Properties

Label 261.2.k.c.136.2
Level $261$
Weight $2$
Character 261.136
Analytic conductor $2.084$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [261,2,Mod(82,261)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(261, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("261.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 261 = 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 261.k (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.08409549276\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} + 18 x^{16} - 37 x^{15} + 71 x^{14} - 83 x^{13} + 225 x^{12} - 237 x^{11} + 485 x^{10} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 136.2
Root \(0.102196 - 0.128149i\) of defining polynomial
Character \(\chi\) \(=\) 261.136
Dual form 261.2.k.c.190.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.04865 - 0.505001i) q^{2} +(-0.402348 + 0.504528i) q^{4} +(2.80239 - 1.34956i) q^{5} +(1.08876 + 1.36527i) q^{7} +(-0.685121 + 3.00171i) q^{8} +(2.25719 - 2.83042i) q^{10} +(-0.616885 - 2.70275i) q^{11} +(0.256556 + 1.12405i) q^{13} +(1.83119 + 0.881853i) q^{14} +(0.510226 + 2.23545i) q^{16} -2.64265 q^{17} +(4.50431 - 5.64823i) q^{19} +(-0.446645 + 1.95688i) q^{20} +(-2.01179 - 2.52270i) q^{22} +(-2.53201 - 1.21935i) q^{23} +(2.91464 - 3.65485i) q^{25} +(0.836681 + 1.04917i) q^{26} -1.12688 q^{28} +(0.497296 + 5.36215i) q^{29} +(-3.59066 + 1.72917i) q^{31} +(-2.17538 - 2.72784i) q^{32} +(-2.77121 + 1.33454i) q^{34} +(4.89365 + 2.35666i) q^{35} +(-2.32975 + 10.2073i) q^{37} +(1.87107 - 8.19768i) q^{38} +(2.13102 + 9.33659i) q^{40} -8.92649 q^{41} +(-10.6279 - 5.11815i) q^{43} +(1.61181 + 0.776209i) q^{44} -3.27095 q^{46} +(-1.63447 - 7.16106i) q^{47} +(0.879102 - 3.85160i) q^{49} +(1.21073 - 5.30454i) q^{50} +(-0.670338 - 0.322818i) q^{52} +(-4.85314 + 2.33715i) q^{53} +(-5.37628 - 6.74164i) q^{55} +(-4.84407 + 2.33278i) q^{56} +(3.22938 + 5.37187i) q^{58} +8.20042 q^{59} +(3.06034 + 3.83755i) q^{61} +(-2.89209 + 3.62657i) q^{62} +(-7.79050 - 3.75171i) q^{64} +(2.23594 + 2.80378i) q^{65} +(0.100933 - 0.442217i) q^{67} +(1.06326 - 1.33329i) q^{68} +6.32182 q^{70} +(2.58226 + 11.3136i) q^{71} +(11.5822 + 5.57770i) q^{73} +(2.71162 + 11.8804i) q^{74} +(1.03739 + 4.54510i) q^{76} +(3.01833 - 3.78486i) q^{77} +(3.43076 - 15.0312i) q^{79} +(4.44673 + 5.57602i) q^{80} +(-9.36072 + 4.50789i) q^{82} +(2.62789 - 3.29527i) q^{83} +(-7.40575 + 3.56642i) q^{85} -13.7296 q^{86} +8.53551 q^{88} +(-1.83072 + 0.881630i) q^{89} +(-1.25529 + 1.57409i) q^{91} +(1.63394 - 0.786865i) q^{92} +(-5.33032 - 6.68401i) q^{94} +(5.00022 - 21.9074i) q^{95} +(7.89711 - 9.90266i) q^{97} +(-1.02319 - 4.48291i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 4 q^{2} - 6 q^{4} + q^{5} - 4 q^{7} + 15 q^{8} - 14 q^{10} - 26 q^{11} + 9 q^{13} + 10 q^{14} - 14 q^{16} - 4 q^{17} - 10 q^{19} + q^{20} - 8 q^{22} + 8 q^{23} + 16 q^{25} - 5 q^{26} + 80 q^{28}+ \cdots - 31 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/261\mathbb{Z}\right)^\times\).

\(n\) \(118\) \(146\)
\(\chi(n)\) \(e\left(\frac{6}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.04865 0.505001i 0.741505 0.357090i −0.0246928 0.999695i \(-0.507861\pi\)
0.766197 + 0.642605i \(0.222146\pi\)
\(3\) 0 0
\(4\) −0.402348 + 0.504528i −0.201174 + 0.252264i
\(5\) 2.80239 1.34956i 1.25327 0.603542i 0.314882 0.949131i \(-0.398035\pi\)
0.938386 + 0.345588i \(0.112321\pi\)
\(6\) 0 0
\(7\) 1.08876 + 1.36527i 0.411514 + 0.516022i 0.943789 0.330550i \(-0.107234\pi\)
−0.532275 + 0.846572i \(0.678663\pi\)
\(8\) −0.685121 + 3.00171i −0.242227 + 1.06127i
\(9\) 0 0
\(10\) 2.25719 2.83042i 0.713786 0.895059i
\(11\) −0.616885 2.70275i −0.185998 0.814909i −0.978699 0.205299i \(-0.934183\pi\)
0.792701 0.609610i \(-0.208674\pi\)
\(12\) 0 0
\(13\) 0.256556 + 1.12405i 0.0711559 + 0.311754i 0.997964 0.0637811i \(-0.0203160\pi\)
−0.926808 + 0.375535i \(0.877459\pi\)
\(14\) 1.83119 + 0.881853i 0.489405 + 0.235685i
\(15\) 0 0
\(16\) 0.510226 + 2.23545i 0.127557 + 0.558862i
\(17\) −2.64265 −0.640937 −0.320469 0.947259i \(-0.603840\pi\)
−0.320469 + 0.947259i \(0.603840\pi\)
\(18\) 0 0
\(19\) 4.50431 5.64823i 1.03336 1.29579i 0.0790836 0.996868i \(-0.474801\pi\)
0.954277 0.298925i \(-0.0966280\pi\)
\(20\) −0.446645 + 1.95688i −0.0998728 + 0.437571i
\(21\) 0 0
\(22\) −2.01179 2.52270i −0.428914 0.537841i
\(23\) −2.53201 1.21935i −0.527960 0.254252i 0.150862 0.988555i \(-0.451795\pi\)
−0.678822 + 0.734303i \(0.737509\pi\)
\(24\) 0 0
\(25\) 2.91464 3.65485i 0.582929 0.730970i
\(26\) 0.836681 + 1.04917i 0.164087 + 0.205758i
\(27\) 0 0
\(28\) −1.12688 −0.212959
\(29\) 0.497296 + 5.36215i 0.0923456 + 0.995727i
\(30\) 0 0
\(31\) −3.59066 + 1.72917i −0.644901 + 0.310568i −0.727595 0.686007i \(-0.759362\pi\)
0.0826940 + 0.996575i \(0.473648\pi\)
\(32\) −2.17538 2.72784i −0.384557 0.482219i
\(33\) 0 0
\(34\) −2.77121 + 1.33454i −0.475258 + 0.228872i
\(35\) 4.89365 + 2.35666i 0.827178 + 0.398348i
\(36\) 0 0
\(37\) −2.32975 + 10.2073i −0.383009 + 1.67807i 0.304988 + 0.952356i \(0.401348\pi\)
−0.687996 + 0.725714i \(0.741509\pi\)
\(38\) 1.87107 8.19768i 0.303527 1.32984i
\(39\) 0 0
\(40\) 2.13102 + 9.33659i 0.336943 + 1.47624i
\(41\) −8.92649 −1.39408 −0.697041 0.717031i \(-0.745501\pi\)
−0.697041 + 0.717031i \(0.745501\pi\)
\(42\) 0 0
\(43\) −10.6279 5.11815i −1.62075 0.780510i −0.620752 0.784007i \(-0.713173\pi\)
−0.999994 + 0.00349639i \(0.998887\pi\)
\(44\) 1.61181 + 0.776209i 0.242990 + 0.117018i
\(45\) 0 0
\(46\) −3.27095 −0.482275
\(47\) −1.63447 7.16106i −0.238411 1.04455i −0.942440 0.334376i \(-0.891474\pi\)
0.704028 0.710172i \(-0.251383\pi\)
\(48\) 0 0
\(49\) 0.879102 3.85160i 0.125586 0.550228i
\(50\) 1.21073 5.30454i 0.171223 0.750175i
\(51\) 0 0
\(52\) −0.670338 0.322818i −0.0929591 0.0447667i
\(53\) −4.85314 + 2.33715i −0.666629 + 0.321032i −0.736415 0.676530i \(-0.763483\pi\)
0.0697855 + 0.997562i \(0.477769\pi\)
\(54\) 0 0
\(55\) −5.37628 6.74164i −0.724937 0.909043i
\(56\) −4.84407 + 2.33278i −0.647316 + 0.311731i
\(57\) 0 0
\(58\) 3.22938 + 5.37187i 0.424039 + 0.705361i
\(59\) 8.20042 1.06760 0.533802 0.845610i \(-0.320763\pi\)
0.533802 + 0.845610i \(0.320763\pi\)
\(60\) 0 0
\(61\) 3.06034 + 3.83755i 0.391837 + 0.491348i 0.938148 0.346234i \(-0.112540\pi\)
