)
\(198\) 0 0
\(199\) 2.52561 + 3.16701i 0.179036 + 0.224504i 0.863249 0.504778i \(-0.168426\pi\)
−0.684213 + 0.729282i \(0.739854\pi\)
\(200\) 13.2461 16.6101i 0.936643 1.17451i
\(201\) 0 0
\(202\) −14.6269 −1.02914
\(203\) 14.2106 19.7458i 0.997387 1.38588i
\(204\) 0 0
\(205\) −8.86755 4.27039i −0.619336 0.298257i
\(206\) −1.45212 + 1.82091i −0.101174 + 0.126869i
\(207\) 0 0
\(208\) 5.51991 + 2.65825i 0.382737 + 0.184316i
\(209\) 0.138911 0.0668958i 0.00960865 0.00462728i
\(210\) 0 0
\(211\) 2.93029 + 12.8385i 0.201730 + 0.883836i 0.969883 + 0.243570i \(0.0783186\pi\)
−0.768154 + 0.640266i \(0.778824\pi\)
\(212\) 0.308728 + 1.35263i 0.0212036 + 0.0928989i
\(213\) 0 0
\(214\) 0.146944 0.643805i 0.0100449 0.0440096i
\(215\) −38.7004 −2.63935
\(216\) 0 0
\(217\) −37.1227 + 17.8774i −2.52006 + 1.21360i
\(218\) 20.2485 9.75115i 1.37140 0.660431i
\(219\) 0 0
\(220\) −1.27591 −0.0860217
\(221\) −1.84055 + 8.06397i −0.123809 + 0.542441i
\(222\) 0 0
\(223\) 3.39933 + 14.8934i 0.227636 + 0.997338i 0.951561 + 0.307459i \(0.0994788\pi\)
−0.723925 + 0.689878i \(0.757664\pi\)
\(224\) 3.61474 + 15.8372i 0.241520 + 1.05817i
\(225\) 0 0
\(226\) −2.53450 + 1.22055i −0.168593 + 0.0811899i
\(227\) −13.2896 6.39993i −0.882061 0.424778i −0.0626842 0.998033i \(-0.519966\pi\)
−0.819377 + 0.573255i \(0.805680\pi\)
\(228\) 0 0
\(229\) 6.46791 8.11051i 0.427412 0.535957i −0.520765 0.853700i \(-0.674353\pi\)
0.948177 + 0.317742i \(0.102925\pi\)
\(230\) −3.32908 1.60320i −0.219513 0.105712i
\(231\) 0 0
\(232\) −4.48344 15.9644i −0.294352 1.04811i
\(233\) −0.280226 −0.0183582 −0.00917911 0.999958i \(-0.502922\pi\)
−0.00917911 + 0.999958i \(0.502922\pi\)
\(234\) 0 0
\(235\) −9.02361 + 11.3152i −0.588635 + 0.738125i
\(236\) −5.93666 7.44433i −0.386443 0.484585i
\(237\) 0 0
\(238\) 14.0810 6.78104i 0.912734 0.439550i
\(239\) −4.01459 + 5.03414i −0.259682 + 0.325631i −0.894532 0.447005i \(-0.852491\pi\)
0.634849 + 0.772636i \(0.281062\pi\)
\(240\) 0 0
\(241\) 3.43240 + 15.0383i 0.221101 + 0.968705i 0.956651 + 0.291235i \(0.0940663\pi\)
−0.735551 + 0.677470i \(0.763077\pi\)
\(242\) 7.69617 + 9.65069i 0.494728 + 0.620370i
\(243\) 0 0
\(244\) 4.82619 0.308965
\(245\) −10.2921 + 45.0927i −0.657539 + 2.88087i
\(246\) 0 0
\(247\) 0.691779 0.333143i 0.0440169 0.0211974i
\(248\) −6.24939 + 27.3804i −0.396837 + 1.73866i
\(249\) 0 0
\(250\) 1.68322 7.37469i 0.106456 0.466416i
\(251\) 2.05218 + 2.57336i 0.129533 + 0.162429i 0.842368 0.538902i \(-0.181161\pi\)
−0.712836 + 0.701331i \(0.752589\pi\)
\(252\) 0 0
\(253\) 0.114431 + 0.501353i 0.00719419 + 0.0315198i
\(254\) 6.61383 8.29347i 0.414988 0.520379i
\(255\) 0 0
\(256\) 12.6455 + 6.08973i 0.790341 + 0.380608i
\(257\) 0.246680 + 0.309326i 0.0153874 + 0.0192953i 0.789466 0.613795i \(-0.210358\pi\)
−0.774078 + 0.633090i \(0.781786\pi\)
\(258\) 0 0
\(259\) 27.9830 + 13.4759i 1.73878 + 0.837351i
\(260\) −6.35406 −0.394062
\(261\) 0 0
\(262\) −15.1154 −0.933835
\(263\) −7.33709 3.53336i −0.452425 0.217876i 0.193773 0.981046i \(-0.437927\pi\)
−0.646198 + 0.763170i \(0.723642\pi\)
\(264\) 0 0
\(265\) 4.47117 + 5.60667i 0.274662 + 0.344415i
\(266\) −1.30712 0.629474i −0.0801445 0.0385955i
\(267\) 0 0
\(268\) 5.11222 6.41052i 0.312278 0.391585i
\(269\) 1.99769 + 8.75246i 0.121801 + 0.533647i 0.998605 + 0.0527984i \(0.0168141\pi\)
−0.876804 + 0.480848i \(0.840329\pi\)
\(270\) 0 0
\(271\) 3.14213 + 3.94011i 0.190871 + 0.239344i 0.868054 0.496470i \(-0.165371\pi\)
−0.677183 + 0.735815i \(0.736799\pi\)
\(272\) 1.48032 6.48573i 0.0897579 0.393255i
\(273\) 0 0
\(274\) 1.95238 8.55391i 0.117947 0.516761i
\(275\) −3.44513 + 1.65909i −0.207749 + 0.100047i
\(276\) 0 0
\(277\) −0.452859 + 1.98410i −0.0272097 + 0.119213i −0.986709 0.162498i \(-0.948045\pi\)
0.959499 + 0.281711i \(0.0909020\pi\)
\(278\) −10.2199 −0.612948
\(279\) 0 0
\(280\) 29.9181 + 37.5162i 1.78795 + 2.24202i
\(281\) 5.30139 + 23.2269i 0.316255 + 1.38560i 0.844065 + 0.536240i \(0.180156\pi\)
−0.527811 + 0.849362i \(0.676987\pi\)
\(282\) 0 0
\(283\) −9.34352 + 11.7164i −0.555414 + 0.696468i −0.977703 0.209994i \(-0.932656\pi\)
0.422288 + 0.906462i \(0.361227\pi\)
\(284\) 1.43233 0.689774i 0.0849932 0.0409306i
\(285\) 0 0
\(286\) −1.10093 1.38053i −0.0650996 0.0816323i
\(287\) 8.03636 10.0773i 0.474371 0.594843i
\(288\) 0 0
\(289\) −8.01868 −0.471687
\(290\) −14.1818 16.0855i −0.832786 0.944572i
\(291\) 0 0
\(292\) −0.549057 0.264412i −0.0321311 0.0154735i
\(293\) −18.9354 + 23.7443i −1.10622 + 1.38715i −0.192261 + 0.981344i \(0.561582\pi\)
−0.913957 + 0.405810i \(0.866989\pi\)
\(294\) 0 0
\(295\) −44.3413 21.3536i −2.58165 1.24326i
