Properties

Label 2646.2.e.t.1549.1
Level $2646$
Weight $2$
Character 2646.1549
Analytic conductor $21.128$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2646,2,Mod(1549,2646)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2646, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2646.1549");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 882)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1549.1
Root \(0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 2646.1549
Dual form 2646.2.e.t.2125.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +(-0.965926 - 1.67303i) q^{5} +1.00000 q^{8} +(-0.965926 - 1.67303i) q^{10} +(2.73205 - 4.73205i) q^{11} +(-1.22474 + 2.12132i) q^{13} +1.00000 q^{16} +(3.15660 + 5.46739i) q^{17} +(0.965926 - 1.67303i) q^{19} +(-0.965926 - 1.67303i) q^{20} +(2.73205 - 4.73205i) q^{22} +(-2.96410 - 5.13397i) q^{23} +(0.633975 - 1.09808i) q^{25} +(-1.22474 + 2.12132i) q^{26} +(-0.366025 - 0.633975i) q^{29} -7.34847 q^{31} +1.00000 q^{32} +(3.15660 + 5.46739i) q^{34} +(4.00000 - 6.92820i) q^{37} +(0.965926 - 1.67303i) q^{38} +(-0.965926 - 1.67303i) q^{40} +(2.82843 - 4.89898i) q^{41} +(0.901924 + 1.56218i) q^{43} +(2.73205 - 4.73205i) q^{44} +(-2.96410 - 5.13397i) q^{46} +9.52056 q^{47} +(0.633975 - 1.09808i) q^{50} +(-1.22474 + 2.12132i) q^{52} +(1.63397 + 2.83013i) q^{53} -10.5558 q^{55} +(-0.366025 - 0.633975i) q^{58} -5.00052 q^{59} -2.96713 q^{61} -7.34847 q^{62} +1.00000 q^{64} +4.73205 q^{65} -14.1962 q^{67} +(3.15660 + 5.46739i) q^{68} +11.1962 q^{71} +(-4.76028 - 8.24504i) q^{73} +(4.00000 - 6.92820i) q^{74} +(0.965926 - 1.67303i) q^{76} -10.1244 q^{79} +(-0.965926 - 1.67303i) q^{80} +(2.82843 - 4.89898i) q^{82} +(-4.94975 - 8.57321i) q^{83} +(6.09808 - 10.5622i) q^{85} +(0.901924 + 1.56218i) q^{86} +(2.73205 - 4.73205i) q^{88} +(6.64136 - 11.5032i) q^{89} +(-2.96410 - 5.13397i) q^{92} +9.52056 q^{94} -3.73205 q^{95} +(-1.93185 - 3.34607i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{4} + 8 q^{8} + 8 q^{11} + 8 q^{16} + 8 q^{22} + 4 q^{23} + 12 q^{25} + 4 q^{29} + 8 q^{32} + 32 q^{37} + 28 q^{43} + 8 q^{44} + 4 q^{46} + 12 q^{50} + 20 q^{53} + 4 q^{58} + 8 q^{64}+ \cdots - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −0.965926 1.67303i −0.431975 0.748203i 0.565068 0.825044i \(-0.308850\pi\)
−0.997043 + 0.0768413i \(0.975517\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −0.965926 1.67303i −0.305453 0.529059i
\(11\) 2.73205 4.73205i 0.823744 1.42677i −0.0791309 0.996864i \(-0.525215\pi\)
0.902875 0.429903i \(-0.141452\pi\)
