Properties

Label 264.4.f
Level 264264
Weight 44
Character orbit 264.f
Rep. character χ264(133,)\chi_{264}(133,\cdot)
Character field Q\Q
Dimension 6060
Newform subspaces 33
Sturm bound 192192
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 264=23311 264 = 2^{3} \cdot 3 \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 264.f (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 8 8
Character field: Q\Q
Newform subspaces: 3 3
Sturm bound: 192192
Trace bound: 11
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M4(264,[χ])M_{4}(264, [\chi]).

Total New Old
Modular forms 148 60 88
Cusp forms 140 60 80
Eisenstein series 8 0 8

Trace form

60q12q4+12q6+84q8540q948q10+236q14+120q15188q16104q17+308q20228q241588q25316q26+584q28336q30+1272q31++1304q98+O(q100) 60 q - 12 q^{4} + 12 q^{6} + 84 q^{8} - 540 q^{9} - 48 q^{10} + 236 q^{14} + 120 q^{15} - 188 q^{16} - 104 q^{17} + 308 q^{20} - 228 q^{24} - 1588 q^{25} - 316 q^{26} + 584 q^{28} - 336 q^{30} + 1272 q^{31}+ \cdots + 1304 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(264,[χ])S_{4}^{\mathrm{new}}(264, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
264.4.f.a 264.f 8.b 22 15.57715.577 Q(1)\Q(\sqrt{-1}) None 264.4.f.a 4-4 00 00 72-72 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(2i2)q2+3iq38iq4+12iq5+q+(2 i-2)q^{2}+3 i q^{3}-8 i q^{4}+12 i q^{5}+\cdots
264.4.f.b 264.f 8.b 2828 15.57715.577 None 264.4.f.b 44 00 00 12-12 SU(2)[C2]\mathrm{SU}(2)[C_{2}]
264.4.f.c 264.f 8.b 3030 15.57715.577 None 264.4.f.c 00 00 00 8484 SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Decomposition of S4old(264,[χ])S_{4}^{\mathrm{old}}(264, [\chi]) into lower level spaces

S4old(264,[χ]) S_{4}^{\mathrm{old}}(264, [\chi]) \simeq S4new(8,[χ])S_{4}^{\mathrm{new}}(8, [\chi])4^{\oplus 4}\oplusS4new(24,[χ])S_{4}^{\mathrm{new}}(24, [\chi])2^{\oplus 2}\oplusS4new(88,[χ])S_{4}^{\mathrm{new}}(88, [\chi])2^{\oplus 2}