\(296\) 19.0735 9.18532i 1.10863 0.533886i
\(297\) 0 0
\(298\) −2.04731 8.96985i −0.118598 0.519610i
\(299\) 0.569868 + 2.49675i 0.0329563 + 0.144391i
\(300\) 0 0
\(301\) 11.2778 49.4111i 0.650039 2.84801i
\(302\) 0.121813 0.00700954
\(303\) 0 0
\(304\) −0.556387 + 0.267942i −0.0319110 + 0.0153675i
\(305\) 22.4750 10.8234i 1.28692 0.619746i
\(306\) 0 0
\(307\) 2.10479 0.120127 0.0600635 0.998195i \(-0.480870\pi\)
0.0600635 + 0.998195i \(0.480870\pi\)
\(308\) 0.371814 1.62903i 0.0211861 0.0928223i
\(309\) 0 0
\(310\) 8.08196 + 35.4094i 0.459025 + 2.01112i
\(311\) 3.75530 + 16.4530i 0.212943 + 0.932965i 0.962555 + 0.271087i \(0.0873832\pi\)
−0.749611 + 0.661878i \(0.769760\pi\)
\(312\) 0 0
\(313\) −13.3609 + 6.43428i −0.755203 + 0.363687i −0.771541 0.636180i \(-0.780514\pi\)
0.0163375 + 0.999867i \(0.494799\pi\)
\(314\) −14.0448 6.76361i −0.792593 0.381693i
\(315\) 0 0
\(316\) −0.860555 + 1.07910i −0.0484100 + 0.0607042i
\(317\) −4.96094 2.38906i −0.278634 0.134183i 0.289348 0.957224i \(-0.406561\pi\)
−0.567982 + 0.823041i \(0.692276\pi\)
\(318\) 0 0
\(319\) −0.519661 + 2.93892i −0.0290954 + 0.164548i
\(320\) 29.6341 1.65660
\(321\) 0 0
\(322\) 3.01703 3.78323i 0.168132 0.210831i
\(323\) −0.519818 0.651831i −0.0289234 0.0362688i
\(324\) 0 0
\(325\) −17.1569 + 8.26231i −0.951691 + 0.458310i
\(326\) 1.88127 2.35904i 0.104194 0.130655i
\(327\) 0 0
\(328\) −1.95496 8.56523i −0.107944 0.472936i
\(329\) −11.8172 14.8184i −0.651506 0.816963i
\(330\) 0 0
\(331\) −5.88833 −0.323652 −0.161826 0.986819i \(-0.551738\pi\)
−0.161826 + 0.986819i \(0.551738\pi\)
\(332\) 1.62920 7.13798i 0.0894138 0.391747i
\(333\) 0 0
\(334\) 10.6282 5.11827i 0.581549 0.280059i
\(335\) 9.43054 41.3179i 0.515246 2.25744i
\(336\) 0 0
\(337\) −3.87848 + 16.9927i −0.211274 + 0.925652i 0.752428 + 0.658674i \(0.228882\pi\)
−0.963703 + 0.266978i \(0.913975\pi\)
\(338\) 3.87405 + 4.85790i 0.210720 + 0.264235i
\(339\) 0 0
\(340\) 1.53527 + 6.72648i 0.0832619 + 0.364794i
\(341\) 3.15161 3.95199i 0.170669 0.214012i
\(342\) 0 0
\(343\) −26.0821 12.5605i −1.40830 0.678201i
\(344\) −21.5386 27.0086i −1.16128 1.45620i
\(345\) 0 0
\(346\) −24.0171 11.5660i −1.29117 0.621794i
\(347\) 2.81562 0.151150 0.0755751 0.997140i \(-0.475921\pi\)
0.0755751 + 0.997140i \(0.475921\pi\)
\(348\) 0 0
\(349\) 23.4949 1.25765 0.628826 0.777546i \(-0.283536\pi\)
0.628826 + 0.777546i \(0.283536\pi\)
\(350\) 32.4179 + 15.6116i 1.73281 + 0.834477i
\(351\) 0 0
\(352\) −1.24254 1.55809i −0.0662274 0.0830465i
\(353\) 14.5563 + 7.00993i 0.774752 + 0.373101i 0.779108 0.626889i \(-0.215672\pi\)
−0.00435584 + 0.999991i \(0.501387\pi\)
\(354\) 0 0
\(355\) 5.12329 6.42440i 0.271916 0.340972i
\(356\) 1.01088 + 4.42897i 0.0535767 + 0.234735i
\(357\) 0 0
\(358\) 10.6441 + 13.3473i 0.562559 + 0.705426i
\(359\) −1.92263 + 8.42361i −0.101473 + 0.444581i 0.898511 + 0.438950i \(0.144650\pi\)
−0.999984 + 0.00563099i \(0.998208\pi\)
\(360\) 0 0
\(361\) 4.21068 18.4482i 0.221615 0.970957i
\(362\) 3.00508 1.44717i 0.157943 0.0760615i
\(363\) 0 0
\(364\) 1.85165 8.11260i 0.0970527 0.425216i
\(365\) −3.14988 −0.164872
\(366\) 0 0
\(367\) 8.38364 + 10.5127i 0.437622 + 0.548761i 0.950915 0.309453i \(-0.100146\pi\)
−0.513293 + 0.858214i \(0.671574\pi\)
\(368\) −0.458336 2.00810i −0.0238924 0.104679i
\(369\) 0 0
\(370\) 17.0698 21.4049i 0.887418 1.11279i
\(371\) −8.46131 + 4.07475i −0.439289 + 0.211551i
\(372\) 0 0
\(373\) −1.99095 2.49657i −0.103088 0.129268i 0.727611 0.685989i \(-0.240630\pi\)
−0.830699 + 0.556722i \(0.812059\pi\)
\(374\) −1.19543 + 1.49903i −0.0618144 + 0.0775128i
\(375\) 0 0
\(376\) −12.9188 −0.666238
\(377\) −2.58793 + 14.6359i −0.133285 + 0.753788i
\(378\) 0 0
\(379\) 14.8677 + 7.15991i 0.763703 + 0.367780i 0.774839 0.632158i \(-0.217831\pi\)
−0.0111367 + 0.999938i \(0.503545\pi\)
\(380\) 0.399325 0.500737i 0.0204849 0.0256873i
\(381\) 0 0
\(382\) 4.85062 + 2.33594i 0.248179 + 0.119517i
\(383\) 1.42189 0.684747i 0.0726553 0.0349889i −0.397203 0.917731i \(-0.630019\pi\)
0.469859 + 0.882742i \(0.344305\pi\)
\(384\) 0 0
\(385\) −1.92182 8.42003i −0.0979449 0.429125i
\(386\) −3.74625 16.4134i −0.190679 0.835420i
\(387\) 0 0
\(388\) −0.522215 + 2.28797i −0.0265114 + 0.116154i
\(389\) 14.0108 0.710375 0.355188 0.934795i \(-0.384417\pi\)
0.355188 + 0.934795i \(0.384417\pi\)
\(390\) 0 0
\(391\) 2.50540 1.20654i 0.126703 0.0610171i
\(392\) −37.1977 + 17.9135i −1.87877 + 0.904766i
\(393\) 0 0
\(394\) 3.33794 0.168163
\(395\) −1.58747 + 6.95517i −0.0798744 + 0.349952i
\(396\) 0 0
\(397\) −5.32177 23.3162i −0.267092 1.17021i −0.913378 0.407112i \(-0.866536\pi\)
0.646286 0.763095i \(-0.276321\pi\)