\(12\) 0 0
\(13\) −1.22474 + 2.12132i −0.339683 + 0.588348i −0.984373 0.176096i \(-0.943653\pi\)
0.644690 + 0.764444i \(0.276986\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.15660 + 5.46739i 0.765587 + 1.32604i 0.939936 + 0.341352i \(0.110885\pi\)
−0.174349 + 0.984684i \(0.555782\pi\)
\(18\) 0 0
\(19\) 0.965926 1.67303i 0.221599 0.383820i −0.733695 0.679479i \(-0.762206\pi\)
0.955294 + 0.295659i \(0.0955392\pi\)
\(20\) −0.965926 1.67303i −0.215988 0.374101i
\(21\) 0 0
\(22\) 2.73205 4.73205i 0.582475 1.00888i
\(23\) −2.96410 5.13397i −0.618058 1.07051i −0.989840 0.142188i \(-0.954586\pi\)
0.371782 0.928320i \(-0.378747\pi\)
\(24\) 0 0
\(25\) 0.633975 1.09808i 0.126795 0.219615i
\(26\) −1.22474 + 2.12132i −0.240192 + 0.416025i
\(27\) 0 0
\(28\) 0 0
\(29\) −0.366025 0.633975i −0.0679692 0.117726i 0.830038 0.557707i \(-0.188319\pi\)
−0.898007 + 0.439981i \(0.854985\pi\)
\(30\) 0 0
\(31\) −7.34847 −1.31982 −0.659912 0.751343i \(-0.729406\pi\)
−0.659912 + 0.751343i \(0.729406\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 3.15660 + 5.46739i 0.541352 + 0.937649i
\(35\) 0 0
\(36\) 0 0
\(37\) 4.00000 6.92820i 0.657596 1.13899i −0.323640 0.946180i \(-0.604907\pi\)
0.981236 0.192809i \(-0.0617599\pi\)
\(38\) 0.965926 1.67303i 0.156694 0.271402i
\(39\) 0 0
\(40\) −0.965926 1.67303i −0.152726 0.264530i
\(41\) 2.82843 4.89898i 0.441726 0.765092i −0.556092 0.831121i \(-0.687700\pi\)
0.997818 + 0.0660290i \(0.0210330\pi\)
\(42\) 0 0
\(43\) 0.901924 + 1.56218i 0.137542 + 0.238230i 0.926566 0.376133i \(-0.122746\pi\)
−0.789024 + 0.614363i \(0.789413\pi\)
\(44\) 2.73205 4.73205i 0.411872 0.713384i
\(45\) 0 0
\(46\) −2.96410 5.13397i −0.437033 0.756963i
\(47\) 9.52056 1.38872 0.694358 0.719630i \(-0.255688\pi\)
0.694358 + 0.719630i \(0.255688\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0.633975 1.09808i 0.0896575 0.155291i
\(51\) 0 0
\(52\) −1.22474 + 2.12132i −0.169842 + 0.294174i
\(53\) 1.63397 + 2.83013i 0.224444 + 0.388748i 0.956152 0.292870i \(-0.0946102\pi\)
−0.731709 + 0.681617i \(0.761277\pi\)
\(54\) 0 0
\(55\) −10.5558 −1.42335
\(56\) 0 0
\(57\) 0 0
\(58\) −0.366025 0.633975i −0.0480615 0.0832449i
\(59\) −5.00052 −0.651012 −0.325506 0.945540i \(-0.605535\pi\)
−0.325506 + 0.945540i \(0.605535\pi\)
\(60\) 0 0
\(61\) −2.96713 −0.379902 −0.189951 0.981794i \(-0.560833\pi\)
−0.189951 + 0.981794i \(0.560833\pi\)
\(62\) −7.34847 −0.933257
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 4.73205 0.586939
\(66\) 0 0
\(67\) −14.1962 −1.73434 −0.867168 0.498016i \(-0.834062\pi\)
