Defining parameters
Level: | \( N \) | \(=\) | \( 264 = 2^{3} \cdot 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 264.f (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(264, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 148 | 60 | 88 |
Cusp forms | 140 | 60 | 80 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(264, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
264.4.f.a | $2$ | $15.577$ | \(\Q(\sqrt{-1}) \) | None | \(-4\) | \(0\) | \(0\) | \(-72\) | \(q+(2 i-2)q^{2}+3 i q^{3}-8 i q^{4}+12 i q^{5}+\cdots\) |
264.4.f.b | $28$ | $15.577$ | None | \(4\) | \(0\) | \(0\) | \(-12\) | ||
264.4.f.c | $30$ | $15.577$ | None | \(0\) | \(0\) | \(0\) | \(84\) |
Decomposition of \(S_{4}^{\mathrm{old}}(264, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(264, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 2}\)