Properties

Label 261.2.k.c.82.1
Level $261$
Weight $2$
Character 261.82
Analytic conductor $2.084$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [261,2,Mod(82,261)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(261, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("261.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 261 = 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 261.k (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.08409549276\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} + 18 x^{16} - 37 x^{15} + 71 x^{14} - 83 x^{13} + 225 x^{12} - 237 x^{11} + 485 x^{10} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 82.1
Root \(-0.353498 + 1.54877i\) of defining polynomial
Character \(\chi\) \(=\) 261.82
Dual form 261.2.k.c.226.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.61397 - 2.02385i) q^{2} +(-1.04604 + 4.58301i) q^{4} +(0.716354 + 0.898279i) q^{5} +(-0.615328 - 2.69593i) q^{7} +(6.29911 - 3.03349i) q^{8} +(0.661812 - 2.89959i) q^{10} +(-3.92298 - 1.88921i) q^{11} +(-5.07168 - 2.44239i) q^{13} +(-4.46304 + 5.59648i) q^{14} +(-7.83521 - 3.77324i) q^{16} -2.41516 q^{17} +(-0.416772 + 1.82600i) q^{19} +(-4.86616 + 2.34342i) q^{20} +(2.50809 + 10.9886i) q^{22} +(5.49948 - 6.89613i) q^{23} +(0.818862 - 3.58767i) q^{25} +(3.24249 + 14.2063i) q^{26} +12.9991 q^{28} +(-4.53581 + 2.90283i) q^{29} +(0.972977 + 1.22007i) q^{31} +(1.89780 + 8.31482i) q^{32} +(3.89799 + 4.88793i) q^{34} +(1.98091 - 2.48398i) q^{35} +(-6.99449 + 3.36837i) q^{37} +(4.36821 - 2.10362i) q^{38} +(7.23731 + 3.48530i) q^{40} -3.16072 q^{41} +(-0.912772 + 1.14458i) q^{43} +(12.7618 - 16.0028i) q^{44} -22.8327 q^{46} +(0.321962 + 0.155049i) q^{47} +(-0.582626 + 0.280578i) q^{49} +(-8.58252 + 4.13313i) q^{50} +(16.4987 - 20.6887i) q^{52} +(1.01940 + 1.27828i) q^{53} +(-1.11320 - 4.87727i) q^{55} +(-12.0541 - 15.1154i) q^{56} +(13.1955 + 4.49474i) q^{58} +4.85026 q^{59} +(-0.346042 - 1.51611i) q^{61} +(0.898897 - 3.93832i) q^{62} +(2.92070 - 3.66245i) q^{64} +(-1.43917 - 6.30540i) q^{65} +(8.71192 - 4.19544i) q^{67} +(2.52636 - 11.0687i) q^{68} -8.22432 q^{70} +(-7.37090 - 3.54964i) q^{71} +(7.09446 - 8.89617i) q^{73} +(18.1060 + 8.71937i) q^{74} +(-7.93260 - 3.82014i) q^{76} +(-2.67925 + 11.7386i) q^{77} +(7.32556 - 3.52780i) q^{79} +(-2.22336 - 9.74119i) q^{80} +(5.10130 + 6.39683i) q^{82} +(-0.107218 + 0.469754i) q^{83} +(-1.73011 - 2.16949i) q^{85} +3.78965 q^{86} -30.4421 q^{88} +(1.24461 + 1.56070i) q^{89} +(-3.46377 + 15.1758i) q^{91} +(25.8523 + 32.4178i) q^{92} +(-0.205841 - 0.901847i) q^{94} +(-1.93881 + 0.933683i) q^{95} +(-1.03142 + 4.51895i) q^{97} +(1.50819 + 0.726305i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 4 q^{2} - 6 q^{4} + q^{5} - 4 q^{7} + 15 q^{8} - 14 q^{10} - 26 q^{11} + 9 q^{13} + 10 q^{14} - 14 q^{16} - 4 q^{17} - 10 q^{19} + q^{20} - 8 q^{22} + 8 q^{23} + 16 q^{25} - 5 q^{26} + 80 q^{28}+ \cdots - 31 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/261\mathbb{Z}\right)^\times\).

\(n\) \(118\) \(146\)
\(\chi(n)\) \(e\left(\frac{2}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.61397 2.02385i −1.14125 1.43108i −0.885685 0.464287i \(-0.846311\pi\)
−0.255563 0.966792i \(-0.582261\pi\)
\(3\) 0 0
\(4\) −1.04604 + 4.58301i −0.523021 + 2.29150i
\(5\) 0.716354 + 0.898279i 0.320363 + 0.401723i 0.915771 0.401701i \(-0.131581\pi\)
−0.595408 + 0.803424i \(0.703009\pi\)
\(6\) 0 0
\(7\) −0.615328 2.69593i −0.232572 1.01897i −0.947497 0.319764i \(-0.896396\pi\)
0.714925 0.699201i \(-0.246461\pi\)
\(8\) 6.29911 3.03349i 2.22707 1.07250i
\(9\) 0 0
\(10\) 0.661812 2.89959i 0.209283 0.916930i
\(11\) −3.92298 1.88921i −1.18282 0.569617i −0.264090 0.964498i \(-0.585071\pi\)
−0.918732 + 0.394881i \(0.870786\pi\)
\(12\) 0 0
\(13\) −5.07168 2.44239i −1.40663 0.677397i −0.432135 0.901809i \(-0.642240\pi\)
−0.974494 + 0.224411i \(0.927954\pi\)
\(14\) −4.46304 + 5.59648i −1.19280 + 1.49572i
\(15\) 0 0
\(16\) −7.83521 3.77324i −1.95880 0.943310i
\(17\) −2.41516 −0.585763 −0.292881 0.956149i \(-0.594614\pi\)
−0.292881 + 0.956149i \(0.594614\pi\)
\(18\) 0 0
\(19\) −0.416772 + 1.82600i −0.0956141 + 0.418913i −0.999969 0.00786845i \(-0.997495\pi\)
0.904355 + 0.426781i \(0.140353\pi\)
\(20\) −4.86616 + 2.34342i −1.08811 + 0.524004i
\(21\) 0 0
\(22\) 2.50809 + 10.9886i 0.534726 + 2.34279i
\(23\) 5.49948 6.89613i 1.14672 1.43794i 0.266210 0.963915i \(-0.414229\pi\)
0.880510 0.474027i \(-0.157200\pi\)
\(24\) 0 0
\(25\) 0.818862 3.58767i 0.163772 0.717534i
\(26\) 3.24249 + 14.2063i 0.635904 + 2.78608i
\(27\) 0 0
\(28\) 12.9991 2.45660
\(29\) −4.53581 + 2.90283i −0.842279 + 0.539042i
\(30\) 0 0
\(31\) 0.972977 + 1.22007i 0.174752 + 0.219132i 0.861492 0.507771i \(-0.169530\pi\)
−0.686740 + 0.726903i \(0.740959\pi\)
\(32\) 1.89780 + 8.31482i 0.335488 + 1.46987i
\(33\) 0 0
\(34\) 3.89799 + 4.88793i 0.668500 + 0.838273i
\(35\) 1.98091 2.48398i 0.334834 0.419869i
\(36\) 0 0
\(37\) −6.99449 + 3.36837i −1.14989 + 0.553756i −0.909000 0.416797i \(-0.863153\pi\)
−0.240887 + 0.970553i \(0.577438\pi\)
\(38\) 4.36821 2.10362i 0.708617 0.341252i
\(39\) 0 0
\(40\) 7.23731 + 3.48530i 1.14432 + 0.551075i
\(41\) −3.16072 −0.493622 −0.246811 0.969064i \(-0.579383\pi\)
−0.246811 + 0.969064i \(0.579383\pi\)
\(42\) 0 0
\(43\) −0.912772 + 1.14458i −0.139196 + 0.174547i −0.846543 0.532320i \(-0.821320\pi\)
0.707347 + 0.706867i \(0.249892\pi\)
\(44\) 12.7618 16.0028i 1.92392 2.41252i
\(45\) 0 0
\(46\) −22.8327 −3.36650
\(47\) 0.321962 + 0.155049i 0.0469630 + 0.0226162i 0.457218 0.889355i \(-0.348846\pi\)
−0.410255 + 0.911971i \(0.634560\pi\)
\(48\) 0 0
\(49\) −0.582626 + 0.280578i −0.0832323 + 0.0400826i
\(50\) −8.58252 + 4.13313i −1.21375 + 0.584512i
\(51\) 0 0
\(52\) 16.4987 20.6887i 2.28796 2.86901i
\(53\) 1.01940 + 1.27828i 0.140025 + 0.175586i 0.846899 0.531754i \(-0.178467\pi\)
−0.706874 + 0.707339i \(0.749895\pi\)
\(54\) 0 0
\(55\) −1.11320 4.87727i −0.150104 0.657651i
\(56\) −12.0541 15.1154i −1.61080 2.01987i
\(57\) 0 0
\(58\) 13.1955 + 4.49474i 1.73266 + 0.590188i
\(59\) 4.85026 0.631450 0.315725 0.948851i \(-0.397752\pi\)
0.315725 + 0.948851i \(0.397752\pi\)
\(60\) 0 0