−0.867168 + 0.498016i \(0.834062\pi\)
\(68\) 3.15660 + 5.46739i 0.382794 + 0.663018i
\(69\) 0 0
\(70\) 0 0
\(71\) 11.1962 1.32874 0.664369 0.747404i \(-0.268700\pi\)
0.664369 + 0.747404i \(0.268700\pi\)
\(72\) 0 0
\(73\) −4.76028 8.24504i −0.557148 0.965009i −0.997733 0.0672983i \(-0.978562\pi\)
0.440584 0.897711i \(-0.354771\pi\)
\(74\) 4.00000 6.92820i 0.464991 0.805387i
\(75\) 0 0
\(76\) 0.965926 1.67303i 0.110799 0.191910i
\(77\) 0 0
\(78\) 0 0
\(79\) −10.1244 −1.13908 −0.569540 0.821964i \(-0.692878\pi\)
−0.569540 + 0.821964i \(0.692878\pi\)
\(80\) −0.965926 1.67303i −0.107994 0.187051i
\(81\) 0 0
\(82\) 2.82843 4.89898i 0.312348 0.541002i
\(83\) −4.94975 8.57321i −0.543305 0.941033i −0.998711 0.0507487i \(-0.983839\pi\)
0.455406 0.890284i \(-0.349494\pi\)
\(84\) 0 0
\(85\) 6.09808 10.5622i 0.661429 1.14563i
\(86\) 0.901924 + 1.56218i 0.0972569 + 0.168454i
\(87\) 0 0
\(88\) 2.73205 4.73205i 0.291238 0.504438i
\(89\) 6.64136 11.5032i 0.703983 1.21933i −0.263074 0.964776i \(-0.584736\pi\)
0.967057 0.254559i \(-0.0819302\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −2.96410 5.13397i −0.309029 0.535254i
\(93\) 0 0
\(94\) 9.52056 0.981971
\(95\) −3.73205 −0.382900
\(96\) 0 0
\(97\) −1.93185 3.34607i −0.196150 0.339741i 0.751127 0.660158i \(-0.229511\pi\)
−0.947277 + 0.320416i \(0.896177\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0.633975 1.09808i 0.0633975 0.109808i
\(101\) −0.776457 + 1.34486i −0.0772604 + 0.133819i −0.902067 0.431596i \(-0.857951\pi\)
0.824807 + 0.565415i \(0.191284\pi\)
\(102\) 0 0
\(103\) −4.19187 7.26054i −0.413037 0.715402i 0.582183 0.813058i \(-0.302199\pi\)
−0.995220 + 0.0976561i \(0.968865\pi\)
\(104\) −1.22474 + 2.12132i −0.120096 + 0.208013i
\(105\) 0 0
\(106\) 1.63397 + 2.83013i 0.158706 + 0.274886i
\(107\) 8.46410 14.6603i 0.818256 1.41726i −0.0887109 0.996057i \(-0.528275\pi\)
0.906966 0.421203i \(-0.138392\pi\)
\(108\) 0 0
\(109\) 10.2942 + 17.8301i 0.986008 + 1.70782i 0.637367 + 0.770560i \(0.280023\pi\)
0.348641 + 0.937256i \(0.386643\pi\)
\(110\) −10.5558 −1.00646
\(111\) 0 0
\(112\) 0 0
\(113\) 1.33013 2.30385i 0.125128 0.216728i −0.796655 0.604434i \(-0.793399\pi\)
0.921783 + 0.387706i \(0.126733\pi\)
\(114\) 0 0
\(115\) −5.72620 + 9.91808i −0.533971 + 0.924865i
\(116\) −0.366025 0.633975i −0.0339846 0.0588631i
\(117\) 0 0
\(118\) −5.00052 −0.460335
\(119\) 0 0
\(120\) 0 0
\(121\) −9.42820 16.3301i −0.857109 1.48456i
\(122\) −2.96713 −0.268631
\(123\) 0 0
\(124\) −7.34847 −0.659912
\(125\) −12.1087 −1.08304
\(126\) 0 0
