Properties

Label 264.4.k
Level $264$
Weight $4$
Character orbit 264.k
Rep. character $\chi_{264}(155,\cdot)$
Character field $\Q$
Dimension $120$
Sturm bound $192$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 264 = 2^{3} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 264.k (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 24 \)
Character field: \(\Q\)
Sturm bound: \(192\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(264, [\chi])\).

Total New Old
Modular forms 148 120 28
Cusp forms 140 120 20
Eisenstein series 8 0 8

Trace form

\( 120 q - 12 q^{4} + 30 q^{6} - 60 q^{10} + 32 q^{12} + 132 q^{16} - 354 q^{18} + 48 q^{19} - 236 q^{24} + 3000 q^{25} + 264 q^{27} - 432 q^{28} + 846 q^{30} + 1416 q^{34} + 1080 q^{36} + 1344 q^{40} - 1100 q^{42}+ \cdots + 1584 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(264, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(264, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(264, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 2}\)