\(61\) −0.346042 1.51611i −0.0443062 0.194118i 0.947931 0.318474i \(-0.103171\pi\)
−0.992238 + 0.124356i \(0.960313\pi\)
\(62\) 0.898897 3.93832i 0.114160 0.500168i
\(63\) 0 0
\(64\) 2.92070 3.66245i 0.365088 0.457806i
\(65\) −1.43917 6.30540i −0.178507 0.782088i
\(66\) 0 0
\(67\) 8.71192 4.19544i 1.06433 0.512554i 0.182055 0.983288i \(-0.441725\pi\)
0.882275 + 0.470734i \(0.156011\pi\)
\(68\) 2.52636 11.0687i 0.306366 1.34228i
\(69\) 0 0
\(70\) −8.22432 −0.982994
\(71\) −7.37090 3.54964i −0.874765 0.421264i −0.0580551 0.998313i \(-0.518490\pi\)
−0.816710 + 0.577049i \(0.804204\pi\)
\(72\) 0 0
\(73\) 7.09446 8.89617i 0.830344 1.04122i −0.168117 0.985767i \(-0.553769\pi\)
0.998461 0.0554515i \(-0.0176598\pi\)
\(74\) 18.1060 + 8.71937i 2.10477 + 1.01361i
\(75\) 0 0
\(76\) −7.93260 3.82014i −0.909932 0.438200i
\(77\) −2.67925 + 11.7386i −0.305329 + 1.33773i
\(78\) 0 0
\(79\) 7.32556 3.52780i 0.824189 0.396909i 0.0262567 0.999655i \(-0.491641\pi\)
0.797933 + 0.602747i \(0.205927\pi\)
\(80\) −2.22336 9.74119i −0.248579 1.08910i
\(81\) 0 0
\(82\) 5.10130 + 6.39683i 0.563345 + 0.706412i
\(83\) −0.107218 + 0.469754i −0.0117687 + 0.0515622i −0.980471 0.196662i \(-0.936990\pi\)
0.968703 + 0.248224i \(0.0798470\pi\)
\(84\) 0 0
\(85\) −1.73011 2.16949i −0.187657 0.235314i
\(86\) 3.78965 0.408648
\(87\) 0 0
\(88\) −30.4421 −3.24514
\(89\) 1.24461 + 1.56070i 0.131929 + 0.165434i 0.843408 0.537274i \(-0.180546\pi\)
−0.711479 + 0.702707i \(0.751974\pi\)
\(90\) 0 0
\(91\) −3.46377 + 15.1758i −0.363101 + 1.59085i
\(92\) 25.8523 + 32.4178i 2.69529 + 3.37979i
\(93\) 0 0
\(94\) −0.205841 0.901847i −0.0212309 0.0930184i
\(95\) −1.93881 + 0.933683i −0.198918 + 0.0957938i
\(96\) 0 0
\(97\) −1.03142 + 4.51895i −0.104725 + 0.458830i 0.895189 + 0.445687i \(0.147041\pi\)
−0.999914 + 0.0131424i \(0.995817\pi\)
\(98\) 1.50819 + 0.726305i 0.152350 + 0.0733679i
\(99\) 0 0
\(100\) 15.5857 + 7.50570i 1.55857 + 0.750570i
\(101\) 1.18405 1.48475i 0.117817 0.147738i −0.719425 0.694570i \(-0.755595\pi\)
0.837243 + 0.546831i \(0.184166\pi\)
\(102\) 0 0
\(103\) 7.40706 + 3.56705i 0.729840 + 0.351472i 0.761621 0.648023i \(-0.224404\pi\)
−0.0317815 + 0.999495i \(0.510118\pi\)
\(104\) −39.3560 −3.85917
\(105\) 0 0
\(106\) 0.941781 4.12621i 0.0914739 0.400773i
\(107\) 4.01632 1.93416i 0.388273 0.186982i −0.229555 0.973296i \(-0.573727\pi\)
0.617828 + 0.786313i \(0.288013\pi\)
\(108\) 0 0
\(109\) −3.89981 17.0862i −0.373534 1.63656i −0.716768 0.697311i \(-0.754380\pi\)
0.343234 0.939250i \(-0.388478\pi\)
\(110\) −8.07419 + 10.1247i −0.769844 + 0.965354i
\(111\) 0 0
\(112\) −5.35116 + 23.4450i −0.505637 + 2.21534i
\(113\) 1.76485 + 7.73232i 0.166023 + 0.727395i 0.987560 + 0.157240i \(0.0502597\pi\)
−0.821537 + 0.570155i \(0.806883\pi\)
\(114\) 0 0
\(115\) 10.1342 0.945021
\(116\) −8.55904 23.8241i −0.794687 2.21202i
\(117\) 0 0
\(118\) −7.82817 9.81621i −0.720641 0.903655i
\(119\) 1.48612 + 6.51111i 0.136232 + 0.596872i
\(120\) 0 0
\(121\) 4.96226 + 6.22247i 0.451114 + 0.565679i
\(122\) −2.50988 + 3.14729i −0.227234 + 0.284942i
\(123\) 0 0
\(124\) −6.60939 + 3.18291i −0.593541 + 0.285834i
\(125\) 8.98513 4.32701i 0.803654 0.387020i
\(126\) 0 0
\(127\) 3.02313 + 1.45586i 0.268259 + 0.129187i 0.563178 0.826335i \(-0.309578\pi\)
−0.294919 + 0.955522i \(0.595293\pi\)
\(128\) 4.93114 0.435855
\(129\) 0 0
\(130\) −10.4384 + 13.0894i −0.915510 + 1.14801i
\(131\) 5.42012 6.79661i 0.473558 0.593823i −0.486480 0.873692i \(-0.661719\pi\)
0.960038 + 0.279869i \(0.0902909\pi\)
\(132\) 0 0
\(133\) 5.17921 0.449095
\(134\) −22.5517 10.8603i −1.94817 0.938189i
\(135\) 0 0
\(136\) −15.2134 + 7.32637i −1.30453 + 0.628231i
\(137\) 2.90456 1.39876i 0.248153 0.119504i −0.305673 0.952137i \(-0.598881\pi\)
0.553826 + 0.832632i \(0.313167\pi\)
\(138\) 0 0
\(139\) −14.0213 + 17.5821i −1.18927 + 1.49130i −0.359544 + 0.933128i \(0.617068\pi\)
−0.829726 + 0.558170i \(0.811504\pi\)
\(140\) 9.31198 + 11.6768i 0.787006 + 0.986874i
\(141\) 0 0
\(142\) 4.71245 + 20.6466i 0.395460 + 1.73262i
\(143\) 15.2819 + 19.1629i 1.27794 + 1.60248i
\(144\) 0 0
\(145\) −5.85680 1.99497i −0.486381 0.165674i
\(146\) −29.4548 −2.43769
\(147\) 0 0
\(148\) −8.12073 35.5792i −0.667520 2.92460i
\(149\) 0.286904 1.25701i 0.0235041 0.102978i −0.961815 0.273700i \(-0.911753\pi\)
0.985319 + 0.170721i \(0.0546098\pi\)
\(150\) 0 0
\(151\) 4.08507 5.12252i 0.332439 0.416865i −0.587317 0.809357i \(-0.699816\pi\)
0.919755 + 0.392492i \(0.128387\pi\)
\(152\) 2.91385 + 12.7664i 0.236345 + 1.03549i
\(153\) 0 0
\(154\) 28.0813 13.5232i 2.26286 1.08973i
\(155\) −0.398972 + 1.74801i −0.0320462 + 0.140404i
\(156\) 0 0
\(157\) −24.1178 −1.92481 −0.962407 0.271612i \(-0.912443\pi\)
−0.962407 + 0.271612i \(0.912443\pi\)
\(158\) −18.9630 9.13208i −1.50861 0.726509i
\(159\) 0 0
\(160\) −6.10953 + 7.66111i −0.483001 + 0.605664i
\(161\) −21.9755 10.5828i −1.73191 0.834043i
\(162\) 0 0
\(163\) −14.5447 7.00435i −1.13923 0.548623i −0.233446 0.972370i \(-0.575000\pi\)
−0.905781 + 0.423747i \(0.860715\pi\)
\(164\) 3.30625 14.4856i 0.258174 1.13114i
\(165\) 0 0
\(166\) 1.12376 0.541174i 0.0872206 0.0420032i
\(167\) −1.20616 5.28454i −0.0933357 0.408930i 0.906578 0.422037i \(-0.138685\pi\)
−0.999914 + 0.0131071i \(0.995828\pi\)
\(168\) 0 0
\(169\) 11.6513 + 14.6102i 0.896251 + 1.12386i
\(170\) −1.59838 + 7.00297i −0.122590 + 0.537104i
\(171\) 0 0
\(172\) −4.29082 5.38052i −0.327172 0.410261i
\(173\) 11.2923 0.858537 0.429268 0.903177i \(-0.358771\pi\)
0.429268 + 0.903177i \(0.358771\pi\)
\(174\) 0 0
\(175\) −10.1760 −0.769231
\(176\) 23.6089 + 29.6047i 1.77959 + 2.23154i
\(177\) 0 0
\(178\) 1.14985 5.03783i 0.0861851 0.377601i
\(179\) 6.64270 + 8.32969i 0.496499 + 0.622590i 0.965436 0.260642i \(-0.0839341\pi\)
−0.468937 + 0.883232i \(0.655363\pi\)
\(180\) 0 0
\(181\) 2.73554 + 11.9852i 0.203331 + 0.890853i 0.968891 + 0.247488i \(0.0796051\pi\)
−0.765559 + 0.643365i \(0.777538\pi\)
\(182\) 36.3039 17.4830i 2.69102 1.29593i
\(183\) 0 0
\(184\) 13.7225 60.1220i 1.01163 4.43226i
\(185\) −8.03626 3.87006i −0.590838 0.284533i
\(186\) 0 0
\(187\) 9.47462 + 4.56274i 0.692853 + 0.333660i
\(188\) −1.04738 + 1.31337i −0.0763877 + 0.0957872i
\(189\) 0 0
\(190\) 5.01882 + 2.41693i 0.364103 + 0.175343i