\(127\) 7.92820 0.703514 0.351757 0.936091i \(-0.385584\pi\)
0.351757 + 0.936091i \(0.385584\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 4.73205 0.415028
\(131\) 0.120118 + 0.208051i 0.0104948 + 0.0181775i 0.871225 0.490884i \(-0.163326\pi\)
−0.860730 + 0.509061i \(0.829993\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −14.1962 −1.22636
\(135\) 0 0
\(136\) 3.15660 + 5.46739i 0.270676 + 0.468824i
\(137\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(138\) 0 0
\(139\) −0.915158 + 1.58510i −0.0776227 + 0.134446i −0.902224 0.431268i \(-0.858066\pi\)
0.824601 + 0.565715i \(0.191400\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 11.1962 0.939560
\(143\) 6.69213 + 11.5911i 0.559624 + 0.969297i
\(144\) 0 0
\(145\) −0.707107 + 1.22474i −0.0587220 + 0.101710i
\(146\) −4.76028 8.24504i −0.393963 0.682365i
\(147\) 0 0
\(148\) 4.00000 6.92820i 0.328798 0.569495i
\(149\) 9.19615 + 15.9282i 0.753378 + 1.30489i 0.946177 + 0.323651i \(0.104910\pi\)
−0.192798 + 0.981238i \(0.561756\pi\)
\(150\) 0 0
\(151\) −1.69615 + 2.93782i −0.138031 + 0.239077i −0.926751 0.375676i \(-0.877411\pi\)
0.788720 + 0.614752i \(0.210744\pi\)
\(152\) 0.965926 1.67303i 0.0783469 0.135701i
\(153\) 0 0
\(154\) 0 0
\(155\) 7.09808 + 12.2942i 0.570131 + 0.987496i
\(156\) 0 0
\(157\) 24.3562 1.94384 0.971918 0.235320i \(-0.0756137\pi\)
0.971918 + 0.235320i \(0.0756137\pi\)
\(158\) −10.1244 −0.805450
\(159\) 0 0
\(160\) −0.965926 1.67303i −0.0763631 0.132265i
\(161\) 0 0
\(162\) 0 0
\(163\) 10.4641 18.1244i 0.819612 1.41961i −0.0863569 0.996264i \(-0.527523\pi\)
0.905969 0.423345i \(-0.139144\pi\)
\(164\) 2.82843 4.89898i 0.220863 0.382546i
\(165\) 0 0
\(166\) −4.94975 8.57321i −0.384175 0.665410i
\(167\) −8.05558 + 13.9527i −0.623359 + 1.07969i 0.365497 + 0.930813i \(0.380899\pi\)
−0.988856 + 0.148877i \(0.952434\pi\)
\(168\) 0 0
\(169\) 3.50000 + 6.06218i 0.269231 + 0.466321i
\(170\) 6.09808 10.5622i 0.467701 0.810082i
\(171\) 0 0
\(172\) 0.901924 + 1.56218i 0.0687710 + 0.119115i
\(173\) 14.5211 1.10402 0.552008 0.833839i \(-0.313862\pi\)
0.552008 + 0.833839i \(0.313862\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2.73205 4.73205i 0.205936 0.356692i
\(177\) 0 0
\(178\) 6.64136 11.5032i 0.497791 0.862200i
\(179\) 1.09808 + 1.90192i 0.0820741 + 0.142156i 0.904141 0.427235i \(-0.140512\pi\)
−0.822067 + 0.569391i \(0.807179\pi\)
\(180\) 0 0
\(181\) −8.72552 −0.648563 −0.324281 0.945961i \(-0.605122\pi\)
−0.324281 + 0.945961i \(0.605122\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −2.96410 5.13397i −0.218516 0.378482i