−0.546311 + 0.837582i \(0.683968\pi\)
\(62\) −2.89209 + 3.62657i −0.367296 + 0.460575i
\(63\) 0 0
\(64\) −7.79050 3.75171i −0.973813 0.468963i
\(65\) 2.23594 + 2.80378i 0.277334 + 0.347766i
\(66\) 0 0
\(67\) 0.100933 0.442217i 0.0123309 0.0540254i −0.968388 0.249448i \(-0.919751\pi\)
0.980719 + 0.195423i \(0.0626079\pi\)
\(68\) 1.06326 1.33329i 0.128940 0.161685i
\(69\) 0 0
\(70\) 6.32182 0.755602
\(71\) 2.58226 + 11.3136i 0.306458 + 1.34268i 0.860185 + 0.509983i \(0.170348\pi\)
−0.553726 + 0.832699i \(0.686795\pi\)
\(72\) 0 0
\(73\) 11.5822 + 5.57770i 1.35559 + 0.652820i 0.963650 0.267169i \(-0.0860880\pi\)
0.391945 + 0.919989i \(0.371802\pi\)
\(74\) 2.71162 + 11.8804i 0.315219 + 1.38107i
\(75\) 0 0
\(76\) 1.03739 + 4.54510i 0.118997 + 0.521359i
\(77\) 3.01833 3.78486i 0.343970 0.431325i
\(78\) 0 0
\(79\) 3.43076 15.0312i 0.385991 1.69114i −0.292286 0.956331i \(-0.594416\pi\)
0.678277 0.734807i \(-0.262727\pi\)
\(80\) 4.44673 + 5.57602i 0.497160 + 0.623418i
\(81\) 0 0
\(82\) −9.36072 + 4.50789i −1.03372 + 0.497813i
\(83\) 2.62789 3.29527i 0.288448 0.361702i −0.616403 0.787431i \(-0.711411\pi\)
0.904851 + 0.425728i \(0.139982\pi\)
\(84\) 0 0
\(85\) −7.40575 + 3.56642i −0.803267 + 0.386833i
\(86\) −13.7296 −1.48050
\(87\) 0 0
\(88\) 8.53551 0.909889
\(89\) −1.83072 + 0.881630i −0.194056 + 0.0934526i −0.528389 0.849003i \(-0.677204\pi\)
0.334332 + 0.942455i \(0.391489\pi\)
\(90\) 0 0
\(91\) −1.25529 + 1.57409i −0.131590 + 0.165009i
\(92\) 1.63394 0.786865i 0.170350 0.0820364i
\(93\) 0 0
\(94\) −5.33032 6.68401i −0.549780 0.689403i
\(95\) 5.00022 21.9074i 0.513012 2.24765i
\(96\) 0 0
\(97\) 7.89711 9.90266i 0.801830 1.00546i −0.197852 0.980232i \(-0.563396\pi\)
0.999682 0.0252311i \(-0.00803215\pi\)
\(98\) −1.02319 4.48291i −0.103358 0.452842i
\(99\) 0 0
\(100\) 0.671273 + 2.94104i 0.0671273 + 0.294104i
\(101\) 2.85191 + 1.37341i 0.283776 + 0.136659i 0.570358 0.821397i \(-0.306805\pi\)
−0.286582 + 0.958056i \(0.592519\pi\)
\(102\) 0 0
\(103\) −0.582986 2.55423i −0.0574433 0.251676i 0.938051 0.346497i \(-0.112629\pi\)
−0.995494 + 0.0948218i \(0.969772\pi\)
\(104\) −3.54984 −0.348090
\(105\) 0 0
\(106\) −3.90896 + 4.90168i −0.379672 + 0.476093i
\(107\) −2.23430 + 9.78910i −0.215998 + 0.946348i 0.744404 + 0.667730i \(0.232734\pi\)
−0.960402 + 0.278619i \(0.910123\pi\)
\(108\) 0 0
\(109\) −2.87905 3.61022i −0.275763 0.345796i 0.624593 0.780951i \(-0.285265\pi\)
−0.900356 + 0.435155i \(0.856694\pi\)
\(110\) −9.04235 4.35457i −0.862154 0.415192i
\(111\) 0 0
\(112\) −2.49646 + 3.13047i −0.235894 + 0.295801i
\(113\) 3.23577 + 4.05752i 0.304395 + 0.381700i 0.910378 0.413779i \(-0.135791\pi\)
−0.605982 + 0.795478i \(0.707220\pi\)
\(114\) 0 0
\(115\) −8.74126 −0.815127
\(116\) −2.90544 1.90655i −0.269764 0.177019i
\(117\) 0 0
\(118\) 8.59933 4.14122i 0.791633 0.381230i
\(119\) −2.87722 3.60792i −0.263754 0.330738i
\(120\) 0 0
\(121\) 2.98635 1.43815i 0.271487 0.130741i
\(122\) 5.14719 + 2.47875i 0.466004 + 0.224416i
\(123\) 0 0
\(124\) 0.572278 2.50731i 0.0513921 0.225163i
\(125\) −0.225132 + 0.986369i −0.0201364 + 0.0882235i
\(126\) 0 0
\(127\) 3.34102 + 14.6380i 0.296467 + 1.29891i 0.875347 + 0.483496i \(0.160633\pi\)
−0.578879 + 0.815413i \(0.696510\pi\)
\(128\) −3.08601 −0.272767
\(129\) 0 0
\(130\) 3.76062 + 1.81102i 0.329829 + 0.158837i
\(131\) −0.482335 0.232280i −0.0421418 0.0202944i 0.412694 0.910870i \(-0.364588\pi\)
−0.454836 + 0.890575i \(0.650302\pi\)
\(132\) 0 0
\(133\) 12.6155 1.09390
\(134\) −0.117477 0.514700i −0.0101485 0.0444633i
\(135\) 0 0
\(136\) 1.81054 7.93248i 0.155252 0.680205i
\(137\) 2.77503 12.1582i 0.237087 1.03874i −0.706525 0.707688i \(-0.749738\pi\)
0.943611 0.331056i \(-0.107405\pi\)
\(138\) 0 0
\(139\) 7.82790 + 3.76972i 0.663954 + 0.319743i 0.735333 0.677706i \(-0.237026\pi\)
−0.0713790 + 0.997449i \(0.522740\pi\)
\(140\) −3.15795 + 1.52079i −0.266895 + 0.128530i
\(141\) 0 0
\(142\) 8.42128 + 10.5600i 0.706698 + 0.886172i
\(143\) 2.87975 1.38681i 0.240817 0.115971i
\(144\) 0 0
\(145\) 8.63018 + 14.3557i 0.716697 + 1.19218i
\(146\) 14.9624 1.23830
\(147\) 0 0
\(148\) −4.21250 5.28231i −0.346265 0.434203i
\(149\) 9.37128 11.7512i 0.767726 0.962697i −0.232225 0.972662i \(-0.574600\pi\)
0.999950 + 0.00996473i \(0.00317193\pi\)
\(150\) 0 0
\(151\) −13.5900 6.54459i −1.10594 0.532591i −0.210417 0.977612i \(-0.567482\pi\)
−0.895521 + 0.445020i \(0.853196\pi\)
\(152\) 13.8684 + 17.3904i 1.12487 + 1.41055i
\(153\) 0 0
\(154\) 1.25380 5.49324i 0.101034 0.442658i
\(155\) −7.72881 + 9.69162i −0.620793 + 0.778450i
\(156\) 0 0
\(157\) −9.94273 −0.793517 −0.396758 0.917923i \(-0.629865\pi\)
−0.396758 + 0.917923i \(0.629865\pi\)
\(158\) −3.99310 17.4949i −0.317674 1.39182i
\(159\) 0 0
\(160\) −9.77767 4.70868i −0.772993 0.372254i
\(161\) −1.09202 4.78444i −0.0860630 0.377067i
\(162\) 0 0
\(163\) 0.610696 + 2.67563i 0.0478334 + 0.209572i 0.993197 0.116446i \(-0.0371502\pi\)
−0.945364 + 0.326018i \(0.894293\pi\)
\(164\) 3.59155 4.50366i 0.280453 0.351677i
\(165\) 0 0
\(166\) 1.09161 4.78265i 0.0847253 0.371206i
\(167\) 1.98862 + 2.49365i 0.153884 + 0.192964i 0.852797 0.522242i \(-0.174904\pi\)
−0.698914 + 0.715206i \(0.746333\pi\)
\(168\) 0 0
\(169\) 10.5149 5.06373i 0.808841 0.389517i
\(170\) −5.96496 + 7.47983i −0.457492 + 0.573677i
\(171\) 0 0
\(172\) 6.85838 3.30282i 0.522946 0.251838i
\(173\) −7.57784 −0.576132 −0.288066 0.957611i \(-0.593012\pi\)
−0.288066 + 0.957611i \(0.593012\pi\)
\(174\) 0 0
\(175\) 8.16319 0.617079
\(176\) 5.72710 2.75803i 0.431697 0.207894i
\(177\) 0 0
\(178\) −1.47456 + 1.84904i −0.110523 + 0.138591i
\(179\) −2.53345 + 1.22005i −0.189359 + 0.0911906i −0.526161 0.850385i \(-0.676369\pi\)
0.336802 + 0.941576i \(0.390655\pi\)
\(180\) 0 0
\(181\) 4.38980 + 5.50464i 0.326292 + 0.409157i 0.917737 0.397188i \(-0.130014\pi\)
−0.591446 + 0.806345i \(0.701443\pi\)
\(182\) −0.521441 + 2.28458i −0.0386518 + 0.169345i
\(183\) 0 0
\(184\) 5.39487 6.76495i 0.397715 0.498719i
\(185\) 7.24651 + 31.7490i 0.532774 + 2.33424i
\(186\) 0 0
\(187\) 1.63021 + 7.14243i 0.119213 + 0.522306i
\(188\) 4.27058 + 2.05660i 0.311464 + 0.149993i
\(189\) 0 0
\(190\) −5.81981 25.4982i −0.422213 1.84984i