\(191\) 1.68311 0.121786 0.0608929 0.998144i \(-0.480605\pi\)
0.0608929 + 0.998144i \(0.480605\pi\)
\(192\) 0 0
\(193\) −2.35340 + 10.3109i −0.169402 + 0.742197i 0.816837 + 0.576869i \(0.195726\pi\)
−0.986239 + 0.165328i \(0.947132\pi\)
\(194\) 10.8104 5.20599i 0.776138 0.373769i
\(195\) 0 0
\(196\) −0.676440 2.96368i −0.0483171 0.211691i
\(197\) 7.55361 9.47193i 0.538172 0.674847i −0.436184 0.899858i \(-0.643670\pi\)
0.974356 + 0.225011i \(0.0722417\pi\)
\(198\) 0 0
\(199\) −1.11170 + 4.87066i −0.0788060 + 0.345272i −0.998924 0.0463686i \(-0.985235\pi\)
0.920118 + 0.391640i \(0.128092\pi\)
\(200\) −5.72505 25.0831i −0.404823 1.77364i
\(201\) 0 0
\(202\) −4.91594 −0.345884
\(203\) 10.6168 + 10.4420i 0.745156 + 0.732887i
\(204\) 0 0
\(205\) −2.26419 2.83921i −0.158138 0.198299i
\(206\) −4.73557 20.7479i −0.329943 1.44558i
\(207\) 0 0
\(208\) 30.5219 + 38.2733i 2.11632 + 2.65378i
\(209\) 5.08467 6.37598i 0.351714 0.441036i
\(210\) 0 0
\(211\) 17.3083 8.33526i 1.19156 0.573823i 0.270298 0.962777i \(-0.412878\pi\)
0.921257 + 0.388954i \(0.127163\pi\)
\(212\) −6.92471 + 3.33476i −0.475591 + 0.229033i
\(213\) 0 0
\(214\) −10.3967 5.00677i −0.710701 0.342256i
\(215\) −1.68202 −0.114713
\(216\) 0 0
\(217\) 2.69054 3.37383i 0.182645 0.229030i
\(218\) −28.2858 + 35.4692i −1.91575 + 2.40228i
\(219\) 0 0
\(220\) 23.5170 1.58552
\(221\) 12.2489 + 5.89877i 0.823951 + 0.396794i
\(222\) 0 0
\(223\) 19.1403 9.21751i 1.28173 0.617250i 0.335898 0.941898i \(-0.390960\pi\)
0.945835 + 0.324649i \(0.105246\pi\)
\(224\) 21.2484 10.2327i 1.41972 0.683701i
\(225\) 0 0
\(226\) 12.8007 16.0515i 0.851487 1.06773i
\(227\) −12.3176 15.4458i −0.817549 1.02517i −0.999126 0.0417977i \(-0.986692\pi\)
0.181577 0.983377i \(-0.441880\pi\)
\(228\) 0 0
\(229\) −4.60927 20.1945i −0.304589 1.33449i −0.863116 0.505005i \(-0.831491\pi\)
0.558528 0.829486i \(-0.311366\pi\)
\(230\) −16.3563 20.5102i −1.07850 1.35240i
\(231\) 0 0
\(232\) −19.7659 + 32.0446i −1.29769 + 2.10383i
\(233\) −20.7745 −1.36098 −0.680492 0.732756i \(-0.738234\pi\)
−0.680492 + 0.732756i \(0.738234\pi\)
\(234\) 0 0
\(235\) 0.0913617 + 0.400282i 0.00595978 + 0.0261115i
\(236\) −5.07358 + 22.2288i −0.330262 + 1.44697i
\(237\) 0 0
\(238\) 10.7790 13.5164i 0.698697 0.876138i
\(239\) −0.506194 2.21778i −0.0327430 0.143456i 0.955914 0.293646i \(-0.0948687\pi\)
−0.988657 + 0.150190i \(0.952012\pi\)
\(240\) 0 0
\(241\) −10.6119 + 5.11041i −0.683571 + 0.329190i −0.743237 0.669028i \(-0.766711\pi\)
0.0596665 + 0.998218i \(0.480996\pi\)
\(242\) 4.58444 20.0857i 0.294699 1.29116i
\(243\) 0 0
\(244\) 7.31032 0.467995
\(245\) −0.669404 0.322368i −0.0427666 0.0205953i
\(246\) 0 0
\(247\) 6.57353 8.24295i 0.418264 0.524486i
\(248\) 9.82997 + 4.73386i 0.624204 + 0.300601i
\(249\) 0 0
\(250\) −23.2589 11.2009i −1.47102 0.708408i
\(251\) −0.317569 + 1.39136i −0.0200448 + 0.0878219i −0.983961 0.178384i \(-0.942913\pi\)
0.963916 + 0.266206i \(0.0857702\pi\)
\(252\) 0 0
\(253\) −34.6025 + 16.6637i −2.17544 + 1.04764i
\(254\) −1.93278 8.46808i −0.121274 0.531334i
\(255\) 0 0
\(256\) −13.8001 17.3048i −0.862507 1.08155i
\(257\) −6.37412 + 27.9268i −0.397607 + 1.74203i 0.239167 + 0.970978i \(0.423126\pi\)
−0.636774 + 0.771051i \(0.719732\pi\)
\(258\) 0 0
\(259\) 13.3848 + 16.7840i 0.831690 + 1.04291i
\(260\) 30.4031 1.88552
\(261\) 0 0
\(262\) −22.5032 −1.39025
\(263\) −11.5360 14.4657i −0.711340 0.891993i 0.286473 0.958088i \(-0.407517\pi\)
−0.997813 + 0.0660957i \(0.978946\pi\)
\(264\) 0 0
\(265\) −0.418006 + 1.83140i −0.0256779 + 0.112502i
\(266\) −8.35908 10.4820i −0.512528 0.642690i
\(267\) 0 0
\(268\) 10.1147 + 44.3154i 0.617853 + 2.70699i
\(269\) −25.8645 + 12.4557i −1.57698 + 0.759435i −0.998419 0.0562017i \(-0.982101\pi\)
−0.578564 + 0.815637i \(0.696387\pi\)
\(270\) 0 0
\(271\) −0.401519 + 1.75917i −0.0243905 + 0.106862i −0.985658 0.168756i \(-0.946025\pi\)
0.961267 + 0.275617i \(0.0888823\pi\)
\(272\) 18.9233 + 9.11298i 1.14739 + 0.552556i
\(273\) 0 0
\(274\) −7.51875 3.62084i −0.454224 0.218743i
\(275\) −9.99022 + 12.5273i −0.602433 + 0.755427i
\(276\) 0 0
\(277\) 12.7892 + 6.15895i 0.768428 + 0.370055i 0.776667 0.629911i \(-0.216909\pi\)
−0.00823988 + 0.999966i \(0.502623\pi\)
\(278\) 58.2136 3.49142
\(279\) 0 0
\(280\) 4.94281 21.6559i 0.295390 1.29419i
\(281\) 16.9576 8.16637i 1.01161 0.487165i 0.146746 0.989174i \(-0.453120\pi\)
0.864862 + 0.502010i \(0.167406\pi\)
\(282\) 0 0
\(283\) −4.86946 21.3345i −0.289460 1.26821i −0.885269 0.465079i \(-0.846026\pi\)
0.595809 0.803126i \(-0.296831\pi\)
\(284\) 23.9783 30.0678i 1.42285 1.78420i
\(285\) 0 0
\(286\) 14.1184 61.8566i 0.834836 3.65765i
\(287\) 1.94488 + 8.52108i 0.114803 + 0.502983i
\(288\) 0 0
\(289\) −11.1670 −0.656882
\(290\) 5.41515 + 15.0731i 0.317989 + 0.885124i
\(291\) 0 0
\(292\) 33.3501 + 41.8198i 1.95167 + 2.44732i
\(293\) 0.00172808 + 0.00757121i 0.000100955 + 0.000442315i 0.974978 0.222300i \(-0.0713564\pi\)
−0.974877 + 0.222742i \(0.928499\pi\)
\(294\) 0 0
\(295\) 3.47450 + 4.35689i 0.202293 + 0.253668i
\(296\) −33.8411 + 42.4354i −1.96697 + 2.46651i
\(297\) 0 0
\(298\) −3.00706 + 1.44812i −0.174194 + 0.0838875i
\(299\) −44.7346 + 21.5431i −2.58707 + 1.24587i
\(300\) 0 0
\(301\) 3.64736 + 1.75648i 0.210231 + 0.101242i
\(302\) −16.9604 −0.975961
\(303\) 0 0
\(304\) 10.1554 12.7345i 0.582454 0.730374i
\(305\) 1.11400 1.39691i 0.0637876 0.0799871i
\(306\) 0 0
\(307\) 0.214941 0.0122673 0.00613367 0.999981i \(-0.498048\pi\)
0.00613367 + 0.999981i \(0.498048\pi\)
\(308\) −50.9953 24.5580i −2.90573 1.39932i
\(309\) 0 0
\(310\) 4.18164 2.01377i 0.237501 0.114375i
\(311\) 25.4313 12.2471i 1.44207 0.694467i 0.460876 0.887465i \(-0.347535\pi\)
0.981199 + 0.192998i \(0.0618211\pi\)
\(312\) 0 0
\(313\) −6.37841 + 7.99827i −0.360529 + 0.452089i −0.928706 0.370817i \(-0.879078\pi\)
0.568177 + 0.822907i \(0.307649\pi\)
\(314\) 38.9254 + 48.8110i 2.19669 + 2.75456i
\(315\) 0 0
\(316\) 8.50511 + 37.2633i 0.478450 + 2.09622i
\(317\) −14.8259 18.5911i −0.832704 1.04418i −0.998317 0.0579872i \(-0.981532\pi\)
0.165613 0.986191i \(-0.447040\pi\)
\(318\) 0 0
\(319\) 23.2779 2.81864i 1.30331 0.157814i
\(320\) 5.38216 0.300872
\(321\) 0 0
\(322\) 14.0496 + 61.5554i 0.782955 + 3.43035i
