Properties

Label 2640.2.t.c
Level 26402640
Weight 22
Character orbit 2640.t
Analytic conductor 21.08121.081
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2640,2,Mod(1231,2640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2640, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2640.1231");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2640=243511 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2640.t (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 21.080506133621.0805061336
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.1169858560000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+73x4+16 x^{8} + 73x^{4} + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q3+q5+β3q7q9+(β7+β3β1)q11+β6q13β1q15β2q17+(β7β3)q19β2q21++(β7β3+β1)q99+O(q100) q - \beta_1 q^{3} + q^{5} + \beta_{3} q^{7} - q^{9} + ( - \beta_{7} + \beta_{3} - \beta_1) q^{11} + \beta_{6} q^{13} - \beta_1 q^{15} - \beta_{2} q^{17} + ( - \beta_{7} - \beta_{3}) q^{19} - \beta_{2} q^{21}+ \cdots + (\beta_{7} - \beta_{3} + \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+8q58q9+8q258q33+8q378q45+16q49+40q538q69+40q77+8q8116q89+8q97+O(q100) 8 q + 8 q^{5} - 8 q^{9} + 8 q^{25} - 8 q^{33} + 8 q^{37} - 8 q^{45} + 16 q^{49} + 40 q^{53} - 8 q^{69} + 40 q^{77} + 8 q^{81} - 16 q^{89} + 8 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+73x4+16 x^{8} + 73x^{4} + 16 : Copy content Toggle raw display

β1\beta_{1}== (ν6+77ν2)/36 ( \nu^{6} + 77\nu^{2} ) / 36 Copy content Toggle raw display
β2\beta_{2}== (ν7+77ν3+36ν)/36 ( \nu^{7} + 77\nu^{3} + 36\nu ) / 36 Copy content Toggle raw display
β3\beta_{3}== (ν777ν3+36ν)/36 ( -\nu^{7} - 77\nu^{3} + 36\nu ) / 36 Copy content Toggle raw display
β4\beta_{4}== (2ν4+73)/9 ( 2\nu^{4} + 73 ) / 9 Copy content Toggle raw display
β5\beta_{5}== (ν6+69ν2)/4 ( \nu^{6} + 69\nu^{2} ) / 4 Copy content Toggle raw display
β6\beta_{6}== (9ν7+4ν5+657ν3+308ν)/72 ( 9\nu^{7} + 4\nu^{5} + 657\nu^{3} + 308\nu ) / 72 Copy content Toggle raw display
β7\beta_{7}== (9ν7+4ν5657ν3+308ν)/72 ( -9\nu^{7} + 4\nu^{5} - 657\nu^{3} + 308\nu ) / 72 Copy content Toggle raw display
ν\nu== (β3+β2)/2 ( \beta_{3} + \beta_{2} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β5+9β1)/2 ( -\beta_{5} + 9\beta_1 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (2β72β69β3+9β2)/2 ( 2\beta_{7} - 2\beta_{6} - 9\beta_{3} + 9\beta_{2} ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (9β473)/2 ( 9\beta_{4} - 73 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (18β7+18β677β377β2)/2 ( 18\beta_{7} + 18\beta_{6} - 77\beta_{3} - 77\beta_{2} ) / 2 Copy content Toggle raw display
ν6\nu^{6}== (77β5621β1)/2 ( 77\beta_{5} - 621\beta_1 ) / 2 Copy content Toggle raw display
ν7\nu^{7}== (154β7+154β6+657β3657β2)/2 ( -154\beta_{7} + 154\beta_{6} + 657\beta_{3} - 657\beta_{2} ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2640Z)×\left(\mathbb{Z}/2640\mathbb{Z}\right)^\times.