\(191\) −4.42589 −0.320246 −0.160123 0.987097i \(-0.551189\pi\)
−0.160123 + 0.987097i \(0.551189\pi\)
\(192\) 0 0
\(193\) −2.51833 + 3.15788i −0.181273 + 0.227309i −0.864163 0.503212i \(-0.832151\pi\)
0.682890 + 0.730521i \(0.260723\pi\)
\(194\) 3.28041 14.3724i 0.235520 1.03188i
\(195\) 0 0
\(196\) 1.58953 + 1.99321i 0.113538 + 0.142372i
\(197\) 10.8033 + 5.20261i 0.769706 + 0.370671i 0.777161 0.629302i \(-0.216659\pi\)
−0.00745564 + 0.999972i \(0.502373\pi\)
\(198\) 0 0
\(199\) 0.858565 1.07661i 0.0608621 0.0763187i −0.750469 0.660906i \(-0.770172\pi\)
0.811331 + 0.584587i \(0.198744\pi\)
\(200\) 8.97392 + 11.2529i 0.634552 + 0.795703i
\(201\) 0 0
\(202\) 3.68422 0.259221
\(203\) −6.77932 + 6.51705i −0.475815 + 0.457408i
\(204\) 0 0
\(205\) −25.0155 + 12.0468i −1.74716 + 0.841388i
\(206\) −1.90123 2.38407i −0.132465 0.166106i
\(207\) 0 0
\(208\) −2.38185 + 1.14704i −0.165151 + 0.0795327i
\(209\) −18.0444 8.68972i −1.24816 0.601080i
\(210\) 0 0
\(211\) 3.86605 16.9383i 0.266150 1.16608i −0.648301 0.761384i \(-0.724520\pi\)
0.914451 0.404696i \(-0.132623\pi\)
\(212\) 0.773492 3.38889i 0.0531236 0.232750i
\(213\) 0 0
\(214\) 2.60052 + 11.3936i 0.177768 + 0.778852i
\(215\) −36.6909 −2.50230
\(216\) 0 0
\(217\) −6.27014 3.01954i −0.425645 0.204980i
\(218\) −4.84227 2.33191i −0.327960 0.157937i
\(219\) 0 0
\(220\) 5.56448 0.375157
\(221\) −0.677989 2.97046i −0.0456065 0.199815i
\(222\) 0 0
\(223\) −3.08597 + 13.5205i −0.206652 + 0.905402i 0.760124 + 0.649778i \(0.225138\pi\)
−0.966776 + 0.255624i \(0.917719\pi\)
\(224\) 1.35575 5.93995i 0.0905852 0.396880i
\(225\) 0 0
\(226\) 5.44223 + 2.62084i 0.362012 + 0.174336i
\(227\) 2.15378 1.03721i 0.142952 0.0688419i −0.361040 0.932550i \(-0.617578\pi\)
0.503992 + 0.863708i \(0.331864\pi\)
\(228\) 0 0
\(229\) 0.665955 + 0.835081i 0.0440075 + 0.0551837i 0.803348 0.595510i \(-0.203050\pi\)
−0.759341 + 0.650693i \(0.774478\pi\)
\(230\) −9.16649 + 4.41435i −0.604420 + 0.291074i
\(231\) 0 0
\(232\) −16.4364 2.18098i −1.07910 0.143189i
\(233\) 25.6684 1.68159 0.840795 0.541353i \(-0.182088\pi\)
0.840795 + 0.541353i \(0.182088\pi\)
\(234\) 0 0
\(235\) −14.2447 17.8623i −0.929222 1.16521i
\(236\) −3.29942 + 4.13734i −0.214774 + 0.269318i
\(237\) 0 0
\(238\) −4.83919 2.33043i −0.313678 0.151059i
\(239\) 4.90036 + 6.14486i 0.316978 + 0.397478i 0.914639 0.404271i \(-0.132475\pi\)
−0.597661 + 0.801749i \(0.703903\pi\)
\(240\) 0 0
\(241\) −5.44182 + 23.8422i −0.350539 + 1.53581i 0.425402 + 0.905005i \(0.360133\pi\)
−0.775941 + 0.630806i \(0.782724\pi\)
\(242\) 2.40536 3.01623i 0.154622 0.193890i
\(243\) 0 0
\(244\) −3.16747 −0.202777
\(245\) −2.73438 11.9801i −0.174693 0.765380i
\(246\) 0 0
\(247\) 7.50448 + 3.61397i 0.477499 + 0.229951i
\(248\) −2.73043 11.9628i −0.173383 0.759639i
\(249\) 0 0
\(250\) 0.262034 + 1.14804i 0.0165725 + 0.0726087i
\(251\) 3.72725 4.67383i 0.235262 0.295009i −0.650160 0.759797i \(-0.725298\pi\)
0.885422 + 0.464788i \(0.153870\pi\)
\(252\) 0 0
\(253\) −1.73364 + 7.59557i −0.108993 + 0.477529i
\(254\) 10.8957 + 13.6628i 0.683659 + 0.857281i
\(255\) 0 0
\(256\) 12.3449 5.94498i 0.771555 0.371561i
\(257\) −16.7993 + 21.0657i −1.04791 + 1.31404i −0.100183 + 0.994969i \(0.531943\pi\)
−0.947730 + 0.319073i \(0.896629\pi\)
\(258\) 0 0
\(259\) −16.4722 + 7.93260i −1.02353 + 0.492908i
\(260\) −2.31421 −0.143521
\(261\) 0 0
\(262\) −0.623100 −0.0384952
\(263\) 14.9862 7.21695i 0.924086 0.445016i 0.0895580 0.995982i \(-0.471455\pi\)
0.834528 + 0.550965i \(0.185740\pi\)
\(264\) 0 0
\(265\) −10.4463 + 13.0992i −0.641709 + 0.804678i
\(266\) 13.2291 6.37082i 0.811131 0.390620i
\(267\) 0 0
\(268\) 0.182500 + 0.228848i 0.0111480 + 0.0139791i
\(269\) 3.03417 13.2935i 0.184996 0.810522i −0.794208 0.607646i \(-0.792114\pi\)
0.979204 0.202876i \(-0.0650288\pi\)
\(270\) 0 0
\(271\) −8.97984 + 11.2604i −0.545486 + 0.684018i −0.975801 0.218661i \(-0.929831\pi\)
0.430315 + 0.902679i \(0.358403\pi\)
\(272\) −1.34835 5.90751i −0.0817558 0.358196i
\(273\) 0 0
\(274\) −3.22988 14.1510i −0.195124 0.854895i
\(275\) −11.6761 5.62293i −0.704098 0.339076i
\(276\) 0 0
\(277\) 3.05513 + 13.3854i 0.183565 + 0.804251i 0.979915 + 0.199415i \(0.0639041\pi\)
−0.796350 + 0.604836i \(0.793239\pi\)
\(278\) 10.1124 0.606502
\(279\) 0 0
\(280\) −10.4268 + 13.0747i −0.623118 + 0.781365i
\(281\) −0.0319740 + 0.140087i −0.00190741 + 0.00835691i −0.975873 0.218340i \(-0.929936\pi\)
0.973965 + 0.226697i \(0.0727928\pi\)
\(282\) 0 0
\(283\) −5.51039 6.90981i −0.327559 0.410746i 0.590596 0.806967i \(-0.298893\pi\)
−0.918155 + 0.396222i \(0.870321\pi\)
\(284\) −6.74701 3.24919i −0.400362 0.192804i
\(285\) 0 0
\(286\) 2.31949 2.90855i 0.137155 0.171986i
\(287\) −9.71882 12.1870i −0.573684 0.719377i
\(288\) 0 0
\(289\) −10.0164 −0.589199
\(290\) 16.2997 + 10.6958i 0.957149 + 0.628081i
\(291\) 0 0
\(292\) −7.47418 + 3.59937i −0.437393 + 0.210637i
\(293\) 2.10357 + 2.63779i 0.122892 + 0.154101i 0.839471 0.543404i \(-0.182865\pi\)
−0.716580 + 0.697505i \(0.754293\pi\)
\(294\) 0 0
\(295\) 22.9808 11.0670i 1.33799 0.644344i
\(296\) −29.0432 13.9865i −1.68810 0.812948i
\(297\) 0 0
\(298\) 3.89278 17.0554i 0.225503 0.987992i
\(299\) 0.721003 3.15892i 0.0416967 0.182685i
\(300\) 0 0
\(301\) −4.58368 20.0824i −0.264199 1.15753i
\(302\) −17.5561 −1.01024
\(303\) 0 0
\(304\) 14.9245 + 7.18728i 0.855981 + 0.412219i
\(305\) 13.7553 + 6.62420i 0.787626 + 0.379301i
\(306\) 0 0
\(307\) −0.230862 −0.0131760 −0.00658799 0.999978i \(-0.502097\pi\)
−0.00658799 + 0.999978i \(0.502097\pi\)
\(308\) 0.695152 + 3.04566i 0.0396100 + 0.173543i
\(309\) 0 0
\(310\) −3.21050 + 14.0661i −0.182344 + 0.798903i
\(311\) −5.60223 + 24.5450i −0.317673 + 1.39182i 0.523948 + 0.851750i \(0.324459\pi\)
−0.841622 + 0.540068i \(0.818399\pi\)
\(312\) 0 0
\(313\) −8.99374 4.33116i −0.508356 0.244811i 0.162081 0.986777i \(-0.448179\pi\)
−0.670437 + 0.741966i \(0.733894\pi\)
\(314\) −10.4264 + 5.02109i −0.588396 + 0.283357i
\(315\) 0 0
\(316\) 6.20328 + 7.77867i 0.348962 + 0.437584i
\(317\) −24.9529 + 12.0167i −1.40149 + 0.674924i −0.973464 0.228841i \(-0.926506\pi\)
−0.428030 + 0.903765i \(0.640792\pi\)
\(318\) 0 0
\(319\) 14.1858 4.65190i 0.794251 0.260456i
\(320\) −26.8952 −1.50349
\(321\) 0 0
\(322\) −3.56129 4.46571i −0.198463 0.248864i