\(323\) 1.00657 4.41008i 0.0560072 0.245383i
\(324\) 0 0
\(325\) −12.9155 + 16.1955i −0.716422 + 0.898365i
\(326\) 9.29888 + 40.7411i 0.515017 + 2.25644i
\(327\) 0 0
\(328\) −19.9097 + 9.58801i −1.09933 + 0.529409i
\(329\) 0.219888 0.963393i 0.0121228 0.0531136i
\(330\) 0 0
\(331\) −7.07856 −0.389073 −0.194536 0.980895i \(-0.562320\pi\)
−0.194536 + 0.980895i \(0.562320\pi\)
\(332\) −2.04073 0.982764i −0.112000 0.0539362i
\(333\) 0 0
\(334\) −8.74843 + 10.9702i −0.478693 + 0.600261i
\(335\) 10.0095 + 4.82032i 0.546877 + 0.263362i
\(336\) 0 0
\(337\) 6.32843 + 3.04761i 0.344731 + 0.166014i 0.598235 0.801320i \(-0.295869\pi\)
−0.253504 + 0.967334i \(0.581583\pi\)
\(338\) 10.7642 47.1609i 0.585493 2.56521i
\(339\) 0 0
\(340\) 11.7526 5.65973i 0.637372 0.306942i
\(341\) −1.51199 6.62448i −0.0818791 0.358736i
\(342\) 0 0
\(343\) −10.9539 13.7357i −0.591453 0.741658i
\(344\) −2.27758 + 9.97872i −0.122799 + 0.538016i
\(345\) 0 0
\(346\) −18.2254 22.8539i −0.979803 1.22863i
\(347\) −10.0795 −0.541094 −0.270547 0.962707i \(-0.587205\pi\)
−0.270547 + 0.962707i \(0.587205\pi\)
\(348\) 0 0
\(349\) −1.64246 −0.0879187 −0.0439593 0.999033i \(-0.513997\pi\)
−0.0439593 + 0.999033i \(0.513997\pi\)
\(350\) 16.4237 + 20.5947i 0.877883 + 1.10083i
\(351\) 0 0
\(352\) 8.26337 36.2042i 0.440439 1.92969i
\(353\) −15.0406 18.8603i −0.800530 1.00383i −0.999715 0.0238707i \(-0.992401\pi\)
0.199185 0.979962i \(-0.436170\pi\)
\(354\) 0 0
\(355\) −2.09161 9.16392i −0.111011 0.486370i
\(356\) −8.45461 + 4.07153i −0.448093 + 0.215790i
\(357\) 0 0
\(358\) 6.13694 26.8877i 0.324347 1.42106i
\(359\) −11.6187 5.59526i −0.613210 0.295307i 0.101382 0.994848i \(-0.467674\pi\)
−0.714592 + 0.699541i \(0.753388\pi\)
\(360\) 0 0
\(361\) 13.9578 + 6.72174i 0.734623 + 0.353776i
\(362\) 19.8412 24.8801i 1.04283 1.30767i
\(363\) 0 0
\(364\) −65.9274 31.7489i −3.45553 1.66410i
\(365\) 13.0734 0.684293
\(366\) 0 0
\(367\) 7.06325 30.9461i 0.368699 1.61537i −0.361659 0.932310i \(-0.617790\pi\)
0.730358 0.683064i \(-0.239353\pi\)
\(368\) −69.1103 + 33.2818i −3.60262 + 1.73493i
\(369\) 0 0
\(370\) 5.13784 + 22.5104i 0.267104 + 1.17026i
\(371\) 2.81890 3.53478i 0.146350 0.183517i
\(372\) 0 0
\(373\) −1.05811 + 4.63589i −0.0547869 + 0.240037i −0.994906 0.100810i \(-0.967857\pi\)
0.940119 + 0.340847i \(0.110714\pi\)
\(374\) −6.05743 26.5393i −0.313222 1.37232i
\(375\) 0 0
\(376\) 2.49841 0.128846
\(377\) 30.0940 3.64398i 1.54992 0.187675i
\(378\) 0 0
\(379\) 1.32155 + 1.65717i 0.0678834 + 0.0851231i 0.814614 0.580004i \(-0.196949\pi\)
−0.746730 + 0.665127i \(0.768377\pi\)
\(380\) −2.25100 9.86226i −0.115474 0.505924i
\(381\) 0 0
\(382\) −2.71649 3.40637i −0.138988 0.174285i
\(383\) −9.12830 + 11.4465i −0.466434 + 0.584890i −0.958294 0.285784i \(-0.907746\pi\)
0.491860 + 0.870675i \(0.336317\pi\)
\(384\) 0 0
\(385\) −12.4638 + 6.00224i −0.635213 + 0.305903i
\(386\) 24.6661 11.8786i 1.25547 0.604604i
\(387\) 0 0
\(388\) −19.6315 9.45401i −0.996636 0.479955i
\(389\) −1.93401 −0.0980583 −0.0490292 0.998797i \(-0.515613\pi\)
−0.0490292 + 0.998797i \(0.515613\pi\)
\(390\) 0 0
\(391\) −13.2821 + 16.6553i −0.671706 + 0.842293i
\(392\) −2.81889 + 3.53478i −0.142376 + 0.178533i
\(393\) 0 0
\(394\) −31.3611 −1.57995
\(395\) 8.41664 + 4.05324i 0.423487 + 0.203941i
\(396\) 0 0
\(397\) 27.0463 13.0248i 1.35742 0.653697i 0.393357 0.919386i \(-0.371314\pi\)
0.964059 + 0.265689i \(0.0855995\pi\)
\(398\) 11.6517 5.61118i 0.584048 0.281263i
\(399\) 0 0
\(400\) −19.9531 + 25.0204i −0.997654 + 1.25102i
\(401\) −9.79407 12.2814i −0.489093 0.613303i 0.474638 0.880181i \(-0.342579\pi\)
−0.963730 + 0.266879i \(0.914008\pi\)
\(402\) 0 0
\(403\) −1.95473 8.56422i −0.0973719 0.426614i
\(404\) 5.56607 + 6.97963i 0.276922 + 0.347249i
\(405\) 0 0
\(406\) 3.99791 38.3400i 0.198413 1.90278i
\(407\) 33.8027 1.67554
\(408\) 0 0
\(409\) 1.08416 + 4.75001i 0.0536081 + 0.234873i 0.994633 0.103464i \(-0.0329928\pi\)
−0.941025 + 0.338337i \(0.890136\pi\)
\(410\) −2.09180 + 9.16479i −0.103307 + 0.452617i
\(411\) 0 0
\(412\) −24.0959 + 30.2153i −1.18712 + 1.48860i
\(413\) −2.98450 13.0760i −0.146858 0.643426i
\(414\) 0 0
\(415\) −0.498776 + 0.240198i −0.0244840 + 0.0117909i
\(416\) 10.6830 46.8053i 0.523777 2.29482i
\(417\) 0 0
\(418\) −21.1105 −1.03255
\(419\) 17.1303 + 8.24949i 0.836867 + 0.403014i 0.802686 0.596402i \(-0.203403\pi\)
0.0341812 + 0.999416i \(0.489118\pi\)
\(420\) 0 0
\(421\) 7.80429 9.78627i 0.380358 0.476954i −0.554394 0.832254i \(-0.687050\pi\)
0.934752 + 0.355300i \(0.115621\pi\)
\(422\) −44.8044 21.5767i −2.18105 1.05034i
\(423\) 0 0
\(424\) 10.2989 + 4.95971i 0.500161 + 0.240865i
\(425\) −1.97768 + 8.66480i −0.0959317 + 0.420304i
\(426\) 0 0
\(427\) −3.87440 + 1.86581i −0.187495 + 0.0902929i
\(428\) 4.66303 + 20.4300i 0.225396 + 0.987524i
\(429\) 0 0
\(430\) 2.71473 + 3.40416i 0.130916 + 0.164163i
\(431\) 7.87657 34.5095i 0.379401 1.66227i −0.319910 0.947448i \(-0.603653\pi\)
0.699311 0.714817i \(-0.253490\pi\)
\(432\) 0 0
\(433\) 3.65050 + 4.57758i 0.175432 + 0.219984i 0.861772 0.507297i \(-0.169355\pi\)
−0.686340 + 0.727281i \(0.740784\pi\)
\(434\) −11.1706 −0.536204
\(435\) 0 0
\(436\) 82.3856 3.94555
\(437\) 10.3003 + 12.9161i 0.492729 + 0.617863i
\(438\) 0 0
\(439\) −5.52514 + 24.2072i −0.263700 + 1.15535i 0.653502 + 0.756925i \(0.273299\pi\)
−0.917202 + 0.398422i \(0.869558\pi\)
\(440\) −21.8073 27.3455i −1.03962 1.30365i
\(441\) 0 0
\(442\) −7.83113 34.3104i −0.372489 1.63198i
\(443\) 21.3969 10.3042i 1.01660 0.489568i 0.150060 0.988677i \(-0.452053\pi\)
0.866539 + 0.499109i \(0.166339\pi\)
\(444\) 0 0
\(445\) −0.510358 + 2.23602i −0.0241933 + 0.105998i
\(446\) −49.5468 23.8605i −2.34611 1.12983i
\(447\) 0 0
\(448\) −11.6709 5.62040i −0.551398 0.265539i
\(449\) −4.02060 + 5.04167i −0.189744 + 0.237931i −0.867599 0.497264i \(-0.834338\pi\)
0.677856 + 0.735195i \(0.262909\pi\)
\(450\) 0 0
\(451\) 12.3994 + 5.97125i 0.583866 + 0.281175i
\(452\) −37.2834 −1.75366
\(453\) 0 0
\(454\) −11.3798 + 49.8581i −0.534080 + 2.33996i
\(455\) −16.1134 + 7.75978i −0.755406 + 0.363784i
\(456\) 0 0
\(457\) 0.584270 + 2.55985i 0.0273310 + 0.119745i 0.986753 0.162228i \(-0.0518682\pi\)