\(398\) 1.04054 + 4.55891i 0.0521576 + 0.228517i
\(399\) 0 0
\(400\) 13.7990 6.64525i 0.689950 0.332262i
\(401\) −32.3263 15.5675i −1.61430 0.777406i −0.614368 0.789019i \(-0.710589\pi\)
−0.999933 + 0.0116132i \(0.996303\pi\)
\(402\) 0 0
\(403\) 15.6951 19.6810i 0.781829 0.980383i
\(404\) 7.61885 + 3.66904i 0.379052 + 0.182542i
\(405\) 0 0
\(406\) 24.6700 13.4193i 1.22435 0.665987i
\(407\) −3.81028 −0.188869
\(408\) 0 0
\(409\) 9.36367 11.7417i 0.463004 0.580588i −0.494439 0.869212i \(-0.664626\pi\)
0.957442 + 0.288624i \(0.0931978\pi\)
\(410\) −7.08394 8.88298i −0.349851 0.438699i
\(411\) 0 0
\(412\) 1.21314 0.584219i 0.0597673 0.0287824i
\(413\) 40.1850 50.3904i 1.97737 2.47955i
\(414\) 0 0
\(415\) −8.42092 36.8945i −0.413367 1.81108i
\(416\) −6.18786 7.75934i −0.303385 0.380433i
\(417\) 0 0
\(418\) 0.177983 0.00870541
\(419\) 8.22309 36.0277i 0.401724 1.76007i −0.218691 0.975794i \(-0.570179\pi\)
0.620415 0.784274i \(-0.286964\pi\)
\(420\) 0 0
\(421\) −1.15916 + 0.558222i −0.0564940 + 0.0272061i −0.461917 0.886923i \(-0.652838\pi\)
0.405423 + 0.914129i \(0.367124\pi\)
\(422\) −3.38269 + 14.8206i −0.164667 + 0.721453i
\(423\) 0 0
\(424\) −1.42441 + 6.24075i −0.0691755 + 0.303078i
\(425\) 12.8920 + 16.1661i 0.625355 + 0.784170i
\(426\) 0 0
\(427\) 7.26938 + 31.8492i 0.351790 + 1.54129i
\(428\) −0.238034 + 0.298485i −0.0115058 + 0.0144278i
\(429\) 0 0
\(430\) −40.2510 19.3839i −1.94108 0.934774i
\(431\) 15.7634 + 19.7667i 0.759298 + 0.952130i 0.999829 0.0185118i \(-0.00589284\pi\)
−0.240531 + 0.970642i \(0.577321\pi\)
\(432\) 0 0
\(433\) 9.33295 + 4.49451i 0.448513 + 0.215993i 0.644485 0.764617i \(-0.277072\pi\)
−0.195972 + 0.980610i \(0.562786\pi\)
\(434\) −47.5644 −2.28316
\(435\) 0 0
\(436\) −12.9930 −0.622253
\(437\) −0.232572 0.112001i −0.0111254 0.00535773i
\(438\) 0 0
\(439\) −8.35161 10.4726i −0.398601 0.499829i 0.541512 0.840693i \(-0.317852\pi\)
−0.940113 + 0.340864i \(0.889281\pi\)
\(440\) −5.30381 2.55418i −0.252849 0.121766i
\(441\) 0 0
\(442\) −5.95329 + 7.46519i −0.283169 + 0.355083i
\(443\) 6.85215 + 30.0213i 0.325556 + 1.42635i 0.827506 + 0.561456i \(0.189759\pi\)
−0.501951 + 0.864896i \(0.667384\pi\)
\(444\) 0 0
\(445\) 14.6402 + 18.3582i 0.694010 + 0.870261i
\(446\) −3.92414 + 17.1928i −0.185813 + 0.814102i
\(447\) 0 0
\(448\) −8.63573 + 37.8356i −0.408000 + 1.78756i
\(449\) 5.54036 2.66810i 0.261466 0.125915i −0.298559 0.954391i \(-0.596506\pi\)
0.560025 + 0.828476i \(0.310792\pi\)
\(450\) 0 0
\(451\) −0.351863 + 1.54161i −0.0165686 + 0.0725917i
\(452\) 1.62634 0.0764965
\(453\) 0 0
\(454\) −10.6165 13.3127i −0.498259 0.624797i
\(455\) −9.57071 41.9320i −0.448682 1.96580i
\(456\) 0 0
\(457\) −10.6275 + 13.3265i −0.497134 + 0.623386i −0.965580 0.260106i \(-0.916242\pi\)
0.468446 + 0.883492i \(0.344814\pi\)
\(458\) 10.7894 5.19589i 0.504154 0.242788i
\(459\) 0 0
\(460\) 1.33190 + 1.67015i 0.0621001 + 0.0778711i
\(461\) 10.3278 12.9506i 0.481012 0.603170i −0.480817 0.876821i \(-0.659660\pi\)
0.961829 + 0.273651i \(0.0882313\pi\)
\(462\) 0 0
\(463\) 28.9072 1.34343 0.671715 0.740809i \(-0.265558\pi\)
0.671715 + 0.740809i \(0.265558\pi\)
\(464\) 2.08143 11.7714i 0.0966280 0.546476i
\(465\) 0 0
\(466\) −0.291454 0.140357i −0.0135013 0.00650190i
\(467\) −14.1479 + 17.7409i −0.654688 + 0.820953i −0.992753 0.120170i \(-0.961656\pi\)
0.338065 + 0.941123i \(0.390228\pi\)
\(468\) 0 0
\(469\) 50.0048 + 24.0810i 2.30901 + 1.11196i
\(470\) −15.0526 + 7.24896i −0.694326 + 0.334370i
\(471\) 0 0
\(472\) −9.77556 42.8295i −0.449957 1.97139i
\(473\) 1.38355 + 6.06173i 0.0636158 + 0.278719i
\(474\) 0 0
\(475\) 0.427114 1.87131i 0.0195973 0.0858616i
\(476\) −9.03548 −0.414140
\(477\) 0 0
\(478\) −6.69689 + 3.22505i −0.306309 + 0.147511i
\(479\) 5.87751 2.83046i 0.268550 0.129327i −0.294763 0.955570i \(-0.595241\pi\)
0.563313 + 0.826243i \(0.309526\pi\)
\(480\) 0 0
\(481\) −18.9753 −0.865200
\(482\) −3.96232 + 17.3601i −0.180479 + 0.790730i
\(483\) 0 0
\(484\) −1.58798 6.95738i −0.0721807 0.316244i
\(485\) 2.69920 + 11.8260i 0.122564 + 0.536990i
\(486\) 0 0
\(487\) 21.1411 10.1810i 0.957996 0.461346i 0.111513 0.993763i \(-0.464430\pi\)
0.846482 + 0.532417i \(0.178716\pi\)
\(488\) 20.0619 + 9.66132i 0.908161 + 0.437347i
\(489\) 0 0
\(490\) −33.2900 + 41.7444i −1.50389 + 1.88582i
\(491\) −27.0162 13.0103i −1.21923 0.587148i −0.290130 0.956987i \(-0.593699\pi\)
−0.929096 + 0.369839i \(0.879413\pi\)
\(492\) 0 0
\(493\) 16.1190 0.796738i 0.725965 0.0358833i
\(494\) 0.886358 0.0398791
\(495\) 0 0
\(496\) −12.6233 + 15.8292i −0.566805 + 0.710750i
\(497\) 6.70942 + 8.41334i 0.300958 + 0.377390i
\(498\) 0 0
