Properties

Label 2640.2.d.c
Level $2640$
Weight $2$
Character orbit 2640.d
Analytic conductor $21.081$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2640,2,Mod(529,2640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2640, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2640.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2640.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.0805061336\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 330)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{3} + \beta_1 q^{5} + ( - \beta_{3} + 2 \beta_{2} - \beta_1) q^{7} - q^{9} - q^{11} + (\beta_{3} + \beta_1) q^{13} - \beta_{3} q^{15} + 4 q^{19} + (\beta_{3} - \beta_1 + 2) q^{21} + (\beta_{3} + 2 \beta_{2} + \beta_1) q^{23}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} - 4 q^{11} + 16 q^{19} + 8 q^{21} - 8 q^{29} - 16 q^{31} + 20 q^{35} + 16 q^{41} - 28 q^{49} - 16 q^{59} + 48 q^{61} - 20 q^{65} + 8 q^{69} - 24 q^{71} + 20 q^{75} - 8 q^{79} + 4 q^{81} - 8 q^{89}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 5\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 5\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2640\mathbb{Z}\right)^\times\).

\(n\) \(661\) \(881\) \(991\) \(1057\) \(1201\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
529.1
−1.58114 1.58114i
1.58114 + 1.58114i
−1.58114 + 1.58114i
1.58114 1.58114i
0 1.00000i 0 −1.58114 1.58114i 0 5.16228i 0 −1.00000 0
529.2 0 1.00000i 0 1.58114 + 1.58114i 0 1.16228i 0 −1.00000 0
529.3 0 1.00000i 0 −1.58114 + 1.58114i 0 5.16228i 0 −1.00000 0
529.4 0 1.00000i 0 1.58114 1.58114i 0 1.16228i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2640.2.d.c 4
4.b odd 2 1 330.2.c.a 4
5.b even 2 1 inner 2640.2.d.c 4
12.b even 2 1 990.2.c.g 4
20.d odd 2 1 330.2.c.a 4
20.e even 4 1 1650.2.a.w 2
20.e even 4 1 1650.2.a.x 2
60.h even 2 1 990.2.c.g 4
60.l odd 4 1 4950.2.a.bv 2
60.l odd 4 1 4950.2.a.cf 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
330.2.c.a 4 4.b odd 2 1
330.2.c.a 4 20.d odd 2 1
990.2.c.g 4 12.b even 2 1
990.2.c.g 4 60.h even 2 1
1650.2.a.w 2 20.e even 4 1
1650.2.a.x 2 20.e even 4 1
2640.2.d.c 4 1.a even 1 1 trivial
2640.2.d.c 4 5.b even 2 1 inner
4950.2.a.bv 2 60.l odd 4 1
4950.2.a.cf 2 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} + 28T_{7}^{2} + 36 \) acting on \(S_{2}^{\mathrm{new}}(2640, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 25 \) Copy content Toggle raw display
$7$ \( T^{4} + 28T^{2} + 36 \) Copy content Toggle raw display
$11$ \( (T + 1)^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} + 10)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T - 4)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + 28T^{2} + 36 \) Copy content Toggle raw display
$29$ \( (T + 2)^{4} \) Copy content Toggle raw display
$31$ \( (T + 4)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + 88T^{2} + 1296 \) Copy content Toggle raw display
$41$ \( (T - 4)^{4} \) Copy content Toggle raw display
$43$ \( T^{4} + 112T^{2} + 576 \) Copy content Toggle raw display
$47$ \( T^{4} + 188T^{2} + 7396 \) Copy content Toggle raw display
$53$ \( T^{4} + 148T^{2} + 2916 \) Copy content Toggle raw display
$59$ \( (T^{2} + 8 T - 24)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 24 T + 134)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 88T^{2} + 1296 \) Copy content Toggle raw display
$71$ \( (T^{2} + 12 T - 54)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 88T^{2} + 1296 \) Copy content Toggle raw display
$79$ \( (T^{2} + 4 T - 6)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 352 T^{2} + 20736 \) Copy content Toggle raw display
$89$ \( (T^{2} + 4 T - 156)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
show more
show less