\(185\) −15.4548 −1.13626
\(186\) 0 0
\(187\) 34.4959 2.52259
\(188\) 9.52056 0.694358
\(189\) 0 0
\(190\) −3.73205 −0.270751
\(191\) −3.19615 −0.231265 −0.115633 0.993292i \(-0.536890\pi\)
−0.115633 + 0.993292i \(0.536890\pi\)
\(192\) 0 0
\(193\) −20.2679 −1.45892 −0.729459 0.684024i \(-0.760228\pi\)
−0.729459 + 0.684024i \(0.760228\pi\)
\(194\) −1.93185 3.34607i −0.138699 0.240233i
\(195\) 0 0
\(196\) 0 0
\(197\) 7.66025 0.545771 0.272885 0.962047i \(-0.412022\pi\)
0.272885 + 0.962047i \(0.412022\pi\)
\(198\) 0 0
\(199\) 1.55291 + 2.68973i 0.110083 + 0.190670i 0.915804 0.401626i \(-0.131555\pi\)
−0.805720 + 0.592296i \(0.798222\pi\)
\(200\) 0.633975 1.09808i 0.0448288 0.0776457i
\(201\) 0 0
\(202\) −0.776457 + 1.34486i −0.0546313 + 0.0946242i
\(203\) 0 0
\(204\) 0 0
\(205\) −10.9282 −0.763259
\(206\) −4.19187 7.26054i −0.292062 0.505866i
\(207\) 0 0
\(208\) −1.22474 + 2.12132i −0.0849208 + 0.147087i
\(209\) −5.27792 9.14162i −0.365081 0.632339i
\(210\) 0 0
\(211\) −2.36603 + 4.09808i −0.162884 + 0.282123i −0.935902 0.352261i \(-0.885413\pi\)
0.773018 + 0.634384i \(0.218746\pi\)
\(212\) 1.63397 + 2.83013i 0.112222 + 0.194374i
\(213\) 0 0
\(214\) 8.46410 14.6603i 0.578594 1.00215i
\(215\) 1.74238 3.01790i 0.118830 0.205819i
\(216\) 0 0
\(217\) 0 0
\(218\) 10.2942 + 17.8301i 0.697213 + 1.20761i
\(219\) 0 0
\(220\) −10.5558 −0.711674
\(221\) −15.4641 −1.04023
\(222\) 0 0
\(223\) 10.3664 + 17.9551i 0.694183 + 1.20236i 0.970455 + 0.241281i \(0.0775676\pi\)
−0.276272 + 0.961079i \(0.589099\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 1.33013 2.30385i 0.0884787 0.153250i
\(227\) 0.448288 0.776457i 0.0297539 0.0515353i −0.850765 0.525546i \(-0.823861\pi\)
0.880519 + 0.474011i \(0.157194\pi\)
\(228\) 0 0
\(229\) 9.02150 + 15.6257i 0.596158 + 1.03258i 0.993382 + 0.114854i \(0.0366400\pi\)
−0.397225 + 0.917721i \(0.630027\pi\)
\(230\) −5.72620 + 9.91808i −0.377575 + 0.653979i
\(231\) 0 0
\(232\) −0.366025 0.633975i −0.0240307 0.0416225i
\(233\) −9.69615 + 16.7942i −0.635216 + 1.10023i 0.351253 + 0.936280i \(0.385756\pi\)
−0.986469 + 0.163946i \(0.947578\pi\)
\(234\) 0 0
\(235\) −9.19615 15.9282i −0.599891 1.03904i
\(236\) −5.00052 −0.325506
\(237\) 0 0
\(238\) 0 0
\(239\) −2.76795 + 4.79423i −0.179044 + 0.310113i −0.941553 0.336864i \(-0.890634\pi\)
0.762510 + 0.646977i \(0.223967\pi\)
\(240\) 0 0
\(241\) −6.36396 + 11.0227i −0.409939 + 0.710035i −0.994882 0.101039i \(-0.967783\pi\)
0.584944 + 0.811074i \(0.301117\pi\)
\(242\) −9.42820 16.3301i −0.606068 1.04974i
\(243\) 0 0