\(323\) −11.9033 + 14.9263i −0.662319 + 0.830522i
\(324\) 0 0
\(325\) 4.85599 + 2.33852i 0.269362 + 0.129718i
\(326\) 1.99160 + 2.49739i 0.110305 + 0.138318i
\(327\) 0 0
\(328\) 6.11572 26.7947i 0.337684 1.47949i
\(329\) 7.99720 10.0282i 0.440900 0.552871i
\(330\) 0 0
\(331\) −23.2748 −1.27930 −0.639650 0.768666i \(-0.720921\pi\)
−0.639650 + 0.768666i \(0.720921\pi\)
\(332\) 0.605230 + 2.65169i 0.0332163 + 0.145530i
\(333\) 0 0
\(334\) 3.34465 + 1.61070i 0.183011 + 0.0881335i
\(335\) −0.313944 1.37548i −0.0171526 0.0751505i
\(336\) 0 0
\(337\) −4.19011 18.3581i −0.228250 1.00003i −0.951066 0.308987i \(-0.900010\pi\)
0.722817 0.691040i \(-0.242847\pi\)
\(338\) 8.46926 10.6201i 0.460667 0.577658i
\(339\) 0 0
\(340\) 1.18033 5.17135i 0.0640122 0.280456i
\(341\) 6.88853 + 8.63794i 0.373035 + 0.467771i
\(342\) 0 0
\(343\) 17.2287 8.29692i 0.930264 0.447992i
\(344\) 22.6446 28.3955i 1.22092 1.53098i
\(345\) 0 0
\(346\) −7.94647 + 3.82682i −0.427205 + 0.205731i
\(347\) 19.4007 1.04148 0.520741 0.853715i \(-0.325656\pi\)
0.520741 + 0.853715i \(0.325656\pi\)
\(348\) 0 0
\(349\) 9.57141 0.512346 0.256173 0.966631i \(-0.417538\pi\)
0.256173 + 0.966631i \(0.417538\pi\)
\(350\) 8.56030 4.12242i 0.457567 0.220353i
\(351\) 0 0
\(352\) −6.03072 + 7.56228i −0.321438 + 0.403071i
\(353\) −29.5123 + 14.2124i −1.57078 + 0.756449i −0.997997 0.0632575i \(-0.979851\pi\)
−0.572784 + 0.819706i \(0.694137\pi\)
\(354\) 0 0
\(355\) 22.5050 + 28.2203i 1.19444 + 1.49778i
\(356\) 0.291780 1.27837i 0.0154643 0.0677536i
\(357\) 0 0
\(358\) −2.04057 + 2.55880i −0.107848 + 0.135237i
\(359\) 3.23031 + 14.1529i 0.170489 + 0.746963i 0.985798 + 0.167936i \(0.0537102\pi\)
−0.815309 + 0.579027i \(0.803433\pi\)
\(360\) 0 0
\(361\) −7.38577 32.3592i −0.388725 1.70311i
\(362\) 7.38320 + 3.55556i 0.388052 + 0.186876i
\(363\) 0 0
\(364\) −0.289107 1.26666i −0.0151533 0.0663910i
\(365\) 39.9854 2.09293
\(366\) 0 0
\(367\) 10.7255 13.4494i 0.559868 0.702052i −0.418665 0.908141i \(-0.637502\pi\)
0.978533 + 0.206088i \(0.0660734\pi\)
\(368\) 1.43390 6.28231i 0.0747470 0.327488i
\(369\) 0 0
\(370\) 23.6323 + 29.6340i 1.22859 + 1.54060i
\(371\) −8.47474 4.08122i −0.439986 0.211886i
\(372\) 0 0
\(373\) 5.32000 6.67107i 0.275459 0.345415i −0.624788 0.780795i \(-0.714814\pi\)
0.900247 + 0.435380i \(0.143386\pi\)
\(374\) 5.31645 + 6.66662i 0.274907 + 0.344722i
\(375\) 0 0
\(376\) 22.6152 1.16629
\(377\) −5.89972 + 1.93468i −0.303851 + 0.0996410i
\(378\) 0 0
\(379\) 9.75482 4.69767i 0.501071 0.241303i −0.166236 0.986086i \(-0.553161\pi\)
0.667307 + 0.744783i \(0.267447\pi\)
\(380\) 9.04107 + 11.3371i 0.463797 + 0.581583i
\(381\) 0 0
\(382\) −4.64120 + 2.23508i −0.237464 + 0.114357i
\(383\) 18.0481 + 8.69151i 0.922215 + 0.444115i 0.833861 0.551974i \(-0.186125\pi\)
0.0883534 + 0.996089i \(0.471840\pi\)
\(384\) 0 0
\(385\) 3.35064 14.6801i 0.170764 0.748167i
\(386\) −1.04610 + 4.58326i −0.0532450 + 0.233282i
\(387\) 0 0
\(388\) 1.81879 + 7.96863i 0.0923349 + 0.404546i
\(389\) 30.9606 1.56976 0.784881 0.619646i \(-0.212724\pi\)
0.784881 + 0.619646i \(0.212724\pi\)
\(390\) 0 0
\(391\) 6.69121 + 3.22232i 0.338389 + 0.162960i
\(392\) 10.9591 + 5.27762i 0.553518 + 0.266560i
\(393\) 0 0
\(394\) 13.9562 0.703103
\(395\) −10.6711 46.7533i −0.536923 2.35241i
\(396\) 0 0
\(397\) −4.39793 + 19.2686i −0.220726 + 0.967063i 0.736208 + 0.676756i \(0.236615\pi\)
−0.956933 + 0.290307i \(0.906242\pi\)
\(398\) 0.356643 1.56256i 0.0178769 0.0783239i
\(399\) 0 0
\(400\) 9.65735 + 4.65074i 0.482868 + 0.232537i
\(401\) 16.7480 8.06542i 0.836356 0.402768i 0.0338611 0.999427i \(-0.489220\pi\)
0.802495 + 0.596659i \(0.203505\pi\)
\(402\) 0 0
\(403\) −2.86487 3.59243i −0.142709 0.178952i
\(404\) −1.84038 + 0.886282i −0.0915626 + 0.0440942i
\(405\) 0 0
\(406\) −3.81799 + 10.2576i −0.189484 + 0.509079i
\(407\) 29.0250 1.43871
\(408\) 0 0
\(409\) 19.6705 + 24.6660i 0.972643 + 1.21966i 0.975576 + 0.219661i \(0.0704950\pi\)
−0.00293293 + 0.999996i \(0.500934\pi\)
\(410\) −20.1488 + 25.2657i −0.995076 + 1.24779i
\(411\) 0 0
\(412\) 1.52324 + 0.733555i 0.0750448 + 0.0361397i
\(413\) 8.92831 + 11.1957i 0.439333 + 0.550906i
\(414\) 0 0
\(415\) 2.91721 12.7811i 0.143200 0.627401i
\(416\) 2.50811 3.14508i 0.122970 0.154200i
\(417\) 0 0
\(418\) −23.3105 −1.14015
\(419\) −5.20802 22.8178i −0.254428 1.11472i −0.927110 0.374791i \(-0.877715\pi\)
0.672681 0.739932i \(-0.265143\pi\)
\(420\) 0 0
\(421\) 0.355543 + 0.171220i 0.0173281 + 0.00834477i 0.442528 0.896755i \(-0.354082\pi\)
−0.425200 + 0.905100i \(0.639796\pi\)
\(422\) −4.49973 19.7146i −0.219044 0.959693i
\(423\) 0 0
\(424\) −3.69046 16.1689i −0.179224 0.785233i
\(425\) −7.70239 + 9.65850i −0.373621 + 0.468506i
\(426\) 0 0
\(427\) −1.90729 + 8.35636i −0.0923000 + 0.404393i
\(428\) −4.03991 5.06589i −0.195276 0.244869i
\(429\) 0 0
\(430\) −38.4758 + 18.5290i −1.85547 + 0.893546i
\(431\) 12.9796 16.2759i 0.625205 0.783983i −0.363861 0.931453i \(-0.618542\pi\)
0.989066 + 0.147470i \(0.0471131\pi\)
\(432\) 0 0
\(433\) −0.269212 + 0.129646i −0.0129375 + 0.00623038i −0.440341 0.897830i \(-0.645143\pi\)
0.427404 + 0.904061i \(0.359428\pi\)
\(434\) −8.10003 −0.388814
\(435\) 0 0
\(436\) 2.97983 0.142708
\(437\) −18.2921 + 8.80902i −0.875030 + 0.421392i
\(438\) 0 0
\(439\) 16.1485 20.2496i 0.770727 0.966461i −0.229249 0.973368i \(-0.573627\pi\)
0.999976 + 0.00690678i \(0.00219851\pi\)
\(440\) 23.9199 11.5192i 1.14034 0.549156i
\(441\) 0 0
\(442\) −2.21106 2.77258i −0.105169 0.131878i
\(443\) 0.928033 4.06598i 0.0440922 0.193181i −0.948085 0.318016i \(-0.896983\pi\)
0.992177 + 0.124836i \(0.0398404\pi\)
\(444\) 0 0
\(445\) −3.94059 + 4.94135i −0.186802 + 0.234242i
\(446\) 3.59179 + 15.7367i 0.170076 + 0.745153i
\(447\) 0 0
\(448\) −3.35993 14.7208i −0.158742 0.695493i
\(449\) −19.3037 9.29618i −0.910998 0.438714i −0.0811496 0.996702i \(-0.525859\pi\)
−0.829849 + 0.557988i \(0.811573\pi\)
\(450\) 0 0
\(451\) 5.50661 + 24.1260i 0.259296 + 1.13605i
\(452\) −3.34904 −0.157525
\(453\) 0 0
\(454\) 1.73477 2.17533i 0.0814166 0.102093i
\(455\) −1.39350 + 6.10531i −0.0653281 + 0.286221i
\(456\) 0 0
\(457\) 9.48836 + 11.8980i 0.443847 + 0.556566i 0.952553 0.304374i \(-0.0984473\pi\)
−0.508706 + 0.860940i \(0.669876\pi\)