−0.959422 + 0.281973i \(0.909011\pi\)
\(458\) −33.4315 + 41.9218i −1.56215 + 1.95888i
\(459\) 0 0
\(460\) −10.6008 + 46.4452i −0.494266 + 2.16552i
\(461\) −1.59279 6.97847i −0.0741837 0.325020i 0.924196 0.381918i \(-0.124736\pi\)
−0.998380 + 0.0568978i \(0.981879\pi\)
\(462\) 0 0
\(463\) −18.2411 −0.847737 −0.423868 0.905724i \(-0.639328\pi\)
−0.423868 + 0.905724i \(0.639328\pi\)
\(464\) 46.4921 5.62957i 2.15834 0.261346i
\(465\) 0 0
\(466\) 33.5294 + 42.0445i 1.55322 + 1.94768i
\(467\) 7.89230 + 34.5784i 0.365212 + 1.60010i 0.739746 + 0.672886i \(0.234946\pi\)
−0.374534 + 0.927213i \(0.622197\pi\)
\(468\) 0 0
\(469\) −16.6713 20.9051i −0.769809 0.965310i
\(470\) 0.662656 0.830944i 0.0305660 0.0383286i
\(471\) 0 0
\(472\) 30.5523 14.7132i 1.40628 0.677231i
\(473\) 5.74313 2.76575i 0.264070 0.127169i
\(474\) 0 0
\(475\) 6.20979 + 2.99048i 0.284925 + 0.137213i
\(476\) −31.3950 −1.43899
\(477\) 0 0
\(478\) −3.67148 + 4.60389i −0.167929 + 0.210577i
\(479\) −16.2734 + 20.4061i −0.743548 + 0.932380i −0.999410 0.0343330i \(-0.989069\pi\)
0.255862 + 0.966713i \(0.417641\pi\)
\(480\) 0 0
\(481\) 43.7006 1.99258
\(482\) 27.4699 + 13.2288i 1.25122 + 0.602556i
\(483\) 0 0
\(484\) −33.7084 + 16.2331i −1.53220 + 0.737868i
\(485\) −4.79814 + 2.31066i −0.217872 + 0.104922i
\(486\) 0 0
\(487\) 13.8098 17.3170i 0.625783 0.784708i −0.363362 0.931648i \(-0.618371\pi\)
0.989145 + 0.146940i \(0.0469426\pi\)
\(488\) −6.77886 8.50042i −0.306865 0.384796i
\(489\) 0 0
\(490\) 0.427971 + 1.87507i 0.0193338 + 0.0847068i
\(491\) 7.32494 + 9.18518i 0.330570 + 0.414521i 0.919144 0.393922i \(-0.128882\pi\)
−0.588574 + 0.808443i \(0.700310\pi\)
\(492\) 0 0
\(493\) 10.9547 7.01080i 0.493376 0.315750i
\(494\) −27.2920 −1.22792
\(495\) 0 0
\(496\) −3.01985 13.2308i −0.135595 0.594082i
\(497\) −5.03405 + 22.0556i −0.225808 + 0.989330i
\(498\) 0 0
\(499\) −10.2098 + 12.8027i −0.457056 + 0.573130i −0.955949 0.293534i \(-0.905169\pi\)
0.498893 + 0.866664i \(0.333740\pi\)
\(500\) 10.4319 + 45.7052i 0.466529 + 2.04400i
\(501\) 0 0
\(502\) 3.32846 1.60290i 0.148556 0.0715409i
\(503\) 3.30118 14.4634i 0.147192 0.644892i −0.846465 0.532444i \(-0.821274\pi\)
0.993658 0.112448i \(-0.0358691\pi\)
\(504\) 0 0
\(505\) 2.18192 0.0970942
\(506\) 89.5722 + 43.1357i 3.98197 + 1.91762i
\(507\) 0 0
\(508\) −9.83454 + 12.3321i −0.436337 + 0.547150i
\(509\) 28.4466 + 13.6992i 1.26087 + 0.607204i 0.940405 0.340055i \(-0.110446\pi\)
0.320467 + 0.947260i \(0.396160\pi\)
\(510\) 0 0
\(511\) −28.3489 13.6521i −1.25408 0.603934i
\(512\) −10.5548 + 46.2437i −0.466462 + 2.04370i
\(513\) 0 0
\(514\) 66.8074 32.1728i 2.94675 1.41908i
\(515\) 2.10187 + 9.20888i 0.0926193 + 0.405792i
\(516\) 0 0
\(517\) −0.970130 1.21651i −0.0426663 0.0535018i
\(518\) 12.3657 54.1777i 0.543318 2.38043i
\(519\) 0 0
\(520\) −28.1928 35.3527i −1.23634 1.55032i
\(521\) 8.03875 0.352184 0.176092 0.984374i \(-0.443654\pi\)
0.176092 + 0.984374i \(0.443654\pi\)
\(522\) 0 0
\(523\) −1.48633 −0.0649927 −0.0324963 0.999472i \(-0.510346\pi\)
−0.0324963 + 0.999472i \(0.510346\pi\)
\(524\) 25.4793 + 31.9500i 1.11307 + 1.39574i
\(525\) 0 0
\(526\) −10.6577 + 46.6943i −0.464697 + 2.03597i
\(527\) −2.34990 2.94668i −0.102363 0.128359i
\(528\) 0 0
\(529\) −12.1943 53.4268i −0.530188 2.32291i
\(530\) 4.38114 2.10985i 0.190305 0.0916459i
\(531\) 0 0
\(532\) −5.41767 + 23.7364i −0.234886 + 1.02910i
\(533\) 16.0302 + 7.71971i 0.694343 + 0.334378i
\(534\) 0 0
\(535\) 4.61452 + 2.22224i 0.199503 + 0.0960757i
\(536\) 42.1505 52.8550i 1.82062 2.28299i
\(537\) 0 0
\(538\) 66.9528 + 32.2428i 2.88654 + 1.39008i
\(539\) 2.81570 0.121281
\(540\) 0 0
\(541\) −8.64061 + 37.8570i −0.371489 + 1.62760i 0.351112 + 0.936334i \(0.385804\pi\)
−0.722601 + 0.691266i \(0.757053\pi\)
\(542\) 4.20834 2.02663i 0.180764 0.0870511i
\(543\) 0 0
\(544\) −4.58350 20.0816i −0.196516 0.860993i
\(545\) 12.5545 15.7429i 0.537777 0.674351i
\(546\) 0 0
\(547\) 3.86062 16.9145i 0.165068 0.723210i −0.822853 0.568254i \(-0.807619\pi\)
0.987921 0.154956i \(-0.0495237\pi\)
\(548\) 3.37225 + 14.7748i 0.144055 + 0.631147i
\(549\) 0 0
\(550\) 41.4774 1.76860
\(551\) −3.41016 9.49220i −0.145278 0.404381i
\(552\) 0 0
\(553\) −14.0183 17.5784i −0.596120 0.747511i
\(554\) −8.17654 35.8238i −0.347388 1.52201i
\(555\) 0 0
\(556\) −65.9123 82.6514i −2.79530 3.50520i
\(557\) −18.9702 + 23.7879i −0.803794 + 1.00793i 0.195833 + 0.980637i \(0.437259\pi\)
−0.999628 + 0.0272889i \(0.991313\pi\)
\(558\) 0 0
\(559\) 7.42480 3.57559i 0.314036 0.151232i
\(560\) −24.8935 + 11.9881i −1.05194 + 0.506588i
\(561\) 0 0
\(562\) −43.8966 21.1395i −1.85167 0.891715i
\(563\) 12.1911 0.513793 0.256897 0.966439i \(-0.417300\pi\)
0.256897 + 0.966439i \(0.417300\pi\)
\(564\) 0 0
\(565\) −5.68152 + 7.12441i −0.239024 + 0.299726i
\(566\) −35.3187 + 44.2883i −1.48456 + 1.86158i
\(567\) 0 0
\(568\) −57.1978 −2.39997
\(569\) −2.84513 1.37014i −0.119274 0.0574393i 0.373295 0.927713i \(-0.378228\pi\)
−0.492569 + 0.870273i \(0.663942\pi\)
\(570\) 0 0
\(571\) −21.9308 + 10.5613i −0.917776 + 0.441977i −0.832276 0.554361i \(-0.812963\pi\)
−0.0854992 + 0.996338i \(0.527249\pi\)
\(572\) −103.809 + 49.9918i −4.34048 + 2.09026i
\(573\) 0 0
\(574\) 14.1064 17.6889i 0.588791 0.738321i
\(575\) −20.2377 25.3773i −0.843970 1.05831i
\(576\) 0 0
\(577\) −1.77812 7.79044i −0.0740240 0.324320i 0.924335 0.381581i \(-0.124620\pi\)
−0.998359 + 0.0572611i \(0.981763\pi\)
\(578\) 18.0232 + 22.6003i 0.749665 + 0.940050i
\(579\) 0 0
\(580\) 15.2694 24.7549i 0.634029 1.02789i
\(581\) 1.33240 0.0552772
\(582\) 0 0
\(583\) −1.58413 6.94052i −0.0656079 0.287447i
\(584\) 17.7023 77.5589i 0.732527 3.20941i
\(585\) 0 0
\(586\) 0.0125339 0.0157171i 0.000517772 0.000649266i
\(587\) −9.42720 41.3033i −0.389102 1.70477i −0.667759 0.744378i \(-0.732746\pi\)
0.278657 0.960391i \(-0.410111\pi\)
\(588\) 0 0
\(589\) −2.63336 + 1.26816i −0.108506 + 0.0522537i
\(590\) 3.20996 14.0638i 0.132152 0.578996i
\(591\) 0 0
\(592\) 67.5130 2.77477
\(593\) −23.7641 11.4442i −0.975873 0.469956i −0.123189 0.992383i \(-0.539312\pi\)
−0.852684 + 0.522427i \(0.825027\pi\)
\(594\) 0 0
\(595\) −4.78421 + 5.99920i −0.196133 + 0.245943i
\(596\) 5.46078 + 2.62977i 0.223682 + 0.107720i
