Defining parameters
Level: | \( N \) | \(=\) | \( 264 = 2^{3} \cdot 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 264.o (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 44 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(264, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 152 | 0 | 152 |
Cusp forms | 136 | 0 | 136 |
Eisenstein series | 16 | 0 | 16 |
Decomposition of \(S_{4}^{\mathrm{old}}(264, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(264, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 2}\)