\(499\) −13.9764 + 6.73068i −0.625669 + 0.301307i −0.719724 0.694261i \(-0.755732\pi\)
0.0940543 + 0.995567i \(0.470017\pi\)
\(500\) −2.72664 + 3.41910i −0.121939 + 0.152907i
\(501\) 0 0
\(502\) 0.845492 + 3.70434i 0.0377361 + 0.165333i
\(503\) 9.15733 + 11.4829i 0.408305 + 0.511999i 0.942885 0.333120i \(-0.108101\pi\)
−0.534579 + 0.845118i \(0.679530\pi\)
\(504\) 0 0
\(505\) 43.7085 1.94500
\(506\) −0.132097 + 0.578755i −0.00587244 + 0.0257288i
\(507\) 0 0
\(508\) −5.52537 + 2.66088i −0.245149 + 0.118057i
\(509\) 7.27387 31.8689i 0.322408 1.41256i −0.510845 0.859673i \(-0.670667\pi\)
0.833254 0.552891i \(-0.186475\pi\)
\(510\) 0 0
\(511\) 0.917911 4.02163i 0.0406060 0.177906i
\(512\) 13.5002 + 16.9287i 0.596631 + 0.748151i
\(513\) 0 0
\(514\) 0.101631 + 0.445275i 0.00448275 + 0.0196402i
\(515\) 4.33928 5.44129i 0.191212 0.239772i
\(516\) 0 0
\(517\) 2.09493 + 1.00886i 0.0921349 + 0.0443698i
\(518\) 22.3545 + 28.0317i 0.982201 + 1.23164i
\(519\) 0 0
\(520\) −26.4131 12.7199i −1.15829 0.557804i
\(521\) 33.5048 1.46787 0.733937 0.679218i \(-0.237681\pi\)
0.733937 + 0.679218i \(0.237681\pi\)
\(522\) 0 0
\(523\) −23.3879 −1.02268 −0.511341 0.859378i \(-0.670851\pi\)
−0.511341 + 0.859378i \(0.670851\pi\)
\(524\) 7.87333 + 3.79160i 0.343948 + 0.165637i
\(525\) 0 0
\(526\) −5.86132 7.34986i −0.255566 0.320469i
\(527\) −24.6268 11.8597i −1.07276 0.516615i
\(528\) 0 0
\(529\) −13.8035 + 17.3090i −0.600150 + 0.752564i
\(530\) 1.84210 + 8.07079i 0.0800159 + 0.350573i
\(531\) 0 0
\(532\) 0.522952 + 0.655761i 0.0226729 + 0.0284309i
\(533\) −1.75229 + 7.67727i −0.0759000 + 0.332540i
\(534\) 0 0
\(535\) −0.439103 + 1.92384i −0.0189841 + 0.0831747i
\(536\) 34.0838 16.4139i 1.47220 0.708972i
\(537\) 0 0
\(538\) −2.30611 + 10.1037i −0.0994234 + 0.435602i
\(539\) 7.43091 0.320072
\(540\) 0 0
\(541\) −9.10698 11.4198i −0.391540 0.490975i 0.546521 0.837445i \(-0.315952\pi\)
−0.938061 + 0.346470i \(0.887380\pi\)
\(542\) 1.29455 + 5.67177i 0.0556055 + 0.243624i
\(543\) 0 0
\(544\) −6.71900 + 8.42536i −0.288075 + 0.361234i
\(545\) −60.5071 + 29.1387i −2.59184 + 1.24816i
\(546\) 0 0
\(547\) 7.68546 + 9.63726i 0.328607 + 0.412060i 0.918500 0.395422i \(-0.129402\pi\)
−0.589893 + 0.807481i \(0.700830\pi\)
\(548\) −3.16264 + 3.96583i −0.135101 + 0.169412i
\(549\) 0 0
\(550\) −4.41415 −0.188220
\(551\) −0.990756 1.12375i −0.0422076 0.0478732i
\(552\) 0 0
\(553\) −8.41746 4.05363i −0.357947 0.172378i
\(554\) −1.46478 + 1.83678i −0.0622326 + 0.0780372i
\(555\) 0 0
\(556\) 5.32333 + 2.56358i 0.225760 + 0.108720i
\(557\) −22.4253 + 10.7994i −0.950190 + 0.457587i −0.843753 0.536732i \(-0.819659\pi\)
−0.106437 + 0.994319i \(0.533944\pi\)
\(558\) 0 0
\(559\) 6.89013 + 30.1876i 0.291421 + 1.27680i
\(560\) 7.69758 + 33.7253i 0.325282 + 1.42515i
\(561\) 0 0
\(562\) −6.11986 + 26.8129i −0.258151 + 1.13103i
\(563\) −16.2217 −0.683662 −0.341831 0.939762i \(-0.611047\pi\)
−0.341831 + 0.939762i \(0.611047\pi\)
\(564\) 0 0
\(565\) 7.57368 3.64729i 0.318627 0.153443i
\(566\) −15.5863 + 7.50596i −0.655140 + 0.315499i
\(567\) 0 0
\(568\) 7.33486 0.307764
\(569\) −9.97556 + 43.7058i −0.418197 + 1.83224i 0.124378 + 0.992235i \(0.460307\pi\)
−0.542575 + 0.840007i \(0.682551\pi\)
\(570\) 0 0
\(571\) 3.78155 + 16.5681i 0.158253 + 0.693352i 0.990335 + 0.138699i \(0.0442920\pi\)
−0.832081 + 0.554653i \(0.812851\pi\)
\(572\) 0.227160 + 0.995251i 0.00949802 + 0.0416135i
\(573\) 0 0
\(574\) 13.4058 6.45587i 0.559545 0.269463i
\(575\) 5.76804 + 2.77774i 0.240544 + 0.115840i
\(576\) 0 0
\(577\) −3.45830 + 4.33657i −0.143971 + 0.180534i −0.848589 0.529053i \(-0.822547\pi\)
0.704618 + 0.709587i \(0.251119\pi\)
\(578\) −8.33997 4.01632i −0.346897 0.167057i
\(579\) 0 0
\(580\) 3.35211 + 11.9360i 0.139189 + 0.495616i
\(581\) 49.5592 2.05606
\(582\) 0 0
\(583\) 0.718340 0.900769i 0.0297506 0.0373061i
\(584\) −1.75305 2.19826i −0.0725419 0.0909647i
\(585\) 0 0
\(586\) −31.5869 + 15.2114i −1.30484 + 0.628379i
\(587\) 11.9358 14.9671i 0.492644 0.617756i −0.471908 0.881648i \(-0.656435\pi\)
0.964552 + 0.263891i \(0.0850060\pi\)
\(588\) 0 0
\(589\) 0.564613 + 2.47373i 0.0232645 + 0.101928i
\(590\) −35.4225 44.4184i −1.45832 1.82868i
\(591\) 0 0
\(592\) 15.2616 0.627246
\(593\) 7.05758 30.9213i 0.289820 1.26978i −0.594952 0.803761i \(-0.702829\pi\)
0.884772 0.466024i \(-0.154314\pi\)
\(594\) 0 0
\(595\) −42.0772 + 20.2633i −1.72500 + 0.830715i
\(596\) −1.18362 + 5.18577i −0.0484829 + 0.212418i
\(597\) 0 0
\(598\) −0.657848 + 2.88222i −0.0269014 + 0.117863i
\(599\) 29.4026 + 36.8696i 1.20136 + 1.50645i 0.810227 + 0.586117i \(0.199344\pi\)
0.391129 + 0.920336i \(0.372085\pi\)
\(600\) 0 0