\(458\) 1.12007 + 0.539396i 0.0523373 + 0.0252043i
\(459\) 0 0
\(460\) 3.51703 4.41021i 0.163982 0.205627i
\(461\) 2.12415 + 2.66360i 0.0989316 + 0.124056i 0.828833 0.559496i \(-0.189005\pi\)
−0.729901 + 0.683553i \(0.760434\pi\)
\(462\) 0 0
\(463\) −20.8584 −0.969374 −0.484687 0.874688i \(-0.661066\pi\)
−0.484687 + 0.874688i \(0.661066\pi\)
\(464\) −11.7331 + 3.84759i −0.544695 + 0.178620i
\(465\) 0 0
\(466\) 26.9170 12.9626i 1.24691 0.600479i
\(467\) −10.8132 13.5593i −0.500373 0.627448i 0.465940 0.884816i \(-0.345716\pi\)
−0.966313 + 0.257368i \(0.917145\pi\)
\(468\) 0 0
\(469\) 0.713635 0.343668i 0.0329526 0.0158691i
\(470\) −23.9581 11.5376i −1.10511 0.532191i
\(471\) 0 0
\(472\) −5.61828 + 24.6153i −0.258602 + 1.13301i
\(473\) −7.27685 + 31.8820i −0.334590 + 1.46593i
\(474\) 0 0
\(475\) −7.51495 32.9252i −0.344810 1.51071i
\(476\) 2.97794 0.136494
\(477\) 0 0
\(478\) 8.24191 + 3.96909i 0.376976 + 0.181542i
\(479\) −32.4935 15.6480i −1.48467 0.714977i −0.496452 0.868064i \(-0.665364\pi\)
−0.988213 + 0.153087i \(0.951079\pi\)
\(480\) 0 0
\(481\) −12.0712 −0.550399
\(482\) 6.33379 + 27.7501i 0.288496 + 1.26398i
\(483\) 0 0
\(484\) −0.475964 + 2.08534i −0.0216347 + 0.0947880i
\(485\) 8.76656 38.4088i 0.398069 1.74405i
\(486\) 0 0
\(487\) −11.8931 5.72743i −0.538929 0.259535i 0.144559 0.989496i \(-0.453824\pi\)
−0.683488 + 0.729961i \(0.739538\pi\)
\(488\) −13.6159 + 6.55709i −0.616364 + 0.296825i
\(489\) 0 0
\(490\) −8.91736 11.1820i −0.402845 0.505152i
\(491\) −22.3150 + 10.7464i −1.00706 + 0.484976i −0.863330 0.504640i \(-0.831625\pi\)
−0.143734 + 0.989616i \(0.545911\pi\)
\(492\) 0 0
\(493\) −1.31418 14.1703i −0.0591878 0.638199i
\(494\) 9.69460 0.436181
\(495\) 0 0
\(496\) −5.69751 7.14446i −0.255826 0.320796i
\(497\) −12.6346 + 15.8433i −0.566741 + 0.710671i
\(498\) 0 0
\(499\) −14.2485 6.86174i −0.637853 0.307174i 0.0868646 0.996220i \(-0.472315\pi\)
−0.724717 + 0.689047i \(0.758030\pi\)
\(500\) −0.407069 0.510449i −0.0182047 0.0228280i
\(501\) 0 0
\(502\) 1.54828 6.78346i 0.0691031 0.302760i
\(503\) 14.6226 18.3361i 0.651988 0.817568i −0.340456 0.940260i \(-0.610582\pi\)
0.992445 + 0.122693i \(0.0391530\pi\)
\(504\) 0 0
\(505\) 9.84569 0.438127
\(506\) 2.01780 + 8.84056i 0.0897021 + 0.393011i
\(507\) 0 0
\(508\) −8.72951 4.20391i −0.387309 0.186518i
\(509\) 1.55265 + 6.80262i 0.0688202 + 0.301521i 0.997611 0.0690838i \(-0.0220076\pi\)
−0.928791 + 0.370605i \(0.879150\pi\)
\(510\) 0 0
\(511\) 4.99524 + 21.8856i 0.220976 + 0.968161i
\(512\) 13.7914 17.2938i 0.609498 0.764286i
\(513\) 0 0
\(514\) −6.97835 + 30.5741i −0.307802 + 1.34857i
\(515\) −5.08084 6.37118i −0.223889 0.280748i
\(516\) 0 0
\(517\) −18.3463 + 8.83510i −0.806868 + 0.388567i
\(518\) −13.2676 + 16.6370i −0.582943 + 0.730987i
\(519\) 0 0
\(520\) −9.94804 + 4.79072i −0.436250 + 0.210087i
\(521\) 20.4524 0.896037 0.448019 0.894024i \(-0.352130\pi\)
0.448019 + 0.894024i \(0.352130\pi\)
\(522\) 0 0
\(523\) −19.8313 −0.867162 −0.433581 0.901115i \(-0.642750\pi\)
−0.433581 + 0.901115i \(0.642750\pi\)
\(524\) 0.311258 0.149894i 0.0135974 0.00654815i
\(525\) 0 0
\(526\) 12.0706 15.1361i 0.526303 0.659964i
\(527\) 9.48885 4.56959i 0.413341 0.199055i
\(528\) 0 0
\(529\) −9.41603 11.8073i −0.409393 0.513362i
\(530\) −4.33932 + 19.0118i −0.188488 + 0.825820i
\(531\) 0 0
\(532\) −5.07580 + 6.36485i −0.220064 + 0.275951i
\(533\) −2.29015 10.0338i −0.0991972 0.434611i
\(534\) 0 0
\(535\) 6.94961 + 30.4482i 0.300458 + 1.31639i
\(536\) 1.25826 + 0.605944i 0.0543484 + 0.0261728i
\(537\) 0 0
\(538\) −3.53149 15.4725i −0.152253 0.667066i
\(539\) −10.9522 −0.471745
\(540\) 0 0
\(541\) 22.2616 27.9152i 0.957101 1.20017i −0.0226089 0.999744i \(-0.507197\pi\)
0.979710 0.200422i \(-0.0642313\pi\)
\(542\) −3.73017 + 16.3430i −0.160225 + 0.701990i
\(543\) 0 0
\(544\) 5.74878 + 7.20874i 0.246477 + 0.309072i
\(545\) −12.9404 6.23179i −0.554308 0.266941i
\(546\) 0 0
\(547\) −6.16194 + 7.72683i −0.263466 + 0.330376i −0.895914 0.444227i \(-0.853478\pi\)
0.632449 + 0.774602i \(0.282050\pi\)
\(548\) 5.01762 + 6.29190i 0.214342 + 0.268776i
\(549\) 0 0
\(550\) −15.0837 −0.643172
\(551\) 32.5267 + 21.3440i 1.38568 + 0.909284i
\(552\) 0 0
\(553\) 24.2568 11.6815i 1.03150 0.496746i
\(554\) 9.96339 + 12.4937i 0.423304 + 0.530806i
\(555\) 0 0
\(556\) −5.05147 + 2.43266i −0.214230 + 0.103168i
\(557\) −28.7227 13.8321i −1.21702 0.586085i −0.288539 0.957468i \(-0.593170\pi\)
−0.928480 + 0.371383i \(0.878884\pi\)
\(558\) 0 0
\(559\) 3.02637 13.2594i 0.128002 0.560813i
\(560\) −2.77132 + 12.1419i −0.117110 + 0.513090i
\(561\) 0 0
\(562\) 0.0372149 + 0.163049i 0.00156981 + 0.00687781i
\(563\) 9.06052 0.381855 0.190928 0.981604i \(-0.438850\pi\)
0.190928 + 0.981604i \(0.438850\pi\)
\(564\) 0 0
\(565\) 14.5438 + 7.00391i 0.611861 + 0.294657i
\(566\) −9.26791 4.46319i −0.389560 0.187602i
\(567\) 0 0
\(568\) −35.7294 −1.49917
\(569\) −3.72126 16.3039i −0.156003 0.683496i −0.991070 0.133346i \(-0.957428\pi\)
0.835066 0.550150i \(-0.185429\pi\)
\(570\) 0 0
\(571\) 5.17962 22.6934i 0.216761 0.949690i −0.743093 0.669188i \(-0.766642\pi\)
0.959854 0.280502i \(-0.0905009\pi\)
\(572\) −0.458974 + 2.01090i −0.0191907 + 0.0840798i
\(573\) 0 0
\(574\) −16.3461 7.87185i −0.682272 0.328565i
\(575\) −11.8364 + 5.70013i −0.493613 + 0.237712i
\(576\) 0 0
\(577\) 11.8070 + 14.8056i 0.491533 + 0.616363i 0.964296 0.264826i \(-0.0853146\pi\)
−0.472763 + 0.881190i \(0.656743\pi\)
\(578\) −10.5036 + 5.05829i −0.436894 + 0.210397i
\(579\) 0 0
\(580\) −10.7152 1.42183i −0.444925 0.0590383i
\(581\) 7.36006 0.305347
\(582\) 0 0
\(583\) 9.31055 + 11.6751i 0.385603 + 0.483531i
\(584\) −24.6779 + 30.9451i −1.02118 + 1.28052i
\(585\) 0 0
\(586\) 3.53799 + 1.70381i 0.146153 + 0.0703835i
\(587\) 0.0141875 + 0.0177906i 0.000585581 + 0.000734295i 0.782124 0.623123i \(-0.214136\pi\)
−0.781539 + 0.623857i \(0.785565\pi\)
\(588\) 0 0
\(589\) −6.40669 + 28.0696i −0.263983 + 1.15659i
\(590\) 18.5099 23.2107i 0.762040 0.955568i
\(591\) 0 0
\(592\) −24.0066 −0.986665
\(593\) 0.0784633 + 0.343770i 0.00322210 + 0.0141170i 0.976513 0.215457i \(-0.0691240\pi\)
−0.973291 + 0.229574i \(0.926267\pi\)
\(594\) 0 0
\(595\) −12.9322 6.22783i −0.530169 0.255316i
\(596\) 2.15830 + 9.45615i 0.0884076 + 0.387339i