\(597\) 0 0
\(598\) 115.800 + 55.7664i 4.73542 + 2.28046i
\(599\) 1.41472 6.19828i 0.0578038 0.253255i −0.937768 0.347263i \(-0.887111\pi\)
0.995571 + 0.0940086i \(0.0299681\pi\)
\(600\) 0 0
\(601\) 15.2278 7.33332i 0.621155 0.299133i −0.0967123 0.995312i \(-0.530833\pi\)
0.717867 + 0.696180i \(0.245118\pi\)
\(602\) −2.33188 10.2166i −0.0950402 0.416398i
\(603\) 0 0
\(604\) 19.2034 + 24.0803i 0.781375 + 0.979813i
\(605\) −2.03479 + 8.91498i −0.0827259 + 0.362446i
\(606\) 0 0
\(607\) −4.62349 5.79767i −0.187662 0.235320i 0.679096 0.734049i \(-0.262372\pi\)
−0.866758 + 0.498729i \(0.833800\pi\)
\(608\) −15.9738 −0.647823
\(609\) 0 0
\(610\) −4.62511 −0.187265
\(611\) −1.25420 1.57271i −0.0507394 0.0636252i
\(612\) 0 0
\(613\) 6.43653 28.2003i 0.259969 1.13900i −0.661315 0.750109i \(-0.730001\pi\)
0.921284 0.388891i \(-0.127142\pi\)
\(614\) −0.346908 0.435009i −0.0140001 0.0175555i
\(615\) 0 0
\(616\) 18.7319 + 82.0698i 0.754730 + 3.30669i
\(617\) −31.4553 + 15.1481i −1.26634 + 0.609839i −0.941845 0.336047i \(-0.890910\pi\)
−0.324499 + 0.945886i \(0.605196\pi\)
\(618\) 0 0
\(619\) −10.0433 + 44.0026i −0.403674 + 1.76861i 0.208635 + 0.977994i \(0.433098\pi\)
−0.612309 + 0.790618i \(0.709759\pi\)
\(620\) −7.59381 3.65698i −0.304975 0.146868i
\(621\) 0 0
\(622\) −65.8315 31.7028i −2.63960 1.27117i
\(623\) 3.44168 4.31574i 0.137888 0.172906i
\(624\) 0 0
\(625\) −6.25412 3.01183i −0.250165 0.120473i
\(626\) 26.4819 1.05843
\(627\) 0 0
\(628\) 25.2283 110.532i 1.00672 4.41072i
\(629\) 16.8928 8.13515i 0.673561 0.324370i
\(630\) 0 0
\(631\) −6.51100 28.5266i −0.259199 1.13562i −0.922110 0.386927i \(-0.873537\pi\)
0.662912 0.748698i \(-0.269321\pi\)
\(632\) 35.4429 44.4440i 1.40984 1.76789i
\(633\) 0 0
\(634\) −13.6971 + 60.0108i −0.543980 + 2.38333i
\(635\) 0.857859 + 3.75853i 0.0340431 + 0.149153i
\(636\) 0 0
\(637\) 3.64017 0.144229
\(638\) −43.2743 42.5619i −1.71325 1.68504i
\(639\) 0 0
\(640\) 3.53244 + 4.42954i 0.139632 + 0.175093i
\(641\) 3.94382 + 17.2790i 0.155772 + 0.682480i 0.991144 + 0.132795i \(0.0423951\pi\)
−0.835372 + 0.549685i \(0.814748\pi\)
\(642\) 0 0
\(643\) 23.9696 + 30.0569i 0.945269 + 1.18533i 0.982545 + 0.186025i \(0.0595605\pi\)
−0.0372759 + 0.999305i \(0.511868\pi\)
\(644\) 71.4884 89.6436i 2.81704 3.53245i
\(645\) 0 0
\(646\) −10.5499 + 5.08057i −0.415081 + 0.199893i
\(647\) 36.5712 17.6118i 1.43776 0.692391i 0.457340 0.889292i \(-0.348802\pi\)
0.980423 + 0.196901i \(0.0630878\pi\)
\(648\) 0 0
\(649\) −19.0275 9.16314i −0.746893 0.359685i
\(650\) 53.6225 2.10325
\(651\) 0 0
\(652\) 47.3153 59.3315i 1.85301 2.32360i
\(653\) 16.5954 20.8099i 0.649427 0.814356i −0.342719 0.939438i \(-0.611348\pi\)
0.992146 + 0.125082i \(0.0399194\pi\)
\(654\) 0 0
\(655\) 9.98798 0.390263
\(656\) 24.7649 + 11.9262i 0.966908 + 0.465638i
\(657\) 0 0
\(658\) −2.30466 + 1.10986i −0.0898449 + 0.0432670i
\(659\) −20.8219 + 10.0273i −0.811105 + 0.390608i −0.792995 0.609228i \(-0.791479\pi\)
−0.0181105 + 0.999836i \(0.505765\pi\)
\(660\) 0 0
\(661\) 14.6279 18.3428i 0.568958 0.713450i −0.411228 0.911533i \(-0.634900\pi\)
0.980185 + 0.198082i \(0.0634713\pi\)
\(662\) 11.4246 + 14.3260i 0.444029 + 0.556794i
\(663\) 0 0
\(664\) 0.749614 + 3.28427i 0.0290907 + 0.127455i
\(665\) 3.71015 + 4.65238i 0.143873 + 0.180412i
\(666\) 0 0
\(667\) −4.92632 + 47.2436i −0.190748 + 1.82928i
\(668\) 25.4808 0.985882
\(669\) 0 0
\(670\) −6.39939 28.0376i −0.247230 1.08319i
\(671\) −1.50673 + 6.60141i −0.0581666 + 0.254845i
\(672\) 0 0
\(673\) −16.8106 + 21.0798i −0.648000 + 0.812567i −0.991978 0.126411i \(-0.959654\pi\)
0.343978 + 0.938978i \(0.388226\pi\)
\(674\) −4.04597 17.7265i −0.155845 0.682801i
\(675\) 0 0
\(676\) −79.1465 + 38.1149i −3.04409 + 1.46596i
\(677\) 7.46144 32.6907i 0.286766 1.25641i −0.602168 0.798370i \(-0.705696\pi\)
0.888934 0.458035i \(-0.151447\pi\)
\(678\) 0 0
\(679\) 12.8174 0.491888
\(680\) −17.4793 8.41757i −0.670299 0.322799i
\(681\) 0 0
\(682\) −10.9667 + 13.7517i −0.419935 + 0.526582i
\(683\) −11.1128 5.35164i −0.425219 0.204775i 0.209021 0.977911i \(-0.432972\pi\)
−0.634240 + 0.773137i \(0.718687\pi\)
\(684\) 0 0
\(685\) 3.33717 + 1.60710i 0.127507 + 0.0614040i
\(686\) −10.1199 + 44.3380i −0.386378 + 1.69283i
\(687\) 0 0
\(688\) 11.4705 5.52392i 0.437310 0.210598i
\(689\) −2.04798 8.97280i −0.0780219 0.341836i
\(690\) 0 0
\(691\) 1.26022 + 1.58026i 0.0479410 + 0.0601161i 0.805224 0.592971i \(-0.202045\pi\)
−0.757283 + 0.653087i \(0.773474\pi\)
\(692\) −11.8122 + 51.7526i −0.449033 + 1.96734i
\(693\) 0 0
\(694\) 16.2679 + 20.3994i 0.617523 + 0.774349i
\(695\) −25.8379 −0.980087
\(696\) 0 0
\(697\) 7.63365 0.289145
\(698\) 2.65087 + 3.32409i 0.100337 + 0.125819i
\(699\) 0 0
\(700\) 10.6445 46.6366i 0.402324 1.76270i
\(701\) 21.0103 + 26.3461i 0.793549 + 0.995079i 0.999862 + 0.0165931i \(0.00528200\pi\)
−0.206313 + 0.978486i \(0.566147\pi\)
\(702\) 0 0
\(703\) −3.23552 14.1758i −0.122030 0.534649i
\(704\) −18.3770 + 8.84988i −0.692608 + 0.333542i
\(705\) 0 0
\(706\) −13.8954 + 60.8798i −0.522961 + 2.29124i
\(707\) −4.73137 2.27851i −0.177941 0.0856921i
\(708\) 0 0
\(709\) −11.4001 5.48999i −0.428139 0.206181i 0.207389 0.978258i \(-0.433503\pi\)
−0.635528 + 0.772078i \(0.719218\pi\)
\(710\) −15.1706 + 19.0234i −0.569344 + 0.713935i
\(711\) 0 0
\(712\) 12.5743 + 6.05547i 0.471243 + 0.226938i
\(713\) 13.7647 0.515490
\(714\) 0 0
\(715\) −6.26638 + 27.4548i −0.234349 + 1.02675i
\(716\) −45.1236 + 21.7304i −1.68635 + 0.812102i
\(717\) 0 0
\(718\) 7.42820 + 32.5451i 0.277218 + 1.21457i
\(719\) −8.31590 + 10.4278i −0.310131 + 0.388892i −0.912331 0.409453i \(-0.865719\pi\)
0.602200 + 0.798345i \(0.294291\pi\)
\(720\) 0 0
\(721\) 5.05875 22.1638i 0.188398 0.825424i
\(722\) −8.92370 39.0973i −0.332106 1.45505i
\(723\) 0 0
\(724\) −57.7898 −2.14774
\(725\) 6.70018 + 18.6500i 0.248838 + 0.692644i
\(726\) 0 0
\(727\) −26.0421 32.6558i −0.965849 1.21114i −0.977442 0.211203i \(-0.932262\pi\)
0.0115932 0.999933i \(-0.496310\pi\)
\(728\) 24.2169 + 106.101i 0.897536 + 3.93236i
\(729\) 0 0
\(730\) −21.1000 26.4586i −0.780948 0.979277i
\(731\) 2.20449 2.76435i 0.0815361 0.102243i
\(732\) 0 0
\(733\) 38.3484 18.4676i 1.41643 0.682116i 0.440009 0.897994i \(-0.354975\pi\)