\(601\) −3.29442 14.4338i −0.134382 0.588766i −0.996612 0.0822488i \(-0.973790\pi\)
0.862230 0.506517i \(-0.169067\pi\)
\(602\) 36.4781 45.7421i 1.48674 1.86431i
\(603\) 0 0
\(604\) −0.0634499 0.0305559i −0.00258174 0.00124330i
\(605\) −22.9979 28.8385i −0.934998 1.17245i
\(606\) 0 0
\(607\) −10.5442 5.07781i −0.427975 0.206102i 0.207481 0.978239i \(-0.433474\pi\)
−0.635456 + 0.772137i \(0.719188\pi\)
\(608\) 1.00036 0.0405700
\(609\) 0 0
\(610\) 28.7967 1.16594
\(611\) 10.4328 + 5.02418i 0.422066 + 0.203256i
\(612\) 0 0
\(613\) −28.6483 35.9238i −1.15709 1.45095i −0.870003 0.493046i \(-0.835883\pi\)
−0.287091 0.957903i \(-0.592688\pi\)
\(614\) 2.18913 + 1.05423i 0.0883460 + 0.0425452i
\(615\) 0 0
\(616\) 4.80666 6.02736i 0.193666 0.242849i
\(617\) −9.15351 40.1041i −0.368506 1.61453i −0.730885 0.682501i \(-0.760892\pi\)
0.362378 0.932031i \(-0.381965\pi\)
\(618\) 0 0
\(619\) −1.85196 2.32229i −0.0744367 0.0933407i 0.743219 0.669048i \(-0.233298\pi\)
−0.817656 + 0.575708i \(0.804727\pi\)
\(620\) 4.67245 20.4713i 0.187650 0.822149i
\(621\) 0 0
\(622\) −4.33507 + 18.9932i −0.173820 + 0.761557i
\(623\) −27.7053 + 13.3421i −1.10999 + 0.534542i
\(624\) 0 0
\(625\) 2.64663 11.5956i 0.105865 0.463825i
\(626\) −17.1190 −0.684212
\(627\) 0 0
\(628\) 5.61905 + 7.04606i 0.224224 + 0.281168i
\(629\) 4.58483 + 20.0875i 0.182809 + 0.800940i
\(630\) 0 0
\(631\) 13.4129 16.8192i 0.533959 0.669563i −0.439549 0.898219i \(-0.644862\pi\)
0.973507 + 0.228656i \(0.0734330\pi\)
\(632\) −5.73743 + 2.76300i −0.228223 + 0.109906i
\(633\) 0 0
\(634\) −3.96310 4.96957i −0.157395 0.197367i
\(635\) −19.7636 + 24.7828i −0.784296 + 0.983476i
\(636\) 0 0
\(637\) 37.0062 1.46624
\(638\) −2.01250 + 2.79639i −0.0796756 + 0.110710i
\(639\) 0 0
\(640\) 8.46978 + 4.07883i 0.334797 + 0.161230i
\(641\) 20.0815 25.1814i 0.793172 0.994606i −0.206697 0.978405i \(-0.566271\pi\)
0.999869 0.0162011i \(-0.00515721\pi\)
\(642\) 0 0
\(643\) −35.1799 16.9417i −1.38736 0.668117i −0.416803 0.908997i \(-0.636850\pi\)
−0.970555 + 0.240880i \(0.922564\pi\)
\(644\) −2.52051 + 1.21381i −0.0993218 + 0.0478309i
\(645\) 0 0
\(646\) −0.214163 0.938308i −0.00842612 0.0369173i
\(647\) −0.917446 4.01959i −0.0360685 0.158027i 0.953687 0.300802i \(-0.0972544\pi\)
−0.989755 + 0.142776i \(0.954397\pi\)
\(648\) 0 0
\(649\) −1.75945 + 7.70867i −0.0690646 + 0.302592i
\(650\) −21.9826 −0.862229
\(651\) 0 0
\(652\) −1.57167 + 0.756875i −0.0615512 + 0.0296415i
\(653\) −13.7671 + 6.62990i −0.538749 + 0.259448i −0.683412 0.730033i \(-0.739505\pi\)
0.144663 + 0.989481i \(0.453790\pi\)
\(654\) 0 0
\(655\) 45.1684 1.76488
\(656\) 1.40934 6.17471i 0.0550254 0.241082i
\(657\) 0 0
\(658\) −4.86866 21.3310i −0.189800 0.831569i
\(659\) −7.68022 33.6492i −0.299179 1.31079i −0.871353 0.490656i \(-0.836757\pi\)
0.572175 0.820132i \(-0.306100\pi\)
\(660\) 0 0
\(661\) −10.7766 + 5.18973i −0.419160 + 0.201857i −0.631562 0.775325i \(-0.717586\pi\)
0.212401 + 0.977182i \(0.431872\pi\)
\(662\) −6.12425 2.94928i −0.238026 0.114627i
\(663\) 0 0
\(664\) 21.0616 26.4104i 0.817347 1.02492i
\(665\) 3.90597 + 1.88101i 0.151467 + 0.0729426i
\(666\) 0 0
\(667\) 4.38948 2.38766i 0.169961 0.0924506i
\(668\) −6.81990 −0.263870
\(669\) 0 0
\(670\) 30.5033 38.2499i 1.17845 1.47772i
\(671\) −2.49878 3.13338i −0.0964645 0.120963i
\(672\) 0 0
\(673\) 15.9364 7.67456i 0.614303 0.295833i −0.100741 0.994913i \(-0.532121\pi\)
0.715043 + 0.699080i \(0.246407\pi\)
\(674\) −12.5450 + 15.7310i −0.483216 + 0.605934i
\(675\) 0 0
\(676\) −0.799345 3.50216i −0.0307440 0.134698i
\(677\) −18.5642 23.2788i −0.713480 0.894675i 0.284469 0.958685i \(-0.408183\pi\)
−0.997949 + 0.0640097i \(0.979611\pi\)
\(678\) 0 0
\(679\) −15.8855 −0.609629
\(680\) −7.08344 + 31.0346i −0.271638 + 1.19012i
\(681\) 0 0
\(682\) 5.25732 2.53179i 0.201313 0.0969473i
\(683\) −3.77624 + 16.5448i −0.144494 + 0.633069i 0.849865 + 0.527000i \(0.176683\pi\)
−0.994359 + 0.106068i \(0.966174\pi\)
\(684\) 0 0
\(685\) −5.83414 + 25.5611i −0.222911 + 0.976638i
\(686\) −20.8360 26.1275i −0.795520 0.997551i
\(687\) 0 0
\(688\) −5.54162 24.2794i −0.211272 0.925645i
\(689\) 3.57735 4.48586i 0.136286 0.170898i
\(690\) 0 0
\(691\) 22.2454 + 10.7128i 0.846254 + 0.407534i 0.806186 0.591662i \(-0.201528\pi\)
0.0400683 + 0.999197i \(0.487242\pi\)
\(692\) 9.60878 + 12.0490i 0.365271 + 0.458036i
\(693\) 0 0
\(694\) 2.92843 + 1.41026i 0.111162 + 0.0535327i
\(695\) 30.5394 1.15842
\(696\) 0 0
\(697\) 8.55063 0.323878
\(698\) 24.4363 + 11.7679i 0.924926 + 0.445421i
\(699\) 0 0
\(700\) −12.9698 16.2636i −0.490211 0.614705i
\(701\) 22.7891 + 10.9746i 0.860732 + 0.414507i 0.811550 0.584283i \(-0.198624\pi\)