\(244\) −2.96713 −0.189951
\(245\) 0 0
\(246\) 0 0
\(247\) 2.36603 + 4.09808i 0.150547 + 0.260754i
\(248\) −7.34847 −0.466628
\(249\) 0 0
\(250\) −12.1087 −0.765824
\(251\) −1.93185 −0.121937 −0.0609687 0.998140i \(-0.519419\pi\)
−0.0609687 + 0.998140i \(0.519419\pi\)
\(252\) 0 0
\(253\) −32.3923 −2.03649
\(254\) 7.92820 0.497460
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −10.3664 17.9551i −0.646636 1.12001i −0.983921 0.178604i \(-0.942842\pi\)
0.337285 0.941403i \(-0.390491\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 4.73205 0.293469
\(261\) 0 0
\(262\) 0.120118 + 0.208051i 0.00742094 + 0.0128534i
\(263\) −7.33013 + 12.6962i −0.451995 + 0.782878i −0.998510 0.0545711i \(-0.982621\pi\)
0.546515 + 0.837449i \(0.315954\pi\)
\(264\) 0 0
\(265\) 3.15660 5.46739i 0.193908 0.335859i
\(266\) 0 0
\(267\) 0 0
\(268\) −14.1962 −0.867168
\(269\) −0.0185824 0.0321856i −0.00113299 0.00196239i 0.865458 0.500981i \(-0.167027\pi\)
−0.866591 + 0.499018i \(0.833694\pi\)
\(270\) 0 0
\(271\) −2.50026 + 4.33057i −0.151880 + 0.263064i −0.931919 0.362668i \(-0.881866\pi\)
0.780039 + 0.625731i \(0.215199\pi\)
\(272\) 3.15660 + 5.46739i 0.191397 + 0.331509i
\(273\) 0 0
\(274\) 0 0
\(275\) −3.46410 6.00000i −0.208893 0.361814i
\(276\) 0 0
\(277\) 2.90192 5.02628i 0.174360 0.302000i −0.765580 0.643341i \(-0.777548\pi\)
0.939940 + 0.341341i \(0.110881\pi\)
\(278\) −0.915158 + 1.58510i −0.0548875 + 0.0950680i
\(279\) 0 0
\(280\) 0 0
\(281\) 1.69615 + 2.93782i 0.101184 + 0.175256i 0.912173 0.409806i \(-0.134404\pi\)
−0.810989 + 0.585062i \(0.801070\pi\)
\(282\) 0 0
\(283\) 17.1093 1.01704 0.508520 0.861050i \(-0.330193\pi\)
0.508520 + 0.861050i \(0.330193\pi\)
\(284\) 11.1962 0.664369
\(285\) 0 0
\(286\) 6.69213 + 11.5911i 0.395714 + 0.685397i
\(287\) 0 0
\(288\) 0 0
\(289\) −11.4282 + 19.7942i −0.672247 + 1.16437i
\(290\) −0.707107 + 1.22474i −0.0415227 + 0.0719195i
\(291\) 0 0
\(292\) −4.76028 8.24504i −0.278574 0.482505i
\(293\) 2.19067 3.79435i 0.127980 0.221668i −0.794914 0.606723i \(-0.792484\pi\)
0.922894 + 0.385054i \(0.125817\pi\)
\(294\) 0 0
\(295\) 4.83013 + 8.36603i 0.281221 + 0.487089i
\(296\) 4.00000 6.92820i 0.232495 0.402694i
\(297\) 0 0
\(298\) 9.19615 + 15.9282i 0.532719 + 0.922696i
\(299\) 14.5211 0.839775
\(300\) 0 0
\(301\) 0 0
\(302\) −1.69615 + 2.93782i −0.0976026 + 0.169053i
\(303\) 0 0
\(304\) 0.965926 1.67303i 0.0553996 0.0959550i
\(305\) 2.86603 + 4.96410i 0.164108 + 0.284244i
\(306\) 0 0
\(307\) −29.0793 −1.65964 −0.829822 0.558028i \(-0.811558\pi\)