0.976420 + 0.215877i \(0.0692611\pi\)
\(734\) −74.0302 + 35.6511i −2.73251 + 1.31591i
\(735\) 0 0
\(736\) 67.7770 + 32.6397i 2.49829 + 1.20311i
\(737\) −42.1027 −1.55087
\(738\) 0 0
\(739\) 13.8667 17.3883i 0.510095 0.639639i −0.458378 0.888757i \(-0.651569\pi\)
0.968473 + 0.249118i \(0.0801408\pi\)
\(740\) 26.1428 32.7820i 0.961028 1.20509i
\(741\) 0 0
\(742\) −11.7035 −0.429648
\(743\) −25.2914 12.1797i −0.927853 0.446830i −0.0919847 0.995760i \(-0.529321\pi\)
−0.835868 + 0.548930i \(0.815035\pi\)
\(744\) 0 0
\(745\) 1.33467 0.642744i 0.0488986 0.0235483i
\(746\) 11.0901 5.34071i 0.406038 0.195537i
\(747\) 0 0
\(748\) −30.8219 + 38.6495i −1.12696 + 1.41316i
\(749\) −7.68571 9.63758i −0.280830 0.352149i
\(750\) 0 0
\(751\) −6.35994 27.8647i −0.232077 1.01680i −0.947913 0.318529i \(-0.896811\pi\)
0.715836 0.698269i \(-0.246046\pi\)
\(752\) −1.93761 2.42968i −0.0706572 0.0886013i
\(753\) 0 0
\(754\) −55.9456 55.0245i −2.03742 2.00388i
\(755\) 7.52781 0.273965
\(756\) 0 0
\(757\) 4.77354 + 20.9142i 0.173497 + 0.760140i 0.984541 + 0.175155i \(0.0560427\pi\)
−0.811044 + 0.584985i \(0.801100\pi\)
\(758\) 1.22093 5.34924i 0.0443461 0.194293i
\(759\) 0 0
\(760\) −9.38047 + 11.7627i −0.340265 + 0.426679i
\(761\) −4.76688 20.8851i −0.172799 0.757083i −0.984838 0.173479i \(-0.944499\pi\)
0.812038 0.583604i \(-0.198358\pi\)
\(762\) 0 0
\(763\) −43.6635 + 21.0272i −1.58073 + 0.761237i
\(764\) −1.76061 + 7.71372i −0.0636965 + 0.279072i
\(765\) 0 0
\(766\) 37.8989 1.36934
\(767\) −24.5990 11.8462i −0.888217 0.427743i
\(768\) 0 0
\(769\) −14.1627 + 17.7594i −0.510719 + 0.640422i −0.968610 0.248587i \(-0.920034\pi\)
0.457890 + 0.889009i \(0.348605\pi\)
\(770\) 32.2638 + 15.5374i 1.16271 + 0.559930i
\(771\) 0 0
\(772\) −44.7933 21.5713i −1.61215 0.776369i
\(773\) −0.0401045 + 0.175709i −0.00144246 + 0.00631983i −0.975644 0.219360i \(-0.929603\pi\)
0.974202 + 0.225680i \(0.0724603\pi\)
\(774\) 0 0
\(775\) 5.17396 2.49165i 0.185854 0.0895026i
\(776\) 7.21115 + 31.5941i 0.258865 + 1.13416i
\(777\) 0 0
\(778\) 3.12143 + 3.91415i 0.111909 + 0.140329i
\(779\) 1.31730 5.77147i 0.0471972 0.206784i
\(780\) 0 0
\(781\) 22.2099 + 27.8503i 0.794731 + 0.996562i
\(782\) 55.1447 1.97197
\(783\) 0 0
\(784\) 5.62369 0.200846
\(785\) −17.2769 21.6646i −0.616640 0.773241i
\(786\) 0 0
\(787\) −9.90046 + 43.3768i −0.352913 + 1.54621i 0.417504 + 0.908675i \(0.362905\pi\)
−0.770418 + 0.637540i \(0.779952\pi\)
\(788\) 35.5085 + 44.5263i 1.26494 + 1.58618i
\(789\) 0 0
\(790\) −5.38103 23.5758i −0.191448 0.838791i
\(791\) 19.7598 9.51583i 0.702578 0.338344i
\(792\) 0 0
\(793\) −1.94792 + 8.53439i −0.0691726 + 0.303065i
\(794\) −70.0122 33.7161i −2.48464 1.19654i
\(795\) 0 0
\(796\) −21.1594 10.1898i −0.749974 0.361169i
\(797\) 1.42201 1.78314i 0.0503700 0.0631620i −0.756008 0.654562i \(-0.772853\pi\)
0.806378 + 0.591400i \(0.201425\pi\)
\(798\) 0 0
\(799\) −0.777590 0.374468i −0.0275092 0.0132477i
\(800\) 31.3849 1.10962
\(801\) 0 0
\(802\) −9.04837 + 39.6435i −0.319509 + 1.39986i
\(803\) −44.6381 + 21.4966i −1.57524 + 0.758598i
\(804\) 0 0
\(805\) −6.23587 27.3211i −0.219786 0.962944i
\(806\) −14.1778 + 17.7784i −0.499393 + 0.626219i
\(807\) 0 0
\(808\) 2.95448 12.9444i 0.103938 0.455383i
\(809\) 2.55396 + 11.1896i 0.0897923 + 0.393406i 0.999774 0.0212418i \(-0.00676199\pi\)
−0.909982 + 0.414648i \(0.863905\pi\)
\(810\) 0 0
\(811\) 27.4524 0.963985 0.481993 0.876175i \(-0.339913\pi\)
0.481993 + 0.876175i \(0.339913\pi\)
\(812\) −58.9616 + 37.7342i −2.06915 + 1.32421i
\(813\) 0 0
\(814\) −54.5566 68.4118i −1.91221 2.39783i
\(815\) −4.12727 18.0828i −0.144572 0.633412i
\(816\) 0 0
\(817\) −1.70958 2.14375i −0.0598107 0.0750003i
\(818\) 7.86351 9.86053i 0.274941 0.344765i
\(819\) 0 0
\(820\) 15.3806 7.40689i 0.537113 0.258660i
\(821\) −22.6850 + 10.9245i −0.791712 + 0.381269i −0.785617 0.618713i \(-0.787654\pi\)
−0.00609509 + 0.999981i \(0.501940\pi\)
\(822\) 0 0
\(823\) −1.91828 0.923796i −0.0668671 0.0322015i 0.400151 0.916449i \(-0.368958\pi\)
−0.467018 + 0.884248i \(0.654672\pi\)
\(824\) 57.4785 2.00236
\(825\) 0 0
\(826\) −21.6469 + 27.1444i −0.753193 + 0.944474i
\(827\) 11.4365 14.3409i 0.397685 0.498681i −0.542164 0.840273i \(-0.682395\pi\)
0.939848 + 0.341592i \(0.110966\pi\)
\(828\) 0 0
\(829\) 52.9373 1.83859 0.919295 0.393570i \(-0.128760\pi\)
0.919295 + 0.393570i \(0.128760\pi\)
\(830\) 1.29113 + 0.621778i 0.0448159 + 0.0215822i
\(831\) 0 0
\(832\) −23.7580 + 11.4412i −0.823660 + 0.396654i
\(833\) 1.40714 0.677641i 0.0487544 0.0234789i
\(834\) 0 0
\(835\) 3.88296 4.86907i 0.134375 0.168501i
\(836\) 23.9024 + 29.9726i 0.826681 + 1.03663i
\(837\) 0 0
\(838\) −10.9519 47.9835i −0.378328 1.65756i
\(839\) 16.7410 + 20.9926i 0.577965 + 0.724745i 0.981764 0.190102i \(-0.0608820\pi\)
−0.403799 + 0.914848i \(0.632311\pi\)
\(840\) 0 0
\(841\) 12.1472 26.3334i 0.418868 0.908047i
\(842\) −32.4018 −1.11664
\(843\) 0 0
\(844\) 20.0953 + 88.0433i 0.691709 + 3.03058i
\(845\) −4.77763 + 20.9322i −0.164356 + 0.720089i
\(846\) 0 0
\(847\) 13.7219 17.2068i 0.471491 0.591231i
\(848\) −3.16392 13.8620i −0.108649 0.476024i
\(849\) 0 0
\(850\) 20.7282 9.98217i 0.710971 0.342385i
\(851\) −15.2373 + 66.7591i −0.522329 + 2.28847i
\(852\) 0 0
\(853\) 39.8554 1.36462 0.682311 0.731062i \(-0.260975\pi\)
0.682311 + 0.731062i \(0.260975\pi\)
\(854\) 10.0293 + 4.82985i 0.343195 + 0.165274i
\(855\) 0 0
\(856\) 19.4320 24.3669i 0.664172 0.832845i
\(857\) 45.9338 + 22.1206i 1.56907 + 0.755624i 0.997873 0.0651893i \(-0.0207651\pi\)
0.571197 + 0.820813i \(0.306479\pi\)
\(858\) 0 0
\(859\) −13.3986 6.45244i −0.457155 0.220154i 0.191111 0.981569i \(-0.438791\pi\)
−0.648266 + 0.761414i \(0.724505\pi\)
\(860\) 1.75946 7.70872i 0.0599972 0.262865i
\(861\) 0 0
\(862\) −82.5547 + 39.7563i −2.81182 + 1.35410i
\(863\) −4.55285 19.9473i −0.154981 0.679016i −0.991394 0.130915i \(-0.958208\pi\)
0.836413 0.548100i \(-0.184649\pi\)
\(864\) 0 0
\(865\) 8.08927 + 10.1436i 0.275044 + 0.344894i
\(866\) 3.37255 14.7761i 0.114604 0.502113i
\(867\) 0 0
\(868\) 12.6479 + 15.8599i 0.429296 + 0.538320i
\(869\) −35.4027 −1.20096
\(870\) 0 0
\(871\) −54.4309 −1.84432
\(872\) −76.3961 95.7977i −2.58710 3.24412i
