Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2640,2,Mod(1121,2640)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2640, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2640.1121");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 2640.f (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 8.0.2051727616.3 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 330) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1121.1 |
|
0 | −1.38699 | − | 1.03743i | 0 | 1.00000i | 0 | 0.394100i | 0 | 0.847487 | + | 2.87781i | 0 | ||||||||||||||||||||||||||||||||||||||
1121.2 | 0 | −1.38699 | + | 1.03743i | 0 | − | 1.00000i | 0 | − | 0.394100i | 0 | 0.847487 | − | 2.87781i | 0 | |||||||||||||||||||||||||||||||||||||
1121.3 | 0 | −1.25820 | − | 1.19035i | 0 | − | 1.00000i | 0 | − | 3.22941i | 0 | 0.166154 | + | 2.99540i | 0 | |||||||||||||||||||||||||||||||||||||
1121.4 | 0 | −1.25820 | + | 1.19035i | 0 | 1.00000i | 0 | 3.22941i | 0 | 0.166154 | − | 2.99540i | 0 | |||||||||||||||||||||||||||||||||||||||
1121.5 | 0 | −0.0828988 | − | 1.73007i | 0 | − | 1.00000i | 0 | 4.34658i | 0 | −2.98626 | + | 0.286841i | 0 | ||||||||||||||||||||||||||||||||||||||
1121.6 | 0 | −0.0828988 | + | 1.73007i | 0 | 1.00000i | 0 | − | 4.34658i | 0 | −2.98626 | − | 0.286841i | 0 | ||||||||||||||||||||||||||||||||||||||
1121.7 | 0 | 1.72809 | − | 0.117016i | 0 | − | 1.00000i | 0 | − | 0.723074i | 0 | 2.97261 | − | 0.404430i | 0 | |||||||||||||||||||||||||||||||||||||
1121.8 | 0 | 1.72809 | + | 0.117016i | 0 | 1.00000i | 0 | 0.723074i | 0 | 2.97261 | + | 0.404430i | 0 | |||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
33.d | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2640.2.f.b | 8 | |
3.b | odd | 2 | 1 | 2640.2.f.a | 8 | ||
4.b | odd | 2 | 1 | 330.2.d.a | ✓ | 8 | |
11.b | odd | 2 | 1 | 2640.2.f.a | 8 | ||
12.b | even | 2 | 1 | 330.2.d.b | yes | 8 | |
20.d | odd | 2 | 1 | 1650.2.d.f | 8 | ||
20.e | even | 4 | 1 | 1650.2.f.c | 8 | ||
20.e | even | 4 | 1 | 1650.2.f.e | 8 | ||
33.d | even | 2 | 1 | inner | 2640.2.f.b | 8 | |
44.c | even | 2 | 1 | 330.2.d.b | yes | 8 | |
60.h | even | 2 | 1 | 1650.2.d.c | 8 | ||
60.l | odd | 4 | 1 | 1650.2.f.d | 8 | ||
60.l | odd | 4 | 1 | 1650.2.f.f | 8 | ||
132.d | odd | 2 | 1 | 330.2.d.a | ✓ | 8 | |
220.g | even | 2 | 1 | 1650.2.d.c | 8 | ||
220.i | odd | 4 | 1 | 1650.2.f.d | 8 | ||
220.i | odd | 4 | 1 | 1650.2.f.f | 8 | ||
660.g | odd | 2 | 1 | 1650.2.d.f | 8 | ||
660.q | even | 4 | 1 | 1650.2.f.c | 8 | ||
660.q | even | 4 | 1 | 1650.2.f.e | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
330.2.d.a | ✓ | 8 | 4.b | odd | 2 | 1 | |
330.2.d.a | ✓ | 8 | 132.d | odd | 2 | 1 | |
330.2.d.b | yes | 8 | 12.b | even | 2 | 1 | |
330.2.d.b | yes | 8 | 44.c | even | 2 | 1 | |
1650.2.d.c | 8 | 60.h | even | 2 | 1 | ||
1650.2.d.c | 8 | 220.g | even | 2 | 1 | ||
1650.2.d.f | 8 | 20.d | odd | 2 | 1 | ||
1650.2.d.f | 8 | 660.g | odd | 2 | 1 | ||
1650.2.f.c | 8 | 20.e | even | 4 | 1 | ||
1650.2.f.c | 8 | 660.q | even | 4 | 1 | ||
1650.2.f.d | 8 | 60.l | odd | 4 | 1 | ||
1650.2.f.d | 8 | 220.i | odd | 4 | 1 | ||
1650.2.f.e | 8 | 20.e | even | 4 | 1 | ||
1650.2.f.e | 8 | 660.q | even | 4 | 1 | ||
1650.2.f.f | 8 | 60.l | odd | 4 | 1 | ||
1650.2.f.f | 8 | 220.i | odd | 4 | 1 | ||
2640.2.f.a | 8 | 3.b | odd | 2 | 1 | ||
2640.2.f.a | 8 | 11.b | odd | 2 | 1 | ||
2640.2.f.b | 8 | 1.a | even | 1 | 1 | trivial | |
2640.2.f.b | 8 | 33.d | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|