\(597\) 0 0
\(598\) −0.839183 3.67670i −0.0343167 0.150351i
\(599\) −5.02946 + 6.30675i −0.205498 + 0.257687i −0.873891 0.486122i \(-0.838411\pi\)
0.668393 + 0.743808i \(0.266983\pi\)
\(600\) 0 0
\(601\) 4.86790 21.3277i 0.198566 0.869974i −0.773226 0.634131i \(-0.781358\pi\)
0.971791 0.235842i \(-0.0757849\pi\)
\(602\) −14.9483 18.7446i −0.609247 0.763972i
\(603\) 0 0
\(604\) 8.76983 4.22333i 0.356839 0.171845i
\(605\) 6.42807 8.06054i 0.261338 0.327708i
\(606\) 0 0
\(607\) 2.92395 1.40810i 0.118680 0.0571530i −0.373602 0.927589i \(-0.621877\pi\)
0.492281 + 0.870436i \(0.336163\pi\)
\(608\) −25.2061 −1.02224
\(609\) 0 0
\(610\) 17.7697 0.719473
\(611\) 7.63003 3.67443i 0.308678 0.148651i
\(612\) 0 0
\(613\) −5.82061 + 7.29882i −0.235092 + 0.294797i −0.885358 0.464911i \(-0.846086\pi\)
0.650265 + 0.759707i \(0.274658\pi\)
\(614\) −0.242092 + 0.116585i −0.00977005 + 0.00470501i
\(615\) 0 0
\(616\) 9.29315 + 11.6532i 0.374432 + 0.469522i
\(617\) 4.93142 21.6059i 0.198531 0.869823i −0.773280 0.634064i \(-0.781385\pi\)
0.971812 0.235758i \(-0.0757574\pi\)
\(618\) 0 0
\(619\) −4.06400 + 5.09610i −0.163346 + 0.204829i −0.856768 0.515703i \(-0.827531\pi\)
0.693422 + 0.720532i \(0.256102\pi\)
\(620\) −1.78003 7.79880i −0.0714876 0.313207i
\(621\) 0 0
\(622\) 6.52049 + 28.5681i 0.261448 + 1.14548i
\(623\) −3.19688 1.53954i −0.128080 0.0616803i
\(624\) 0 0
\(625\) 5.90138 + 25.8556i 0.236055 + 1.03423i
\(626\) −11.6185 −0.464368
\(627\) 0 0
\(628\) 4.00044 5.01639i 0.159635 0.200176i
\(629\) 6.15672 26.9744i 0.245485 1.07554i
\(630\) 0 0
\(631\) −14.9507 18.7476i −0.595179 0.746331i 0.389439 0.921052i \(-0.372669\pi\)
−0.984618 + 0.174721i \(0.944098\pi\)
\(632\) 42.7687 + 20.5963i 1.70125 + 0.819278i
\(633\) 0 0
\(634\) −20.0983 + 25.2025i −0.798206 + 1.00092i
\(635\) 29.1177 + 36.5124i 1.15550 + 1.44895i
\(636\) 0 0
\(637\) 4.55491 0.180472
\(638\) 12.5266 12.0420i 0.495935 0.476749i
\(639\) 0 0
\(640\) −8.64820 + 4.16476i −0.341850 + 0.164626i
\(641\) −27.4148 34.3771i −1.08282 1.35781i −0.929154 0.369692i \(-0.879463\pi\)
−0.153667 0.988123i \(-0.549108\pi\)
\(642\) 0 0
\(643\) −14.8855 + 7.16846i −0.587025 + 0.282697i −0.703727 0.710470i \(-0.748482\pi\)
0.116702 + 0.993167i \(0.462768\pi\)
\(644\) 2.85325 + 1.37405i 0.112434 + 0.0541454i
\(645\) 0 0
\(646\) −4.94458 + 21.6636i −0.194542 + 0.852343i
\(647\) −7.84873 + 34.3875i −0.308565 + 1.35191i 0.548261 + 0.836307i \(0.315290\pi\)
−0.856826 + 0.515605i \(0.827567\pi\)
\(648\) 0 0
\(649\) −5.05871 22.1637i −0.198572 0.870000i
\(650\) 6.27317 0.246054
\(651\) 0 0
\(652\) −1.59564 0.768422i −0.0624903 0.0300937i
\(653\) 15.1503 + 7.29602i 0.592878 + 0.285515i 0.706165 0.708047i \(-0.250424\pi\)
−0.113287 + 0.993562i \(0.536138\pi\)
\(654\) 0 0
\(655\) −1.66517 −0.0650635
\(656\) −4.55453 19.9547i −0.177824 0.779100i
\(657\) 0 0
\(658\) 3.32199 14.5546i 0.129505 0.567397i
\(659\) 0.668451 2.92867i 0.0260392 0.114085i −0.960238 0.279182i \(-0.909937\pi\)
0.986277 + 0.165097i \(0.0527938\pi\)
\(660\) 0 0
\(661\) −34.5193 16.6236i −1.34264 0.646583i −0.381948 0.924184i \(-0.624746\pi\)
−0.960697 + 0.277601i \(0.910461\pi\)
\(662\) −24.4071 + 11.7538i −0.948607 + 0.456825i
\(663\) 0 0
\(664\) 8.09102 + 10.1458i 0.313992 + 0.393734i
\(665\) 35.3535 17.0253i 1.37095 0.660214i
\(666\) 0 0
\(667\) 5.27918 14.1834i 0.204411 0.549183i
\(668\) −2.05823 −0.0796353
\(669\) 0 0
\(670\) −1.02384 1.28385i −0.0395542 0.0495994i
\(671\) 8.48405 10.6387i 0.327523 0.410701i
\(672\) 0 0
\(673\) 24.6701 + 11.8805i 0.950963 + 0.457960i 0.844024 0.536306i \(-0.180181\pi\)
0.106939 + 0.994266i \(0.465895\pi\)
\(674\) −13.6648 17.1351i −0.526348 0.660019i
\(675\) 0 0
\(676\) −1.67587 + 7.34246i −0.0644565 + 0.282402i
\(677\) −17.8546 + 22.3890i −0.686209 + 0.860479i −0.995910 0.0903549i \(-0.971200\pi\)
0.309700 + 0.950834i \(0.399771\pi\)
\(678\) 0 0
\(679\) 22.1178 0.848805
\(680\) −5.63154 24.6734i −0.215960 0.946181i
\(681\) 0 0
\(682\) 11.5858 + 5.57943i 0.443643 + 0.213647i
\(683\) 2.80121 + 12.2729i 0.107185 + 0.469609i 0.999823 + 0.0188337i \(0.00599530\pi\)
−0.892637 + 0.450775i \(0.851148\pi\)
\(684\) 0 0
\(685\) −8.63150 37.8171i −0.329793 1.44492i
\(686\) 13.8769 17.4011i 0.529822 0.664376i
\(687\) 0 0
\(688\) 6.01870 26.3696i 0.229461 1.00533i
\(689\) −3.87216 4.85554i −0.147518 0.184981i
\(690\) 0 0
\(691\) −36.0563 + 17.3638i −1.37165 + 0.660550i −0.967201 0.254012i \(-0.918250\pi\)
−0.404446 + 0.914562i \(0.632536\pi\)
\(692\) 3.04892 3.82323i 0.115903 0.145337i
\(693\) 0 0
\(694\) 20.3444 9.79736i 0.772264 0.371903i
\(695\) 27.0243 1.02509
\(696\) 0 0
\(697\) 23.5896 0.893520
\(698\) 10.0370 4.83358i 0.379907 0.182954i
\(699\) 0 0
\(700\) −3.28444 + 4.11856i −0.124140 + 0.155667i
\(701\) −11.6102 + 5.59119i −0.438512 + 0.211176i −0.640096 0.768295i \(-0.721105\pi\)
0.201584 + 0.979471i \(0.435391\pi\)
\(702\) 0 0
\(703\) 47.1593 + 59.1359i 1.77865 + 2.23035i
\(704\) −5.33408 + 23.3701i −0.201036 + 0.880795i
\(705\) 0 0
\(706\) −23.7707 + 29.8075i −0.894622 + 1.12182i
\(707\) 1.22999 + 5.38894i 0.0462585 + 0.202672i
\(708\) 0 0
\(709\) 0.139525 + 0.611300i 0.00523998 + 0.0229578i 0.977480 0.211027i \(-0.0676807\pi\)
−0.972240 + 0.233984i \(0.924824\pi\)
\(710\) 37.8511 + 18.2281i 1.42052 + 0.684089i
\(711\) 0 0
\(712\) −1.39213 6.09933i −0.0521724 0.228582i
\(713\) 11.2000 0.419444
\(714\) 0 0
\(715\) 6.19860 7.77280i 0.231814 0.290686i
\(716\) 0.403781 1.76908i 0.0150900 0.0661137i
\(717\) 0 0
\(718\) 10.5347 + 13.2101i 0.393151 + 0.492996i
\(719\) 31.9194 + 15.3716i 1.19039 + 0.573263i 0.920923 0.389745i \(-0.127437\pi\)
0.269471 + 0.963009i \(0.413151\pi\)
\(720\) 0 0
\(721\) 2.85247 3.57688i 0.106231 0.133210i
\(722\) −24.0865 30.2035i −0.896406 1.12406i
\(723\) 0 0
\(724\) −4.54347 −0.168857
\(725\) 21.0473 + 13.8112i 0.781677 + 0.512936i
\(726\) 0 0
\(727\) 17.5000 8.42754i 0.649038 0.312560i −0.0802424 0.996775i \(-0.525569\pi\)
0.729280 + 0.684215i \(0.239855\pi\)
\(728\) −3.86493 4.84647i −0.143244 0.179622i
\(729\) 0 0
\(730\) 41.9305 20.1927i 1.55192 0.747364i
\(731\) 28.0860 + 13.5255i 1.03880 + 0.500258i
\(732\) 0 0
\(733\) 5.58097 24.4518i 0.206138 0.903148i −0.760971 0.648786i \(-0.775277\pi\)