\(873\) 0 0
\(874\) 9.51604 41.6925i 0.321885 1.41027i
\(875\) −17.1941 21.5607i −0.581267 0.728886i
\(876\) 0 0
\(877\) 3.43151 + 15.0344i 0.115874 + 0.507677i 0.999240 + 0.0389921i \(0.0124147\pi\)
−0.883366 + 0.468684i \(0.844728\pi\)
\(878\) 57.9092 27.8876i 1.95434 0.941161i
\(879\) 0 0
\(880\) −9.68091 + 42.4148i −0.326343 + 1.42980i
\(881\) 49.5884 + 23.8805i 1.67068 + 0.804555i 0.997904 + 0.0647040i \(0.0206103\pi\)
0.672771 + 0.739851i \(0.265104\pi\)
\(882\) 0 0
\(883\) −34.2327 16.4856i −1.15202 0.554784i −0.242381 0.970181i \(-0.577929\pi\)
−0.909640 + 0.415397i \(0.863643\pi\)
\(884\) −39.8470 + 49.9665i −1.34020 + 1.68056i
\(885\) 0 0
\(886\) −55.3882 26.6735i −1.86080 0.896115i
\(887\) −18.2699 −0.613444 −0.306722 0.951799i \(-0.599232\pi\)
−0.306722 + 0.951799i \(0.599232\pi\)
\(888\) 0 0
\(889\) 2.06468 9.04597i 0.0692473 0.303392i
\(890\) 5.34908 2.57598i 0.179302 0.0863471i
\(891\) 0 0
\(892\) 22.2223 + 97.3623i 0.744058 + 3.25993i
\(893\) −0.417303 + 0.523282i −0.0139645 + 0.0175110i
\(894\) 0 0
\(895\) −2.72386 + 11.9340i −0.0910486 + 0.398910i
\(896\) −3.03427 13.2940i −0.101368 0.444122i
\(897\) 0 0
\(898\) 16.6927 0.557043
\(899\) −7.95491 2.70964i −0.265311 0.0903717i
\(900\) 0 0
\(901\) −2.46201 3.08726i −0.0820213 0.102851i
\(902\) −7.92736 34.7320i −0.263952 1.15645i
\(903\) 0 0
\(904\) 34.5729 + 43.3530i 1.14988 + 1.44190i
\(905\) −8.80644 + 11.0429i −0.292736 + 0.367079i
\(906\) 0 0
\(907\) −22.7706 + 10.9658i −0.756086 + 0.364112i −0.771884 0.635763i \(-0.780685\pi\)
0.0157979 + 0.999875i \(0.494971\pi\)
\(908\) 83.6730 40.2948i 2.77679 1.33723i
\(909\) 0 0
\(910\) 41.7111 + 20.0870i 1.38271 + 0.665877i
\(911\) −34.3336 −1.13752 −0.568762 0.822502i \(-0.692578\pi\)
−0.568762 + 0.822502i \(0.692578\pi\)
\(912\) 0 0
\(913\) 1.30808 1.64028i 0.0432910 0.0542852i
\(914\) 4.23777 5.31400i 0.140173 0.175771i
\(915\) 0 0
\(916\) 97.3731 3.21730
\(917\) −21.6583 10.4301i −0.715222 0.344433i
\(918\) 0 0
\(919\) 24.2148 11.6612i 0.798774 0.384669i 0.0104619 0.999945i \(-0.496670\pi\)
0.788312 + 0.615276i \(0.210956\pi\)
\(920\) 63.8365 30.7420i 2.10463 1.01354i
\(921\) 0 0
\(922\) −11.5527 + 14.4866i −0.380467 + 0.477091i
\(923\) 28.7132 + 36.0052i 0.945107 + 1.18513i
\(924\) 0 0
\(925\) 6.35707 + 27.8521i 0.209019 + 0.915772i
\(926\) 29.4406 + 36.9173i 0.967478 + 1.21318i
\(927\) 0 0
\(928\) −32.7446 32.2055i −1.07489 1.05720i
\(929\) 27.4218 0.899679 0.449839 0.893109i \(-0.351481\pi\)
0.449839 + 0.893109i \(0.351481\pi\)
\(930\) 0 0
\(931\) −0.269512 1.18081i −0.00883291 0.0386995i
\(932\) 21.7310 95.2098i 0.711823 3.11870i
\(933\) 0 0
\(934\) 57.2437 71.7813i 1.87307 2.34876i
\(935\) 2.68857 + 11.7794i 0.0879256 + 0.385227i
\(936\) 0 0
\(937\) 9.28962 4.47364i 0.303479 0.146148i −0.275947 0.961173i \(-0.588991\pi\)
0.579425 + 0.815025i \(0.303277\pi\)
\(938\) −15.4020 + 67.4805i −0.502892 + 2.20331i
\(939\) 0 0
\(940\) −1.93006 −0.0629517
\(941\) 15.2466 + 7.34239i 0.497026 + 0.239355i 0.665565 0.746340i \(-0.268191\pi\)
−0.168539 + 0.985695i \(0.553905\pi\)
\(942\) 0 0
\(943\) −17.3823 + 21.7967i −0.566046 + 0.709799i
\(944\) −38.0028 18.3012i −1.23689 0.595653i
\(945\) 0 0
\(946\) −14.8667 7.15942i −0.483358 0.232773i
\(947\) −4.72259 + 20.6910i −0.153464 + 0.672368i 0.838399 + 0.545056i \(0.183492\pi\)
−0.991863 + 0.127311i \(0.959365\pi\)
\(948\) 0 0
\(949\) −57.7088 + 27.7911i −1.87331 + 0.902136i
\(950\) −3.97012 17.3942i −0.128808 0.564344i
\(951\) 0 0
\(952\) 29.1126 + 36.5060i 0.943544 + 1.18317i
\(953\) −1.95472 + 8.56419i −0.0633196 + 0.277421i −0.996670 0.0815464i \(-0.974014\pi\)
0.933350 + 0.358968i \(0.116871\pi\)
\(954\) 0 0
\(955\) 1.20570 + 1.51190i 0.0390157 + 0.0489241i
\(956\) 10.6936 0.345856
\(957\) 0 0
\(958\) 67.5637 2.18288
\(959\) −5.55822 6.96979i −0.179484 0.225066i
\(960\) 0 0
\(961\) 6.35625 27.8486i 0.205040 0.898340i
\(962\) −70.5314 88.4436i −2.27403 2.85154i
\(963\) 0 0
\(964\) −12.3206 53.9800i −0.396819 1.73858i
\(965\) −10.9480 + 5.27226i −0.352428 + 0.169720i
\(966\) 0 0
\(967\) 5.77072 25.2832i 0.185574 0.813052i −0.793340 0.608779i \(-0.791660\pi\)
0.978914 0.204273i \(-0.0654832\pi\)
\(968\) 50.1336 + 24.1431i 1.61135 + 0.775987i
\(969\) 0 0
\(970\) 12.4205 + 5.98139i 0.398798 + 0.192051i
\(971\) 36.2491 45.4550i 1.16329 1.45872i 0.300051 0.953923i \(-0.402996\pi\)
0.863238 0.504796i \(-0.168432\pi\)
\(972\) 0 0
\(973\) 56.0279 + 26.9816i 1.79617 + 0.864991i
\(974\) −57.3357 −1.83715
\(975\) 0 0
\(976\) −3.00933 + 13.1847i −0.0963264 + 0.422033i
\(977\) 26.9623 12.9844i 0.862600 0.415406i 0.0503613 0.998731i \(-0.483963\pi\)
0.812239 + 0.583325i \(0.198248\pi\)
\(978\) 0 0
\(979\) −1.93412 8.47391i −0.0618146 0.270827i
\(980\) 2.17764 2.73067i 0.0695621 0.0872281i
\(981\) 0 0
\(982\) 6.76723 29.6492i 0.215951 0.946143i
\(983\) −8.94737 39.2010i −0.285377 1.25032i −0.890793 0.454409i \(-0.849851\pi\)
0.605417 0.795909i \(-0.293007\pi\)
\(984\) 0 0
\(985\) 13.9195 0.443512
\(986\) −31.8694 10.8555i −1.01493 0.345710i
\(987\) 0 0
\(988\) 30.9013 + 38.7490i 0.983102 + 1.23277i
\(989\) 2.87340 + 12.5892i 0.0913688 + 0.400313i
\(990\) 0 0
\(991\) 24.4225 + 30.6249i 0.775808 + 0.972832i 0.999999 0.00171317i \(-0.000545319\pi\)
−0.224191 + 0.974545i \(0.571974\pi\)
\(992\) −8.29819 + 10.4056i −0.263468 + 0.330378i
\(993\) 0 0
\(994\) 52.7621 25.4089i 1.67351 0.805921i
\(995\) −5.17158 + 2.49050i −0.163950 + 0.0789542i
\(996\) 0 0
\(997\) −31.0615 14.9584i −0.983727 0.473738i −0.128342 0.991730i \(-0.540965\pi\)
−0.855385 + 0.517992i \(0.826680\pi\)
\(998\) 42.3892 1.34181
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 261.2.k.c.82.1 18
3.2 odd 2 87.2.g.a.82.3 yes 18
29.9 even 14 7569.2.a.bm.1.8 9
29.20 even 7 7569.2.a.bj.1.2 9
29.23 even 7 inner 261.2.k.c.226.1 18
87.20 odd 14 2523.2.a.r.1.8 9
87.23 odd 14 87.2.g.a.52.3 18
87.38 odd 14 2523.2.a.o.1.2 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.a.52.3 18 87.23 odd 14
87.2.g.a.82.3 yes 18 3.2 odd 2
261.2.k.c.82.1 18 1.1 even 1 trivial
261.2.k.c.226.1 18 29.23 even 7 inner
2523.2.a.o.1.2 9 87.38 odd 14
2523.2.a.r.1.8 9 87.20 odd 14
7569.2.a.bj.1.2 9 29.20 even 7
7569.2.a.bm.1.8 9 29.9 even 14