Properties

Label 2640.2.f.b
Level 26402640
Weight 22
Character orbit 2640.f
Analytic conductor 21.08121.081
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2640,2,Mod(1121,2640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2640, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2640.1121");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2640=243511 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2640.f (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 21.080506133621.0805061336
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.2051727616.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+11x6+37x4+36x2+4 x^{8} + 11x^{6} + 37x^{4} + 36x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 330)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β4β3)q3β4q5+(β7β5++β1)q7+(β6+β5++β1)q9+(β7+β6+β1+2)q11++(β6+4β5+4β4++3)q99+O(q100) q + ( - \beta_{4} - \beta_{3}) q^{3} - \beta_{4} q^{5} + ( - \beta_{7} - \beta_{5} + \cdots + \beta_1) q^{7} + ( - \beta_{6} + \beta_{5} + \cdots + \beta_1) q^{9} + ( - \beta_{7} + \beta_{6} + \beta_1 + 2) q^{11}+ \cdots + ( - \beta_{6} + 4 \beta_{5} + 4 \beta_{4} + \cdots + 3) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q2q3+2q9+6q114q154q17+8q218q25+22q27+4q29+4q31+18q3312q378q39+16q414q4928q51+6q5514q57++10q99+O(q100) 8 q - 2 q^{3} + 2 q^{9} + 6 q^{11} - 4 q^{15} - 4 q^{17} + 8 q^{21} - 8 q^{25} + 22 q^{27} + 4 q^{29} + 4 q^{31} + 18 q^{33} - 12 q^{37} - 8 q^{39} + 16 q^{41} - 4 q^{49} - 28 q^{51} + 6 q^{55} - 14 q^{57}+ \cdots + 10 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+11x6+37x4+36x2+4 x^{8} + 11x^{6} + 37x^{4} + 36x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== (ν7+2ν6+9ν5+14ν4+27ν3+18ν2+30ν8)/8 ( \nu^{7} + 2\nu^{6} + 9\nu^{5} + 14\nu^{4} + 27\nu^{3} + 18\nu^{2} + 30\nu - 8 ) / 8 Copy content Toggle raw display
β2\beta_{2}== (ν7+13ν5+4ν4+47ν3+20ν2+34ν+4)/8 ( \nu^{7} + 13\nu^{5} + 4\nu^{4} + 47\nu^{3} + 20\nu^{2} + 34\nu + 4 ) / 8 Copy content Toggle raw display
β3\beta_{3}== (ν72ν69ν514ν419ν318ν2+2ν+8)/8 ( -\nu^{7} - 2\nu^{6} - 9\nu^{5} - 14\nu^{4} - 19\nu^{3} - 18\nu^{2} + 2\nu + 8 ) / 8 Copy content Toggle raw display
β4\beta_{4}== (ν7+9ν5+23ν3+14ν)/4 ( \nu^{7} + 9\nu^{5} + 23\nu^{3} + 14\nu ) / 4 Copy content Toggle raw display
β5\beta_{5}== (ν6+2ν5+9ν4+14ν3+23ν2+22ν+10)/4 ( \nu^{6} + 2\nu^{5} + 9\nu^{4} + 14\nu^{3} + 23\nu^{2} + 22\nu + 10 ) / 4 Copy content Toggle raw display
β6\beta_{6}== (ν713ν5+4ν447ν3+20ν234ν+4)/8 ( -\nu^{7} - 13\nu^{5} + 4\nu^{4} - 47\nu^{3} + 20\nu^{2} - 34\nu + 4 ) / 8 Copy content Toggle raw display
β7\beta_{7}== (ν6+2ν59ν4+14ν323ν2+22ν10)/4 ( -\nu^{6} + 2\nu^{5} - 9\nu^{4} + 14\nu^{3} - 23\nu^{2} + 22\nu - 10 ) / 4 Copy content Toggle raw display