0.0491820 + 0.998790i \(0.484339\pi\)
\(702\) 0 0
\(703\) 1.19251 1.49537i 0.0449765 0.0563988i
\(704\) −1.05943 4.64166i −0.0399287 0.174939i
\(705\) 0 0
\(706\) 11.6284 + 14.5816i 0.437642 + 0.548786i
\(707\) −12.7372 + 55.8051i −0.479030 + 2.09877i
\(708\) 0 0
\(709\) −0.443854 + 1.94465i −0.0166693 + 0.0730329i −0.982578 0.185848i \(-0.940497\pi\)
0.965909 + 0.258881i \(0.0833538\pi\)
\(710\) 8.54635 4.11571i 0.320739 0.154460i
\(711\) 0 0
\(712\) −4.66401 + 20.4344i −0.174791 + 0.765811i
\(713\) −8.46302 −0.316943
\(714\) 0 0
\(715\) 3.28984 + 4.12533i 0.123033 + 0.154279i
\(716\) −2.19624 9.62234i −0.0820772 0.359604i
\(717\) 0 0
\(718\) −6.21880 + 7.79813i −0.232084 + 0.291024i
\(719\) 5.69960 2.74478i 0.212559 0.102363i −0.324575 0.945860i \(-0.605221\pi\)
0.537134 + 0.843497i \(0.319507\pi\)
\(720\) 0 0
\(721\) 5.68269 + 7.12586i 0.211634 + 0.265381i
\(722\) 13.6195 17.0783i 0.506866 0.635590i
\(723\) 0 0
\(724\) −1.92830 −0.0716646
\(725\) 24.5718 + 27.8701i 0.912574 + 1.03507i
\(726\) 0 0
\(727\) −16.3885 7.89230i −0.607817 0.292709i 0.104547 0.994520i \(-0.466661\pi\)
−0.712363 + 0.701811i \(0.752375\pi\)
\(728\) 23.9373 30.0164i 0.887175 1.11248i
\(729\) 0 0
\(730\) −3.27608 1.57768i −0.121253 0.0583925i
\(731\) 30.2921 14.5879i 1.12040 0.539554i
\(732\) 0 0
\(733\) 8.06036 + 35.3148i 0.297716 + 1.30438i 0.873518 + 0.486791i \(0.161833\pi\)
−0.575802 + 0.817589i \(0.695310\pi\)
\(734\) 3.45403 + 15.1331i 0.127490 + 0.558572i
\(735\) 0 0
\(736\) −0.742460 + 3.25293i −0.0273674 + 0.119905i
\(737\) −6.80886 −0.250808
\(738\) 0 0
\(739\) 3.75343 1.80755i 0.138072 0.0664920i −0.363572 0.931566i \(-0.618443\pi\)
0.501644 + 0.865074i \(0.332729\pi\)
\(740\) −14.2606 + 6.86754i −0.524230 + 0.252456i
\(741\) 0 0
\(742\) −10.8412 −0.397995
\(743\) 5.47368 23.9818i 0.200810 0.879806i −0.769635 0.638484i \(-0.779562\pi\)
0.970445 0.241322i \(-0.0775809\pi\)
\(744\) 0 0
\(745\) 6.11783 + 26.8040i 0.224140 + 0.982022i
\(746\) −0.820264 3.59381i −0.0300320 0.131579i
\(747\) 0 0
\(748\) 0.998697 0.480947i 0.0365160 0.0175852i
\(749\) −2.32831 1.12126i −0.0850747 0.0409698i
\(750\) 0 0
\(751\) 16.3234 20.4689i 0.595651 0.746922i −0.389042 0.921220i \(-0.627194\pi\)
0.984693 + 0.174297i \(0.0557654\pi\)
\(752\) −8.39095 4.04087i −0.305987 0.147355i
\(753\) 0 0
\(754\) −10.0223 + 13.9261i −0.364991 + 0.507160i
\(755\) −0.364005 −0.0132475
\(756\) 0 0
\(757\) −32.5871 + 40.8630i −1.18440 + 1.48519i −0.347632 + 0.937631i \(0.613014\pi\)
−0.836767 + 0.547559i \(0.815557\pi\)
\(758\) 11.8772 + 14.8936i 0.431400 + 0.540959i
\(759\) 0 0
\(760\) 2.66235 1.28212i 0.0965735 0.0465074i
\(761\) −3.05680 + 3.83310i −0.110809 + 0.138950i −0.834143 0.551548i \(-0.814037\pi\)
0.723334 + 0.690498i \(0.242609\pi\)
\(762\) 0 0
\(763\) −19.5706 85.7442i −0.708502 3.10415i
\(764\) −1.94064 2.43348i −0.0702099 0.0880404i
\(765\) 0 0
\(766\) 1.82183 0.0658255
\(767\) −8.76214 + 38.3894i −0.316382 + 1.38616i
\(768\) 0 0
\(769\) −26.1703 + 12.6029i −0.943725 + 0.454474i −0.841482 0.540285i \(-0.818316\pi\)
−0.102243 + 0.994759i \(0.532602\pi\)
\(770\) 2.21852 9.71998i 0.0799500 0.350284i
\(771\) 0 0
\(772\) −2.16583 + 9.48913i −0.0779500 + 0.341521i
\(773\) −33.3981 41.8799i −1.20125 1.50632i −0.810418 0.585853i \(-0.800760\pi\)
−0.390829 0.920463i \(-0.627812\pi\)
\(774\) 0 0
\(775\) −14.0030 61.3512i −0.503003 2.20380i
\(776\) −6.75097 + 8.46545i −0.242346 + 0.303892i
\(777\) 0 0
\(778\) 14.5722 + 7.01758i 0.522437 + 0.251593i
\(779\) −0.494891 0.620573i −0.0177313 0.0222343i
\(780\) 0 0
\(781\) −1.18943 0.572798i −0.0425611 0.0204963i
\(782\) 3.21010 0.114793
\(783\) 0 0
\(784\) −29.7635 −1.06298
\(785\) 41.9690 + 20.2112i 1.49794 + 0.721370i
\(786\) 0 0
\(787\) −26.7114 33.4951i −0.952160 1.19397i −0.980925 0.194384i \(-0.937729\pi\)
0.0287658 0.999586i \(-0.490842\pi\)
\(788\) −1.73867 0.837297i −0.0619374 0.0298275i
\(789\) 0 0
\(790\) −5.13471 + 6.43872i −0.182685 + 0.229079i
\(791\) 2.44965 + 10.7326i 0.0870995 + 0.381608i
\(792\) 0 0
\(793\) −12.4440 15.6043i −0.441900 0.554125i
\(794\) 6.14338 26.9159i 0.218021 0.955210i
\(795\) 0 0
\(796\) 0.601571 2.63566i 0.0213221 0.0934183i
\(797\) 22.2384 10.7094i 0.787724 0.379348i 0.00363260 0.999993i \(-0.498844\pi\)
0.784091 + 0.620646i \(0.213129\pi\)
\(798\) 0 0
\(799\) 2.79786 12.2582i 0.0989812 0.433665i
\(800\) −24.8100 −0.877166
\(801\) 0 0
\(802\) −25.8243 32.3826i −0.911886 1.14347i
\(803\) 0.112609 + 0.493372i 0.00397389 + 0.0174107i
\(804\) 0 0
\(805\) −9.01557 + 11.3052i −0.317757 + 0.398455i
\(806\) 26.1816 12.6084i 0.922208 0.444112i
\(807\) 0 0