0.967109 0.254363i \(-0.0818656\pi\)
\(734\) 4.45532 19.5201i 0.164449 0.720498i
\(735\) 0 0
\(736\) 2.18189 + 9.55947i 0.0804254 + 0.352367i
\(737\) −1.25746 −0.0463193
\(738\) 0 0
\(739\) −47.6184 22.9318i −1.75167 0.843560i −0.977603 0.210458i \(-0.932505\pi\)
−0.774068 0.633103i \(-0.781781\pi\)
\(740\) −18.9339 9.11808i −0.696024 0.335187i
\(741\) 0 0
\(742\) −10.9480 −0.401914
\(743\) 3.53331 + 15.4804i 0.129625 + 0.567922i 0.997470 + 0.0710881i \(0.0226472\pi\)
−0.867845 + 0.496834i \(0.834496\pi\)
\(744\) 0 0
\(745\) 10.4030 45.5787i 0.381138 1.66987i
\(746\) 2.20990 9.68219i 0.0809101 0.354490i
\(747\) 0 0
\(748\) −4.25947 2.05125i −0.155741 0.0750011i
\(749\) −15.7973 + 7.60760i −0.577222 + 0.277976i
\(750\) 0 0
\(751\) −5.78372 7.25256i −0.211051 0.264650i 0.665027 0.746820i \(-0.268420\pi\)
−0.876078 + 0.482170i \(0.839849\pi\)
\(752\) 15.1742 7.30752i 0.553347 0.266478i
\(753\) 0 0
\(754\) −5.20971 + 5.00816i −0.189726 + 0.182386i
\(755\) −46.9168 −1.70748
\(756\) 0 0
\(757\) −3.73161 4.67930i −0.135628 0.170072i 0.709379 0.704827i \(-0.248975\pi\)
−0.845007 + 0.534755i \(0.820404\pi\)
\(758\) 7.85702 9.85239i 0.285380 0.357855i
\(759\) 0 0
\(760\) 62.3340 + 30.0185i 2.26109 + 1.08888i
\(761\) −13.1939 16.5446i −0.478279 0.599743i 0.482898 0.875677i \(-0.339584\pi\)
−0.961177 + 0.275934i \(0.911013\pi\)
\(762\) 0 0
\(763\) 1.79430 7.86134i 0.0649580 0.284599i
\(764\) 1.78075 2.23299i 0.0644252 0.0807866i
\(765\) 0 0
\(766\) 23.3153 0.842415
\(767\) 2.10387 + 9.21765i 0.0759663 + 0.332830i
\(768\) 0 0
\(769\) −21.9708 10.5806i −0.792288 0.381546i −0.00645049 0.999979i \(-0.502053\pi\)
−0.785837 + 0.618434i \(0.787768\pi\)
\(770\) −3.89984 17.0863i −0.140540 0.615747i
\(771\) 0 0
\(772\) −0.579997 2.54113i −0.0208745 0.0914573i
\(773\) −33.8004 + 42.3843i −1.21571 + 1.52446i −0.433881 + 0.900970i \(0.642856\pi\)
−0.781833 + 0.623488i \(0.785715\pi\)
\(774\) 0 0
\(775\) −4.14564 + 18.1632i −0.148916 + 0.652442i
\(776\) 24.3145 + 30.4894i 0.872838 + 1.09450i
\(777\) 0 0
\(778\) 32.4667 15.6351i 1.16399 0.560546i
\(779\) −40.2077 + 50.4188i −1.44059 + 1.80644i
\(780\) 0 0
\(781\) 28.9850 13.9584i 1.03716 0.499472i
\(782\) 8.64398 0.309108
\(783\) 0 0
\(784\) 9.05858 0.323521
\(785\) −27.8635 + 13.4183i −0.994489 + 0.478921i
\(786\) 0 0
\(787\) −0.341145 + 0.427783i −0.0121605 + 0.0152488i −0.787875 0.615836i \(-0.788818\pi\)
0.775714 + 0.631085i \(0.217390\pi\)
\(788\) −6.97156 + 3.35733i −0.248351 + 0.119600i
\(789\) 0 0
\(790\) −34.8007 43.6387i −1.23815 1.55259i
\(791\) −2.01661 + 8.83536i −0.0717025 + 0.314149i
\(792\) 0 0
\(793\) −3.52843 + 4.42452i −0.125298 + 0.157119i
\(794\) 5.11879 + 22.4269i 0.181659 + 0.795901i
\(795\) 0 0
\(796\) 0.197737 + 0.866341i 0.00700859 + 0.0307066i
\(797\) −22.1189 10.6519i −0.783491 0.377309i −0.00102250 0.999999i \(-0.500325\pi\)
−0.782469 + 0.622690i \(0.786040\pi\)
\(798\) 0 0
\(799\) 4.31932 + 18.9242i 0.152807 + 0.669490i
\(800\) −16.3103 −0.576657
\(801\) 0 0
\(802\) 13.4897 16.9155i 0.476338 0.597309i
\(803\) 7.93023 34.7446i 0.279852 1.22611i
\(804\) 0 0
\(805\) −9.51716 11.9341i −0.335436 0.420623i
\(806\) −4.81842 2.32043i −0.169722 0.0817336i
\(807\) 0 0
\(808\) −6.07649 + 7.61967i −0.213770 + 0.268059i
\(809\) −16.4424 20.6181i −0.578084 0.724895i 0.403700 0.914891i \(-0.367724\pi\)
−0.981785 + 0.189996i \(0.939152\pi\)
\(810\) 0 0
\(811\) 31.8364 1.11793 0.558964 0.829192i \(-0.311199\pi\)
0.558964 + 0.829192i \(0.311199\pi\)
\(812\) −0.560391 6.04248i −0.0196659 0.212049i
\(813\) 0 0
\(814\) 30.4369 14.6576i 1.06681 0.513750i
\(815\) 5.32235 + 6.67401i 0.186434 + 0.233780i
\(816\) 0 0
\(817\) −76.7801 + 36.9753i −2.68619 + 1.29360i
\(818\) 33.0838 + 15.9323i 1.15675 + 0.557060i
\(819\) 0 0
\(820\) 3.98697 17.4681i 0.139231 0.610011i
\(821\) 2.92425 12.8120i 0.102057 0.447141i −0.897919 0.440161i \(-0.854921\pi\)
0.999976 0.00697929i \(-0.00222160\pi\)
\(822\) 0 0
\(823\) 11.6576 + 51.0754i 0.406359 + 1.78038i 0.600734 + 0.799449i \(0.294875\pi\)
−0.194375 + 0.980927i \(0.562268\pi\)
\(824\) 8.06647 0.281009
\(825\) 0 0
\(826\) 15.0165 + 7.23156i 0.522491 + 0.251618i
\(827\) −20.4423 9.84448i −0.710847 0.342326i 0.0432721 0.999063i \(-0.486222\pi\)
−0.754119 + 0.656737i \(0.771936\pi\)
\(828\) 0 0
\(829\) 20.0998 0.698094 0.349047 0.937105i \(-0.386505\pi\)
0.349047 + 0.937105i \(0.386505\pi\)
\(830\) −3.39537 14.8761i −0.117855 0.516356i
\(831\) 0 0
\(832\) 2.21839 9.71941i 0.0769089 0.336960i
\(833\) −2.32316 + 10.1784i −0.0804927 + 0.352662i
\(834\) 0 0
\(835\) 8.93821 + 4.30442i 0.309320 + 0.148961i
\(836\) 11.6443 5.60761i 0.402727 0.193943i
\(837\) 0 0
\(838\) −16.9844 21.2977i −0.586716 0.735718i
\(839\) 7.40628 3.56667i 0.255693 0.123135i −0.301647 0.953420i \(-0.597536\pi\)
0.557340 + 0.830284i \(0.311822\pi\)
\(840\) 0 0
\(841\) −28.5054 + 5.33316i −0.982945 + 0.183902i
\(842\) 0.459305 0.0158287
\(843\) 0 0
\(844\) 6.99034 + 8.76561i 0.240617 + 0.301725i
\(845\) 22.6332 28.3811i 0.778605 0.976340i
\(846\) 0 0
\(847\) 5.21489 + 2.51136i 0.179186 + 0.0862913i
\(848\) −7.70077 9.65646i −0.264445 0.331604i
\(849\) 0 0
\(850\) −3.19953 + 14.0181i −0.109743 + 0.480815i
\(851\) 18.3452 23.0042i 0.628866 0.788573i
\(852\) 0 0
\(853\) 20.7111 0.709136 0.354568 0.935030i \(-0.384628\pi\)
0.354568 + 0.935030i \(0.384628\pi\)
\(854\) 2.21991 + 9.72605i 0.0759636 + 0.332818i
\(855\) 0 0
\(856\) −27.8533 13.4134i −0.952006 0.458462i
\(857\) −1.36550 5.98267i −0.0466448 0.204364i 0.946236 0.323477i \(-0.104852\pi\)
−0.992881 + 0.119113i \(0.961995\pi\)
\(858\) 0 0
\(859\) −3.55262 15.5650i −0.121214 0.531072i −0.998677 0.0514278i \(-0.983623\pi\)
0.877463 0.479644i \(-0.159234\pi\)
\(860\) 14.7625 18.5116i 0.503398 0.631241i
\(861\) 0 0
\(862\) 5.39165 23.6224i 0.183640 0.804581i
\(863\) 12.7849 + 16.0318i 0.435204 + 0.545729i 0.950272 0.311420i \(-0.100805\pi\)
−0.515068 + 0.857149i \(0.672233\pi\)
\(864\) 0 0
\(865\) −21.2361 + 10.2268i −0.722048 + 0.347720i
\(866\) −0.216837 + 0.271905i −0.00736843 + 0.00923972i
\(867\) 0 0
\(868\) 4.04622 1.94856i 0.137338 0.0661384i
\(869\) −42.7418 −1.44992
\(870\) 0 0
\(871\) 0.522967 0.0177201
\(872\) 12.8093 6.16865i 0.433779 0.208897i
\(873\) 0 0