ν\nu== (β7+β6+β5+β4β3β2β1)/2 ( \beta_{7} + \beta_{6} + \beta_{5} + \beta_{4} - \beta_{3} - \beta_{2} - \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β7β6+β5+β4+β3β2β16)/2 ( -\beta_{7} - \beta_{6} + \beta_{5} + \beta_{4} + \beta_{3} - \beta_{2} - \beta _1 - 6 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== 2β72β62β52β4+3β3+2β2+3β1 -2\beta_{7} - 2\beta_{6} - 2\beta_{5} - 2\beta_{4} + 3\beta_{3} + 2\beta_{2} + 3\beta_1 Copy content Toggle raw display
ν4\nu^{4}== (5β7+7β65β55β45β3+7β2+5β1+28)/2 ( 5\beta_{7} + 7\beta_{6} - 5\beta_{5} - 5\beta_{4} - 5\beta_{3} + 7\beta_{2} + 5\beta _1 + 28 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (19β7+17β6+19β5+17β431β317β231β1)/2 ( 19\beta_{7} + 17\beta_{6} + 19\beta_{5} + 17\beta_{4} - 31\beta_{3} - 17\beta_{2} - 31\beta_1 ) / 2 Copy content Toggle raw display
ν6\nu^{6}== 13β720β6+13β5+11β4+11β320β211β167 -13\beta_{7} - 20\beta_{6} + 13\beta_{5} + 11\beta_{4} + 11\beta_{3} - 20\beta_{2} - 11\beta _1 - 67 Copy content Toggle raw display
ν7\nu^{7}== (93β775β693β567β4+155β3+75β2+155β1)/2 ( -93\beta_{7} - 75\beta_{6} - 93\beta_{5} - 67\beta_{4} + 155\beta_{3} + 75\beta_{2} + 155\beta_1 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2640Z)×\left(\mathbb{Z}/2640\mathbb{Z}\right)^\times.

nn 661661 881881 991991 10571057 12011201
χ(n)\chi(n) 11 1-1 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1121.1
1.18994i
1.18994i
0.356500i
0.356500i
2.25619i
2.25619i
2.08963i
2.08963i
0 −1.38699 1.03743i 0 1.00000i 0 0.394100i 0 0.847487 + 2.87781i 0
1121.2 0 −1.38699 + 1.03743i 0 1.00000i 0 0.394100i 0 0.847487 2.87781i 0
1121.3 0 −1.25820 1.19035i 0 1.00000i 0 3.22941i 0 0.166154 + 2.99540i 0
1121.4 0 −1.25820 + 1.19035i 0 1.00000i 0 3.22941i 0 0.166154 2.99540i 0
1121.5 0 −0.0828988 1.73007i 0 1.00000i 0 4.34658i 0 −2.98626 + 0.286841i 0
1121.6 0 −0.0828988 + 1.73007i 0 1.00000i 0 4.34658i 0 −2.98626 0.286841i 0
1121.7 0 1.72809 0.117016i 0 1.00000i 0 0.723074i 0 2.97261 0.404430i 0
1121.8 0 1.72809 + 0.117016i 0 1.00000i 0 0.723074i 0 2.97261 + 0.404430i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1121.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
33.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2640.2.f.b 8
3.b odd 2 1 2640.2.f.a 8
4.b odd 2 1 330.2.d.a 8
11.b odd 2 1 2640.2.f.a 8
12.b even 2 1 330.2.d.b yes 8
20.d odd 2 1 1650.2.d.f 8
20.e even 4 1 1650.2.f.c 8
20.e even 4 1 1650.2.f.e 8
33.d even 2 1 inner 2640.2.f.b 8
44.c even 2 1 330.2.d.b yes 8
60.h even 2 1 1650.2.d.c 8
60.l odd 4 1 1650.2.f.d 8
60.l odd 4 1 1650.2.f.f 8
132.d odd 2 1 330.2.d.a 8
220.g even 2 1 1650.2.d.c 8
220.i odd 4 1 1650.2.f.d 8
220.i odd 4 1 1650.2.f.f 8
660.g odd 2 1 1650.2.d.f 8
660.q even 4 1 1650.2.f.c 8
660.q even 4 1 1650.2.f.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
330.2.d.a 8 4.b odd 2 1
330.2.d.a 8 132.d odd 2 1
330.2.d.b yes 8 12.b even 2 1
330.2.d.b yes 8 44.c even 2 1
1650.2.d.c 8 60.h even 2 1
1650.2.d.c 8 220.g even 2 1