\(808\) 24.3258 + 30.5036i 0.855779 + 1.07311i
\(809\) −18.8738 + 23.6671i −0.663569 + 0.832089i −0.993727 0.111837i \(-0.964327\pi\)
0.330158 + 0.943926i \(0.392898\pi\)
\(810\) 0 0
\(811\) 33.6697 1.18230 0.591151 0.806561i \(-0.298674\pi\)
0.591151 + 0.806561i \(0.298674\pi\)
\(812\) −16.2162 + 0.801542i −0.569079 + 0.0281286i
\(813\) 0 0
\(814\) −3.96295 1.90845i −0.138901 0.0668913i
\(815\) −5.62168 + 7.04936i −0.196919 + 0.246928i
\(816\) 0 0
\(817\) −2.81198 1.35418i −0.0983786 0.0473766i
\(818\) 15.6199 7.52214i 0.546137 0.263006i
\(819\) 0 0
\(820\) 1.46165 + 6.40392i 0.0510431 + 0.223635i
\(821\) −8.78397 38.4851i −0.306563 1.34314i −0.860019 0.510261i \(-0.829549\pi\)
0.553456 0.832878i \(-0.313309\pi\)
\(822\) 0 0
\(823\) −6.83426 + 29.9428i −0.238227 + 1.04374i 0.704376 + 0.709827i \(0.251227\pi\)
−0.942603 + 0.333915i \(0.891630\pi\)
\(824\) 6.21242 0.216420
\(825\) 0 0
\(826\) 67.0341 32.2819i 2.33241 1.12323i
\(827\) 45.6520 21.9848i 1.58747 0.764487i 0.588445 0.808537i \(-0.299740\pi\)
0.999029 + 0.0440495i \(0.0140259\pi\)
\(828\) 0 0
\(829\) 17.7320 0.615858 0.307929 0.951409i \(-0.400364\pi\)
0.307929 + 0.951409i \(0.400364\pi\)
\(830\) 9.72100 42.5905i 0.337421 1.47834i
\(831\) 0 0
\(832\) −5.27599 23.1156i −0.182912 0.801390i
\(833\) −8.94147 39.1751i −0.309804 1.35734i
\(834\) 0 0
\(835\) −31.7595 + 15.2946i −1.09908 + 0.529290i
\(836\) −0.0927076 0.0446456i −0.00320636 0.00154410i
\(837\) 0 0
\(838\) 26.5977 33.3525i 0.918804 1.15214i
\(839\) 21.1502 + 10.1854i 0.730187 + 0.351640i 0.761758 0.647862i \(-0.224337\pi\)
−0.0315706 + 0.999502i \(0.510051\pi\)
\(840\) 0 0
\(841\) 28.8586 2.85986i 0.995126 0.0986158i
\(842\) −1.48520 −0.0511834
\(843\) 0 0
\(844\) 5.47960 6.87121i 0.188616 0.236517i
\(845\) −11.5765 14.5165i −0.398245 0.499384i
\(846\) 0 0
\(847\) 43.5216 20.9589i 1.49542 0.720156i
\(848\) −2.87721 + 3.60791i −0.0988038 + 0.123896i
\(849\) 0 0
\(850\) 5.31146 + 23.2710i 0.182182 + 0.798190i
\(851\) 3.97749 + 4.98761i 0.136347 + 0.170973i
\(852\) 0 0
\(853\) −24.8185 −0.849771 −0.424885 0.905247i \(-0.639686\pi\)
−0.424885 + 0.905247i \(0.639686\pi\)
\(854\) −8.39168 + 36.7664i −0.287157 + 1.25812i
\(855\) 0 0
\(856\) −1.58700 + 0.764261i −0.0542427 + 0.0261219i
\(857\) −9.42188 + 41.2799i −0.321845 + 1.41010i 0.512421 + 0.858734i \(0.328749\pi\)
−0.834266 + 0.551362i \(0.814108\pi\)
\(858\) 0 0
\(859\) −4.94998 + 21.6873i −0.168891 + 0.739960i 0.817552 + 0.575855i \(0.195331\pi\)
−0.986443 + 0.164105i \(0.947526\pi\)
\(860\) 16.1037 + 20.1934i 0.549130 + 0.688588i
\(861\) 0 0
\(862\) 6.49447 + 28.4542i 0.221203 + 0.969152i
\(863\) −22.8106 + 28.6036i −0.776483 + 0.973679i −0.999999 0.00102145i \(-0.999675\pi\)
0.223517 + 0.974700i \(0.428246\pi\)
\(864\) 0 0
\(865\) 71.7687 + 34.5620i 2.44021 + 1.17514i
\(866\) 7.45573 + 9.34919i 0.253356 + 0.317698i
\(867\) 0 0
\(868\) 24.7753 + 11.9312i 0.840930 + 0.404971i
\(869\) 1.14616 0.0388807
\(870\) 0 0
\(871\) −33.9083 −1.14894
\(872\) −54.0105 26.0101i −1.82903 0.880813i
\(873\) 0 0
\(874\) −0.185793 0.232977i −0.00628454 0.00788056i
\(875\) −26.6705 12.8438i −0.901627 0.434201i
\(876\) 0 0
\(877\) 22.4602 28.1642i 0.758427 0.951037i −0.241385 0.970429i \(-0.577602\pi\)
0.999812 + 0.0193923i \(0.00617314\pi\)
\(878\) −3.44083 15.0753i −0.116122 0.508766i
\(879\) 0 0
\(880\) −2.64597 3.31794i −0.0891957 0.111848i
\(881\) −4.63842 + 20.3222i −0.156272 + 0.684674i 0.834711 + 0.550688i \(0.185635\pi\)
−0.990983 + 0.133986i \(0.957222\pi\)
\(882\) 0 0
\(883\) −6.21101 + 27.2122i −0.209017 + 0.915763i 0.756206 + 0.654334i \(0.227051\pi\)
−0.965223 + 0.261429i \(0.915806\pi\)
\(884\) 4.97354 2.39513i 0.167278 0.0805570i
\(885\) 0 0
\(886\) −7.91004 + 34.6562i −0.265743 + 1.16430i
\(887\) 54.6365 1.83451 0.917257 0.398296i \(-0.130398\pi\)
0.917257 + 0.398296i \(0.130398\pi\)
\(888\) 0 0
\(889\) −25.8823 32.4554i −0.868064 1.08852i
\(890\) 6.03169 + 26.4265i 0.202183 + 0.885820i
\(891\) 0 0
\(892\) 6.35669 7.97104i 0.212838 0.266890i
\(893\) −1.05159 + 0.506419i −0.0351901 + 0.0169467i
\(894\) 0 0
\(895\) −31.8071 39.8848i −1.06319 1.33320i
\(896\) −7.67587 + 9.62524i −0.256433 + 0.321557i
\(897\) 0 0
\(898\) 7.09872 0.236887
\(899\) −45.2506 19.1002i −1.50919 0.637028i
\(900\) 0 0
\(901\) −5.61314 2.70315i −0.187001 0.0900549i
\(902\) −1.13811 + 1.42714i −0.0378949 + 0.0475186i
\(903\) 0 0
\(904\) 6.76051 + 3.25569i 0.224851 + 0.108283i
\(905\) −8.97986 + 4.32447i −0.298501 + 0.143750i
\(906\) 0 0
\(907\) −3.58486 15.7063i −0.119033 0.521519i −0.998925 0.0463456i \(-0.985242\pi\)
0.879892 0.475173i \(-0.157615\pi\)