\(874\) −14.7334 + 18.4751i −0.498364 + 0.624929i
\(875\) −1.59177 + 0.766556i −0.0538117 + 0.0259143i
\(876\) 0 0
\(877\) −16.6801 20.9162i −0.563247 0.706289i 0.415907 0.909407i \(-0.363464\pi\)
−0.979154 + 0.203118i \(0.934893\pi\)
\(878\) 6.70801 29.3897i 0.226384 0.991854i
\(879\) 0 0
\(880\) 12.3275 15.4582i 0.415559 0.521094i
\(881\) 4.45824 + 19.5328i 0.150202 + 0.658078i 0.992825 + 0.119574i \(0.0381529\pi\)
−0.842623 + 0.538503i \(0.818990\pi\)
\(882\) 0 0
\(883\) 7.77065 + 34.0454i 0.261503 + 1.14572i 0.919622 + 0.392806i \(0.128495\pi\)
−0.658118 + 0.752914i \(0.728647\pi\)
\(884\) 1.77147 + 0.853095i 0.0595810 + 0.0286927i
\(885\) 0 0
\(886\) −1.08015 4.73243i −0.0362882 0.158989i
\(887\) 16.0686 0.539530 0.269765 0.962926i \(-0.413054\pi\)
0.269765 + 0.962926i \(0.413054\pi\)
\(888\) 0 0
\(889\) −16.3471 + 20.4986i −0.548265 + 0.687502i
\(890\) −1.63690 + 7.17173i −0.0548690 + 0.240397i
\(891\) 0 0
\(892\) −5.57986 6.99692i −0.186827 0.234274i
\(893\) −47.8095 23.0238i −1.59988 0.770463i
\(894\) 0 0
\(895\) −5.45321 + 6.83811i −0.182281 + 0.228573i
\(896\) −3.35993 4.21322i −0.112247 0.140754i
\(897\) 0 0
\(898\) −24.9373 −0.832170
\(899\) −11.0577 18.3937i −0.368795 0.613466i
\(900\) 0 0
\(901\) 12.8252 6.17627i 0.427268 0.205761i
\(902\) 17.9582 + 22.5188i 0.597942 + 0.749795i
\(903\) 0 0
\(904\) −14.3964 + 6.93294i −0.478817 + 0.230586i
\(905\) 19.7308 + 9.50186i 0.655874 + 0.315852i
\(906\) 0 0
\(907\) −5.98113 + 26.2050i −0.198600 + 0.870124i 0.773171 + 0.634198i \(0.218670\pi\)
−0.971771 + 0.235926i \(0.924188\pi\)
\(908\) −0.343270 + 1.50396i −0.0113918 + 0.0499108i
\(909\) 0 0
\(910\) 1.62190 + 7.10602i 0.0537656 + 0.235562i
\(911\) 29.9706 0.992969 0.496485 0.868045i \(-0.334624\pi\)
0.496485 + 0.868045i \(0.334624\pi\)
\(912\) 0 0
\(913\) −10.5274 5.06972i −0.348405 0.167783i
\(914\) 15.9584 + 7.68518i 0.527859 + 0.254203i
\(915\) 0 0
\(916\) −0.689267 −0.0227740
\(917\) −0.208024 0.911413i −0.00686956 0.0300975i
\(918\) 0 0
\(919\) −7.68641 + 33.6764i −0.253551 + 1.11088i 0.674455 + 0.738316i \(0.264379\pi\)
−0.928006 + 0.372565i \(0.878478\pi\)
\(920\) 5.98882 26.2388i 0.197446 0.865066i
\(921\) 0 0
\(922\) 3.57260 + 1.72048i 0.117657 + 0.0566608i
\(923\) −12.0546 + 5.80517i −0.396781 + 0.191079i
\(924\) 0 0
\(925\) 30.5158 + 38.2656i 1.00335 + 1.25816i
\(926\) −21.8731 + 10.5335i −0.718795 + 0.346154i
\(927\) 0 0
\(928\) 13.5453 13.0213i 0.444647 0.427445i
\(929\) 55.5508 1.82256 0.911282 0.411783i \(-0.135094\pi\)
0.911282 + 0.411783i \(0.135094\pi\)
\(930\) 0 0
\(931\) −17.7950 22.3142i −0.583206 0.731317i
\(932\) −10.3276 + 12.9504i −0.338292 + 0.424205i
\(933\) 0 0
\(934\) −18.1866 8.75821i −0.595084 0.286578i
\(935\) 14.2076 + 17.8158i 0.464639 + 0.582639i
\(936\) 0 0
\(937\) 0.915057 4.00913i 0.0298936 0.130972i −0.957779 0.287505i \(-0.907174\pi\)
0.987673 + 0.156532i \(0.0500315\pi\)
\(938\) 0.574797 0.720773i 0.0187678 0.0235341i
\(939\) 0 0
\(940\) 14.7434 0.480875
\(941\) 0.849320 + 3.72112i 0.0276871 + 0.121305i 0.986883 0.161437i \(-0.0516130\pi\)
−0.959196 + 0.282742i \(0.908756\pi\)
\(942\) 0 0
\(943\) 22.6019 + 10.8845i 0.736019 + 0.354448i
\(944\) 4.18407 + 18.3316i 0.136180 + 0.596643i
\(945\) 0 0
\(946\) 8.46959 + 37.1077i 0.275370 + 1.20648i
\(947\) −14.2317 + 17.8460i −0.462469 + 0.579918i −0.957309 0.289066i \(-0.906655\pi\)
0.494840 + 0.868984i \(0.335227\pi\)
\(948\) 0 0
\(949\) −3.29810 + 14.4499i −0.107061 + 0.469065i
\(950\) −24.5078 30.7318i −0.795137 0.997071i
\(951\) 0 0
\(952\) 12.8012 6.16473i 0.414889 0.199800i
\(953\) 27.8165 34.8808i 0.901065 1.12990i −0.0899227 0.995949i \(-0.528662\pi\)
0.990988 0.133951i \(-0.0427666\pi\)
\(954\) 0 0
\(955\) −12.4031 + 5.97302i −0.401355 + 0.193282i
\(956\) −5.07190 −0.164037
\(957\) 0 0
\(958\) −41.9764 −1.35620
\(959\) 19.6205 9.44873i 0.633579 0.305115i
\(960\) 0 0
\(961\) −9.42540 + 11.8191i −0.304045 + 0.381261i
\(962\) −12.6584 + 6.09597i −0.408123 + 0.196542i
\(963\) 0 0
\(964\) −9.83955 12.3384i −0.316910 0.397393i
\(965\) −2.79559 + 12.2483i −0.0899931 + 0.394285i
\(966\) 0 0
\(967\) 34.3628 43.0896i 1.10503 1.38567i 0.190242 0.981737i \(-0.439073\pi\)
0.914790 0.403929i \(-0.132356\pi\)
\(968\) 2.27091 + 9.94949i 0.0729897 + 0.319789i
\(969\) 0 0
\(970\) −10.2035 44.7043i −0.327614 1.43537i
\(971\) −11.9811 5.76979i −0.384491 0.185161i 0.231646 0.972800i \(-0.425589\pi\)
−0.616137 + 0.787639i \(0.711303\pi\)
\(972\) 0 0
\(973\) 3.37606 + 14.7915i 0.108232 + 0.474193i
\(974\) −15.3640 −0.492296
\(975\) 0 0
\(976\) −7.01718 + 8.79926i −0.224614 + 0.281657i
\(977\) 0.470985 2.06352i 0.0150681 0.0660179i −0.966835 0.255402i \(-0.917792\pi\)
0.981903 + 0.189384i \(0.0606492\pi\)
\(978\) 0 0
\(979\) 3.51217 + 4.40412i 0.112249 + 0.140756i
\(980\) 7.14446 + 3.44059i 0.228221 + 0.109906i
\(981\) 0 0
\(982\) −17.9736 + 22.5382i −0.573562 + 0.719224i
\(983\) 5.94739 + 7.45779i 0.189692 + 0.237867i 0.867579 0.497300i \(-0.165675\pi\)
−0.677886 + 0.735167i \(0.737104\pi\)
\(984\) 0 0
\(985\) 37.2964 1.18836
\(986\) −8.53414 14.1960i −0.271782 0.452092i
\(987\) 0 0
\(988\) −4.84276 + 2.33215i −0.154069 + 0.0741956i
\(989\) 20.6692 + 25.9184i 0.657242 + 0.824156i
\(990\) 0 0
\(991\) 10.5591 5.08499i 0.335420 0.161530i −0.258590 0.965987i \(-0.583258\pi\)
0.594011 + 0.804457i \(0.297544\pi\)
\(992\) 12.5280 + 6.03314i 0.397763 + 0.191553i
\(993\) 0 0
\(994\) −5.24836 + 22.9946i −0.166468 + 0.729343i
\(995\) 0.953091 4.17576i 0.0302150 0.132381i
\(996\) 0 0
\(997\) −10.7939 47.2912i −0.341847 1.49773i −0.795173 0.606383i \(-0.792620\pi\)
0.453326 0.891345i \(-0.350237\pi\)
\(998\) −18.4069 −0.582659
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 261.2.k.c.136.2 18
3.2 odd 2 87.2.g.a.49.2 yes 18
29.4 even 14 7569.2.a.bm.1.6 9
29.16 even 7 inner 261.2.k.c.190.2 18
29.25 even 7 7569.2.a.bj.1.4 9
87.62 odd 14 2523.2.a.o.1.4 9
87.74 odd 14 87.2.g.a.16.2 18
87.83 odd 14 2523.2.a.r.1.6 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.a.16.2 18 87.74 odd 14
87.2.g.a.49.2 yes 18 3.2 odd 2
261.2.k.c.136.2 18 1.1 even 1 trivial
261.2.k.c.190.2 18 29.16 even 7 inner
2523.2.a.o.1.4 9 87.62 odd 14
2523.2.a.r.1.6 9 87.83 odd 14
7569.2.a.bj.1.4 9 29.25 even 7
7569.2.a.bm.1.6 9 29.4 even 14