−0.829822 + 0.558028i \(0.811558\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 7.09808 + 12.2942i 0.403144 + 0.698265i
\(311\) 21.0101 1.19138 0.595688 0.803216i \(-0.296880\pi\)
0.595688 + 0.803216i \(0.296880\pi\)
\(312\) 0 0
\(313\) −1.79315 −0.101355 −0.0506774 0.998715i \(-0.516138\pi\)
−0.0506774 + 0.998715i \(0.516138\pi\)
\(314\) 24.3562 1.37450
\(315\) 0 0
\(316\) −10.1244 −0.569540
\(317\) −1.41154 −0.0792801 −0.0396401 0.999214i \(-0.512621\pi\)
−0.0396401 + 0.999214i \(0.512621\pi\)
\(318\) 0 0
\(319\) −4.00000 −0.223957
\(320\) −0.965926 1.67303i −0.0539969 0.0935254i
\(321\) 0 0
\(322\) 0 0
\(323\) 12.1962 0.678612
\(324\) 0 0
\(325\) 1.55291 + 2.68973i 0.0861402 + 0.149199i
\(326\) 10.4641 18.1244i 0.579553 1.00382i
\(327\) 0 0
\(328\) 2.82843 4.89898i 0.156174 0.270501i
\(329\) 0 0
\(330\) 0 0
\(331\) 26.0526 1.43198 0.715989 0.698111i \(-0.245976\pi\)
0.715989 + 0.698111i \(0.245976\pi\)
\(332\) −4.94975 8.57321i −0.271653 0.470516i
\(333\) 0 0
\(334\) −8.05558 + 13.9527i −0.440782 + 0.763456i
\(335\) 13.7124 + 23.7506i 0.749190 + 1.29764i
\(336\) 0 0
\(337\) −6.66025 + 11.5359i −0.362807 + 0.628400i −0.988422 0.151732i \(-0.951515\pi\)
0.625615 + 0.780132i \(0.284848\pi\)
\(338\) 3.50000 + 6.06218i 0.190375 + 0.329739i
\(339\) 0 0
\(340\) 6.09808 10.5622i 0.330715 0.572815i
\(341\) −20.0764 + 34.7733i −1.08720 + 1.88308i
\(342\) 0 0
\(343\) 0 0
\(344\) 0.901924 + 1.56218i 0.0486285 + 0.0842270i
\(345\) 0 0
\(346\) 14.5211 0.780658
\(347\) 33.7128 1.80980 0.904899 0.425626i \(-0.139946\pi\)
0.904899 + 0.425626i \(0.139946\pi\)
\(348\) 0 0
\(349\) 12.3998 + 21.4770i 0.663744 + 1.14964i 0.979624 + 0.200839i \(0.0643667\pi\)
−0.315881 + 0.948799i \(0.602300\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.73205 4.73205i 0.145619 0.252219i
\(353\) 9.84873 17.0585i 0.524195 0.907932i −0.475408 0.879765i \(-0.657700\pi\)
0.999603 0.0281669i \(-0.00896698\pi\)
\(354\) 0 0
\(355\) −10.8147 18.7315i −0.573982 0.994166i
\(356\) 6.64136 11.5032i 0.351992 0.609667i
\(357\) 0 0
\(358\) 1.09808 + 1.90192i 0.0580351 + 0.100520i
\(359\) −0.0358984 + 0.0621778i −0.00189464 + 0.00328162i −0.866971 0.498358i \(-0.833936\pi\)
0.865077 + 0.501640i \(0.167270\pi\)
\(360\) 0 0
\(361\) 7.63397 + 13.2224i 0.401788 + 0.695917i
\(362\) −8.72552 −0.458603
\(363\) 0 0
\(364\) 0 0
\(365\) −9.19615 + 15.9282i −0.481349 + 0.833720i
\(366\) 0 0
\(367\) −7.20977 + 12.4877i −0.376347 + 0.651852i −0.990528 0.137313i \(-0.956153\pi\)
0.614181 + 0.789165i \(0.289487\pi\)
\(368\) −2.96410 5.13397i −0.154514 0.267627i
