Properties

Label 2640.2.a.x
Level $2640$
Weight $2$
Character orbit 2640.a
Self dual yes
Analytic conductor $21.081$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2640,2,Mod(1,2640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2640, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2640.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2640.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.0805061336\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 165)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} - q^{5} - 2 q^{7} + q^{9} + q^{11} + (\beta + 2) q^{13} + q^{15} + ( - \beta - 2) q^{19} + 2 q^{21} - 2 \beta q^{23} + q^{25} - q^{27} - \beta q^{29} + (2 \beta + 4) q^{31} - q^{33} + 2 q^{35} + \cdots + q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{5} - 4 q^{7} + 2 q^{9} + 2 q^{11} + 4 q^{13} + 2 q^{15} - 4 q^{19} + 4 q^{21} + 2 q^{25} - 2 q^{27} + 8 q^{31} - 2 q^{33} + 4 q^{35} + 4 q^{37} - 4 q^{39} - 4 q^{43} - 2 q^{45} - 6 q^{49}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 −1.00000 0 −1.00000 0 −2.00000 0 1.00000 0
1.2 0 −1.00000 0 −1.00000 0 −2.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2640.2.a.x 2
3.b odd 2 1 7920.2.a.bz 2
4.b odd 2 1 165.2.a.b 2
12.b even 2 1 495.2.a.c 2
20.d odd 2 1 825.2.a.e 2
20.e even 4 2 825.2.c.c 4
28.d even 2 1 8085.2.a.bd 2
44.c even 2 1 1815.2.a.i 2
60.h even 2 1 2475.2.a.r 2
60.l odd 4 2 2475.2.c.n 4
132.d odd 2 1 5445.2.a.s 2
220.g even 2 1 9075.2.a.bh 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
165.2.a.b 2 4.b odd 2 1
495.2.a.c 2 12.b even 2 1
825.2.a.e 2 20.d odd 2 1
825.2.c.c 4 20.e even 4 2
1815.2.a.i 2 44.c even 2 1
2475.2.a.r 2 60.h even 2 1
2475.2.c.n 4 60.l odd 4 2
2640.2.a.x 2 1.a even 1 1 trivial
5445.2.a.s 2 132.d odd 2 1
7920.2.a.bz 2 3.b odd 2 1
8085.2.a.bd 2 28.d even 2 1
9075.2.a.bh 2 220.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2640))\):

\( T_{7} + 2 \) Copy content Toggle raw display
\( T_{13}^{2} - 4T_{13} - 8 \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display
\( T_{19}^{2} + 4T_{19} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T + 2)^{2} \) Copy content Toggle raw display
$11$ \( (T - 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 4T - 8 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 4T - 8 \) Copy content Toggle raw display
$23$ \( T^{2} - 48 \) Copy content Toggle raw display
$29$ \( T^{2} - 12 \) Copy content Toggle raw display
$31$ \( T^{2} - 8T - 32 \) Copy content Toggle raw display
$37$ \( T^{2} - 4T - 44 \) Copy content Toggle raw display
$41$ \( T^{2} - 12 \) Copy content Toggle raw display
$43$ \( T^{2} + 4T - 44 \) Copy content Toggle raw display
$47$ \( T^{2} - 48 \) Copy content Toggle raw display
$53$ \( T^{2} + 12T - 12 \) Copy content Toggle raw display
$59$ \( T^{2} - 48 \) Copy content Toggle raw display
$61$ \( (T - 2)^{2} \) Copy content Toggle raw display
$67$ \( (T + 8)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 192 \) Copy content Toggle raw display
$73$ \( T^{2} - 4T - 104 \) Copy content Toggle raw display
$79$ \( T^{2} - 20T + 88 \) Copy content Toggle raw display
$83$ \( T^{2} + 24T + 132 \) Copy content Toggle raw display
$89$ \( T^{2} + 12T - 12 \) Copy content Toggle raw display
$97$ \( (T + 10)^{2} \) Copy content Toggle raw display
show more
show less