\(908\) 2.19055 + 9.59741i 0.0726958 + 0.318501i
\(909\) 0 0
\(910\) 11.0483 48.4058i 0.366248 1.60464i
\(911\) −42.9222 −1.42207 −0.711037 0.703154i \(-0.751774\pi\)
−0.711037 + 0.703154i \(0.751774\pi\)
\(912\) 0 0
\(913\) −5.47781 + 2.63798i −0.181289 + 0.0873042i
\(914\) −17.7281 + 8.53742i −0.586395 + 0.282393i
\(915\) 0 0
\(916\) −6.92332 −0.228753
\(917\) −13.1626 + 57.6691i −0.434667 + 1.90440i
\(918\) 0 0
\(919\) 4.31653 + 18.9120i 0.142389 + 0.623848i 0.994876 + 0.101100i \(0.0322362\pi\)
−0.852487 + 0.522749i \(0.824907\pi\)
\(920\) 2.19316 + 9.60888i 0.0723065 + 0.316795i
\(921\) 0 0
\(922\) 17.2281 8.29664i 0.567379 0.273235i
\(923\) −5.92338 2.85255i −0.194971 0.0938929i
\(924\) 0 0
\(925\) −29.5756 + 37.0866i −0.972440 + 1.21940i
\(926\) 30.0654 + 14.4787i 0.988011 + 0.475801i
\(927\) 0 0
\(928\) −11.3114 + 15.7173i −0.371314 + 0.515945i
\(929\) −15.9251 −0.522484 −0.261242 0.965273i \(-0.584132\pi\)
−0.261242 + 0.965273i \(0.584132\pi\)
\(930\) 0 0
\(931\) −2.32567 + 2.91630i −0.0762209 + 0.0955780i
\(932\) 0.116605 + 0.146218i 0.00381953 + 0.00478953i
\(933\) 0 0
\(934\) −23.6007 + 11.3655i −0.772239 + 0.371891i
\(935\) 3.57223 4.47943i 0.116824 0.146493i
\(936\) 0 0
\(937\) 8.93124 + 39.1303i 0.291771 + 1.27833i 0.882059 + 0.471139i \(0.156157\pi\)
−0.590288 + 0.807193i \(0.700986\pi\)
\(938\) 39.9469 + 50.0918i 1.30431 + 1.63556i
\(939\) 0 0
\(940\) 9.65896 0.315041
\(941\) 0.549269 2.40651i 0.0179057 0.0784498i −0.965186 0.261566i \(-0.915761\pi\)
0.983091 + 0.183116i \(0.0586183\pi\)
\(942\) 0 0
\(943\) 2.38526 1.14868i 0.0776746 0.0374061i
\(944\) 7.04725 30.8760i 0.229369 1.00493i
\(945\) 0 0
\(946\) −1.59715 + 6.99759i −0.0519280 + 0.227511i
\(947\) −16.4220 20.5925i −0.533643 0.669167i 0.439801 0.898095i \(-0.355049\pi\)
−0.973443 + 0.228929i \(0.926478\pi\)
\(948\) 0 0
\(949\) 0.560796 + 2.45701i 0.0182042 + 0.0797579i
\(950\) 1.38151 1.73236i 0.0448221 0.0562051i
\(951\) 0 0
\(952\) −37.5595 18.0877i −1.21731 0.586225i
\(953\) −29.3824 36.8443i −0.951788 1.19350i −0.981015 0.193932i \(-0.937876\pi\)
0.0292271 0.999573i \(-0.490695\pi\)
\(954\) 0 0
\(955\) −14.4948 6.98031i −0.469040 0.225878i
\(956\) 4.29726 0.138983
\(957\) 0 0
\(958\) 7.53070 0.243306
\(959\) −30.9351 14.8976i −0.998948 0.481068i
\(960\) 0 0
\(961\) 32.5383 + 40.8017i 1.04962 + 1.31619i
\(962\) −19.7356 9.50416i −0.636301 0.306427i
\(963\) 0 0
\(964\) 6.41854 8.04860i 0.206727 0.259228i
\(965\) 11.1947 + 49.0470i 0.360369 + 1.57888i
\(966\) 0 0
\(967\) −17.7894 22.3071i −0.572067 0.717349i 0.408670 0.912682i \(-0.365993\pi\)
−0.980737 + 0.195333i \(0.937421\pi\)
\(968\) 7.32660 32.0999i 0.235486 1.03173i
\(969\) 0 0
\(970\) −3.11592 + 13.6518i −0.100046 + 0.438331i
\(971\) 0.441543 0.212636i 0.0141698 0.00682381i −0.426785 0.904353i \(-0.640354\pi\)
0.440955 + 0.897529i \(0.354640\pi\)
\(972\) 0 0
\(973\) −8.89952 + 38.9914i −0.285306 + 1.25001i
\(974\) 27.0876 0.867941
\(975\) 0 0
\(976\) 10.0085 + 12.5503i 0.320365 + 0.401725i
\(977\) −4.03733 17.6887i −0.129166 0.565911i −0.997546 0.0700129i \(-0.977696\pi\)
0.868381 0.495898i \(-0.165161\pi\)
\(978\) 0 0
\(979\) 2.35209 2.94943i 0.0751732 0.0942642i
\(980\) 27.8114 13.3933i 0.888403 0.427832i
\(981\) 0 0
\(982\) −21.5822 27.0632i −0.688716 0.863623i
\(983\) 34.7002 43.5127i 1.10676 1.38784i 0.193193 0.981161i \(-0.438116\pi\)
0.913571 0.406678i \(-0.133313\pi\)
\(984\) 0 0
\(985\) −9.97452 −0.317815
\(986\) 17.1639 + 7.24488i 0.546611 + 0.230724i
\(987\) 0 0
\(988\) −0.461686 0.222336i −0.0146882 0.00707347i
\(989\) 6.49047 8.13879i 0.206385 0.258799i
\(990\) 0 0
\(991\) −18.2381 8.78303i −0.579354 0.279002i 0.121169 0.992632i \(-0.461336\pi\)
−0.700523 + 0.713630i \(0.747050\pi\)
\(992\) 29.5491 14.2301i 0.938184 0.451806i
\(993\) 0 0
\(994\) 2.76425 + 12.1110i 0.0876768 + 0.384137i
\(995\) −3.10937 13.6231i −0.0985738 0.431880i
\(996\) 0 0
\(997\) −6.50469 + 28.4989i −0.206005 + 0.902569i 0.761189 + 0.648531i \(0.224616\pi\)
−0.967194 + 0.254038i \(0.918241\pi\)
\(998\) −17.9076 −0.566855
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 261.2.k.b.190.2 18
3.2 odd 2 87.2.g.b.16.2 18
29.7 even 7 7569.2.a.bl.1.4 9
29.20 even 7 inner 261.2.k.b.136.2 18
29.22 even 14 7569.2.a.bk.1.6 9
87.20 odd 14 87.2.g.b.49.2 yes 18
87.65 odd 14 2523.2.a.p.1.6 9
87.80 odd 14 2523.2.a.q.1.4 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.b.16.2 18 3.2 odd 2
87.2.g.b.49.2 yes 18 87.20 odd 14
261.2.k.b.136.2 18 29.20 even 7 inner
261.2.k.b.190.2 18 1.1 even 1 trivial
2523.2.a.p.1.6 9 87.65 odd 14
2523.2.a.q.1.4 9 87.80 odd 14
7569.2.a.bk.1.6 9 29.22 even 14
7569.2.a.bl.1.4 9 29.7 even 7