Properties

Label 2640.2.t.c
Level $2640$
Weight $2$
Character orbit 2640.t
Analytic conductor $21.081$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2640,2,Mod(1231,2640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2640, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2640.1231");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2640.t (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.0805061336\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.1169858560000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 73x^{4} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + q^{5} + \beta_{3} q^{7} - q^{9} + ( - \beta_{7} + \beta_{3} - \beta_1) q^{11} + \beta_{6} q^{13} - \beta_1 q^{15} - \beta_{2} q^{17} + ( - \beta_{7} - \beta_{3}) q^{19} - \beta_{2} q^{21}+ \cdots + (\beta_{7} - \beta_{3} + \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{5} - 8 q^{9} + 8 q^{25} - 8 q^{33} + 8 q^{37} - 8 q^{45} + 16 q^{49} + 40 q^{53} - 8 q^{69} + 40 q^{77} + 8 q^{81} - 16 q^{89} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 73x^{4} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{6} + 77\nu^{2} ) / 36 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{7} + 77\nu^{3} + 36\nu ) / 36 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{7} - 77\nu^{3} + 36\nu ) / 36 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 2\nu^{4} + 73 ) / 9 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{6} + 69\nu^{2} ) / 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 9\nu^{7} + 4\nu^{5} + 657\nu^{3} + 308\nu ) / 72 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -9\nu^{7} + 4\nu^{5} - 657\nu^{3} + 308\nu ) / 72 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{5} + 9\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{7} - 2\beta_{6} - 9\beta_{3} + 9\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 9\beta_{4} - 73 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 18\beta_{7} + 18\beta_{6} - 77\beta_{3} - 77\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 77\beta_{5} - 621\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -154\beta_{7} + 154\beta_{6} + 657\beta_{3} - 657\beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2640\mathbb{Z}\right)^\times\).

\(n\) \(661\) \(881\) \(991\) \(1057\) \(1201\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1231.1
−2.06532 2.06532i
−0.484185 0.484185i
0.484185 + 0.484185i
2.06532 + 2.06532i
−2.06532 + 2.06532i
−0.484185 + 0.484185i
0.484185 0.484185i
2.06532 2.06532i
0 1.00000i 0 1.00000 0 −4.13065 0 −1.00000 0
1231.2 0 1.00000i 0 1.00000 0 −0.968371 0 −1.00000 0
1231.3 0 1.00000i 0 1.00000 0 0.968371 0 −1.00000 0
1231.4 0 1.00000i 0 1.00000 0 4.13065 0 −1.00000 0
1231.5 0 1.00000i 0 1.00000 0 −4.13065 0 −1.00000 0
1231.6 0 1.00000i 0 1.00000 0 −0.968371 0 −1.00000 0
1231.7 0 1.00000i 0 1.00000 0 0.968371 0 −1.00000 0
1231.8 0 1.00000i 0 1.00000 0 4.13065 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1231.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
11.b odd 2 1 inner
44.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2640.2.t.c 8
4.b odd 2 1 inner 2640.2.t.c 8
11.b odd 2 1 inner 2640.2.t.c 8
44.c even 2 1 inner 2640.2.t.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2640.2.t.c 8 1.a even 1 1 trivial
2640.2.t.c 8 4.b odd 2 1 inner
2640.2.t.c 8 11.b odd 2 1 inner
2640.2.t.c 8 44.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} - 18T_{7}^{2} + 16 \) acting on \(S_{2}^{\mathrm{new}}(2640, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$5$ \( (T - 1)^{8} \) Copy content Toggle raw display
$7$ \( (T^{4} - 18 T^{2} + 16)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} - 18 T^{2} + 121)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + 18 T^{2} + 16)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} + 18 T^{2} + 16)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 26)^{4} \) Copy content Toggle raw display
$23$ \( (T^{4} + 132 T^{2} + 4096)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 10)^{4} \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( (T^{2} - 2 T - 64)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} + 132 T^{2} + 196)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} - 18 T^{2} + 16)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 64)^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} - 10 T - 40)^{4} \) Copy content Toggle raw display
$59$ \( (T^{4} + 180 T^{2} + 1600)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 232 T^{2} + 4096)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + 148 T^{2} + 3136)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 132 T^{2} + 4096)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 242 T^{2} + 16)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 10)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} - 58 T^{2} + 256)^{2} \) Copy content Toggle raw display
$89$ \( (T + 2)^{8} \) Copy content Toggle raw display
$97$ \( (T^{2} - 2 T - 64)^{4} \) Copy content Toggle raw display
show more
show less