nn 661661 881881 991991 10571057 12011201
χ(n)\chi(n) 11 11 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1231.1
−2.06532 2.06532i
−0.484185 0.484185i
0.484185 + 0.484185i
2.06532 + 2.06532i
−2.06532 + 2.06532i
−0.484185 + 0.484185i
0.484185 0.484185i
2.06532 2.06532i
0 1.00000i 0 1.00000 0 −4.13065 0 −1.00000 0
1231.2 0 1.00000i 0 1.00000 0 −0.968371 0 −1.00000 0
1231.3 0 1.00000i 0 1.00000 0 0.968371 0 −1.00000 0
1231.4 0 1.00000i 0 1.00000 0 4.13065 0 −1.00000 0
1231.5 0 1.00000i 0 1.00000 0 −4.13065 0 −1.00000 0
1231.6 0 1.00000i 0 1.00000 0 −0.968371 0 −1.00000 0
1231.7 0 1.00000i 0 1.00000 0 0.968371 0 −1.00000 0
1231.8 0 1.00000i 0 1.00000 0 4.13065 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1231.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
11.b odd 2 1 inner
44.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2640.2.t.c 8
4.b odd 2 1 inner 2640.2.t.c 8
11.b odd 2 1 inner 2640.2.t.c 8
44.c even 2 1 inner 2640.2.t.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2640.2.t.c 8 1.a even 1 1 trivial
2640.2.t.c 8 4.b odd 2 1 inner
2640.2.t.c 8 11.b odd 2 1 inner
2640.2.t.c 8 44.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T7418T72+16 T_{7}^{4} - 18T_{7}^{2} + 16 acting on S2new(2640,[χ])S_{2}^{\mathrm{new}}(2640, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 (T2+1)4 (T^{2} + 1)^{4} Copy content Toggle raw display
55 (T1)8 (T - 1)^{8} Copy content Toggle raw display
77 (T418T2+16)2 (T^{4} - 18 T^{2} + 16)^{2} Copy content Toggle raw display
1111 (T418T2+121)2 (T^{4} - 18 T^{2} + 121)^{2} Copy content Toggle raw display
1313 (T4+18T2+16)2 (T^{4} + 18 T^{2} + 16)^{2} Copy content Toggle raw display
1717 (T4+18T2+16)2 (T^{4} + 18 T^{2} + 16)^{2} Copy content Toggle raw display
1919 (T226)4 (T^{2} - 26)^{4} Copy content Toggle raw display
2323 (T4+132T2+4096)2 (T^{4} + 132 T^{2} + 4096)^{2} Copy content Toggle raw display
2929 (T2+10)4 (T^{2} + 10)^{4} Copy content Toggle raw display
3131 T8 T^{8} Copy content Toggle raw display
3737 (T22T64)4 (T^{2} - 2 T - 64)^{4} Copy content Toggle raw display
4141 (T4+132T2+196)2 (T^{4} + 132 T^{2} + 196)^{2} Copy content Toggle raw display
4343 (T418T2+16)2 (T^{4} - 18 T^{2} + 16)^{2} Copy content Toggle raw display
4747 (T2+64)4 (T^{2} + 64)^{4} Copy content Toggle raw display
5353 (T210T40)4 (T^{2} - 10 T - 40)^{4} Copy content Toggle raw display
5959 (T4+180T2+1600)2 (T^{4} + 180 T^{2} + 1600)^{2} Copy content Toggle raw display
6161 (T4+232T2+4096)2 (T^{4} + 232 T^{2} + 4096)^{2} Copy content Toggle raw display
6767 (T4+148T2+3136)2 (T^{4} + 148 T^{2} + 3136)^{2} Copy content Toggle raw display
7171 (T4+132T2+4096)2 (T^{4} + 132 T^{2} + 4096)^{2} Copy content Toggle raw display
7373 (T4+242T2+16)2 (T^{4} + 242 T^{2} + 16)^{2} Copy content Toggle raw display
7979 (T210)4 (T^{2} - 10)^{4} Copy content Toggle raw display
8383 (T458T2+256)2 (T^{4} - 58 T^{2} + 256)^{2} Copy content Toggle raw display
8989 (T+2)8 (T + 2)^{8} Copy content Toggle raw display
9797 (T22T64)4 (T^{2} - 2 T - 64)^{4} Copy content Toggle raw display
show more
show less