1650.2.d.f 8 20.d odd 2 1
1650.2.d.f 8 660.g odd 2 1
1650.2.f.c 8 20.e even 4 1
1650.2.f.c 8 660.q even 4 1
1650.2.f.d 8 60.l odd 4 1
1650.2.f.d 8 220.i odd 4 1
1650.2.f.e 8 20.e even 4 1
1650.2.f.e 8 660.q even 4 1
1650.2.f.f 8 60.l odd 4 1
1650.2.f.f 8 220.i odd 4 1
2640.2.f.a 8 3.b odd 2 1
2640.2.f.a 8 11.b odd 2 1
2640.2.f.b 8 1.a even 1 1 trivial
2640.2.f.b 8 33.d even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2640,[χ])S_{2}^{\mathrm{new}}(2640, [\chi]):

T78+30T76+217T74+136T72+16 T_{7}^{8} + 30T_{7}^{6} + 217T_{7}^{4} + 136T_{7}^{2} + 16 Copy content Toggle raw display
T174+2T17331T172104T1768 T_{17}^{4} + 2T_{17}^{3} - 31T_{17}^{2} - 104T_{17} - 68 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T8+2T7++81 T^{8} + 2 T^{7} + \cdots + 81 Copy content Toggle raw display
55 (T2+1)4 (T^{2} + 1)^{4} Copy content Toggle raw display
77 T8+30T6++16 T^{8} + 30 T^{6} + \cdots + 16 Copy content Toggle raw display
1111 T86T7++14641 T^{8} - 6 T^{7} + \cdots + 14641 Copy content Toggle raw display
1313 T8+44T6++1024 T^{8} + 44 T^{6} + \cdots + 1024 Copy content Toggle raw display
1717 (T4+2T331T2+68)2 (T^{4} + 2 T^{3} - 31 T^{2} + \cdots - 68)^{2} Copy content Toggle raw display
1919 T8+98T6++73984 T^{8} + 98 T^{6} + \cdots + 73984 Copy content Toggle raw display
2323 T8+104T6++25600 T^{8} + 104 T^{6} + \cdots + 25600 Copy content Toggle raw display
2929 (T42T3++452)2 (T^{4} - 2 T^{3} + \cdots + 452)^{2} Copy content Toggle raw display
3131 (T42T3++2000)2 (T^{4} - 2 T^{3} + \cdots + 2000)^{2} Copy content Toggle raw display
3737 (T4+6T3+1388)2 (T^{4} + 6 T^{3} + \cdots - 1388)^{2} Copy content Toggle raw display
4141 (T48T312T2++64)2 (T^{4} - 8 T^{3} - 12 T^{2} + \cdots + 64)^{2} Copy content Toggle raw display
4343 T8+160T6++262144 T^{8} + 160 T^{6} + \cdots + 262144 Copy content Toggle raw display
4747 T8+256T6++2715904 T^{8} + 256 T^{6} + \cdots + 2715904 Copy content Toggle raw display
5353 T8+58T6++2704 T^{8} + 58 T^{6} + \cdots + 2704 Copy content Toggle raw display
5959 T8+188T6++640000 T^{8} + 188 T^{6} + \cdots + 640000 Copy content Toggle raw display
6161 T8+310T6++712336 T^{8} + 310 T^{6} + \cdots + 712336 Copy content Toggle raw display
6767 (T46T3++3824)2 (T^{4} - 6 T^{3} + \cdots + 3824)^{2} Copy content Toggle raw display
7171 T8+170T6++150544 T^{8} + 170 T^{6} + \cdots + 150544 Copy content Toggle raw display
7373 T8+380T6++1183744 T^{8} + 380 T^{6} + \cdots + 1183744 Copy content Toggle raw display
7979 T8+316T6++173056 T^{8} + 316 T^{6} + \cdots + 173056 Copy content Toggle raw display
8383 (T4+36T3+2944)2 (T^{4} + 36 T^{3} + \cdots - 2944)^{2} Copy content Toggle raw display
8989 T8+262T6++135424 T^{8} + 262 T^{6} + \cdots + 135424 Copy content Toggle raw display
9797 (T4+4T3++11408)2 (T^{4} + 4 T^{3} + \cdots + 11408)^{2} Copy content Toggle raw display
show more
show less