Properties

Label 264.4.f
Level $264$
Weight $4$
Character orbit 264.f
Rep. character $\chi_{264}(133,\cdot)$
Character field $\Q$
Dimension $60$
Newform subspaces $3$
Sturm bound $192$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 264 = 2^{3} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 264.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(192\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(264, [\chi])\).

Total New Old
Modular forms 148 60 88
Cusp forms 140 60 80
Eisenstein series 8 0 8

Trace form

\( 60 q - 12 q^{4} + 12 q^{6} + 84 q^{8} - 540 q^{9} - 48 q^{10} + 236 q^{14} + 120 q^{15} - 188 q^{16} - 104 q^{17} + 308 q^{20} - 228 q^{24} - 1588 q^{25} - 316 q^{26} + 584 q^{28} - 336 q^{30} + 1272 q^{31}+ \cdots + 1304 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(264, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
264.4.f.a 264.f 8.b $2$ $15.577$ \(\Q(\sqrt{-1}) \) None 264.4.f.a \(-4\) \(0\) \(0\) \(-72\) $\mathrm{SU}(2)[C_{2}]$ \(q+(2 i-2)q^{2}+3 i q^{3}-8 i q^{4}+12 i q^{5}+\cdots\)
264.4.f.b 264.f 8.b $28$ $15.577$ None 264.4.f.b \(4\) \(0\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{2}]$
264.4.f.c 264.f 8.b $30$ $15.577$ None 264.4.f.c \(0\) \(0\) \(0\) \(84\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{4}^{\mathrm{old}}(264, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(264, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 2}\)