Properties

Label 264.4.o
Level $264$
Weight $4$
Character orbit 264.o
Rep. character $\chi_{264}(175,\cdot)$
Character field $\Q$
Dimension $0$
Newform subspaces $0$
Sturm bound $192$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 264 = 2^{3} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 264.o (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 44 \)
Character field: \(\Q\)
Newform subspaces: \( 0 \)
Sturm bound: \(192\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(264, [\chi])\).

Total New Old
Modular forms 152 0 152
Cusp forms 136 0 136
Eisenstein series 16 0 16

Decomposition of \(S_{4}^{\mathrm{old}}(264, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(264, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 2}\)