\(369\) 0 0
\(370\) −15.4548 −0.803457
\(371\) 0 0
\(372\) 0 0
\(373\) 2.56218 + 4.43782i 0.132665 + 0.229782i 0.924703 0.380690i \(-0.124313\pi\)
−0.792038 + 0.610471i \(0.790980\pi\)
\(374\) 34.4959 1.78374
\(375\) 0 0
\(376\) 9.52056 0.490985
\(377\) 1.79315 0.0923520
\(378\) 0 0
\(379\) 17.5167 0.899770 0.449885 0.893086i \(-0.351465\pi\)
0.449885 + 0.893086i \(0.351465\pi\)
\(380\) −3.73205 −0.191450
\(381\) 0 0
\(382\) −3.19615 −0.163529
\(383\) −9.76079 16.9062i −0.498753 0.863866i 0.501246 0.865305i \(-0.332875\pi\)
−0.999999 + 0.00143898i \(0.999542\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −20.2679 −1.03161
\(387\) 0 0
\(388\) −1.93185 3.34607i −0.0980749 0.169871i
\(389\) −14.5622 + 25.2224i −0.738332 + 1.27883i 0.214914 + 0.976633i \(0.431053\pi\)
−0.953246 + 0.302195i \(0.902281\pi\)
\(390\) 0 0
\(391\) 18.7129 32.4118i 0.946354 1.63913i
\(392\) 0 0
\(393\) 0 0
\(394\) 7.66025 0.385918
\(395\) 9.77938 + 16.9384i 0.492054 + 0.852262i
\(396\) 0 0
\(397\) −0.947343 + 1.64085i −0.0475458 + 0.0823518i −0.888819 0.458259i \(-0.848473\pi\)
0.841273 + 0.540610i \(0.181807\pi\)
\(398\) 1.55291 + 2.68973i 0.0778406 + 0.134824i
\(399\) 0 0
\(400\) 0.633975 1.09808i 0.0316987 0.0549038i
\(401\) 6.52628 + 11.3038i 0.325907 + 0.564487i 0.981695 0.190457i \(-0.0609971\pi\)
−0.655789 + 0.754945i \(0.727664\pi\)
\(402\) 0 0
\(403\) 9.00000 15.5885i 0.448322 0.776516i
\(404\) −0.776457 + 1.34486i −0.0386302 + 0.0669094i
\(405\) 0 0
\(406\) 0 0
\(407\) −21.8564 37.8564i −1.08338 1.87647i
\(408\) 0 0
\(409\) −26.2880 −1.29986 −0.649930 0.759994i \(-0.725202\pi\)
−0.649930 + 0.759994i \(0.725202\pi\)
\(410\) −10.9282 −0.539705
\(411\) 0 0
\(412\) −4.19187 7.26054i −0.206519 0.357701i
\(413\) 0 0
\(414\) 0 0
\(415\) −9.56218 + 16.5622i −0.469389 + 0.813005i
\(416\) −1.22474 + 2.12132i −0.0600481 + 0.104006i
\(417\) 0 0
\(418\) −5.27792 9.14162i −0.258151 0.447131i
\(419\) 2.13990 3.70642i 0.104541 0.181070i −0.809010 0.587796i \(-0.799996\pi\)
0.913551 + 0.406725i \(0.133329\pi\)
\(420\) 0 0
\(421\) 5.02628 + 8.70577i 0.244966 + 0.424293i 0.962122 0.272619i \(-0.0878899\pi\)
−0.717156 + 0.696913i \(0.754557\pi\)
\(422\) −2.36603 + 4.09808i −0.115176 + 0.199491i
\(423\) 0 0
\(424\) 1.63397 + 2.83013i 0.0793528 + 0.137443i
\(425\) 8.00481 0.388290
\(426\) 0 0
\(427\) 0 0
\(428\) 8.46410 14.6603i 0.409128 0.708630i
\(429\) 0 0
\(430\) 1.74238 3.01790i 0.0840252 0.145536i
\(431\) 7.39230 + 12.8038i 0.356075 + 0.616740i 0.987301 0.158859i \(-0.0507815\pi\)
−0.631226 + 0.775599i \(0.717448\pi\)
\(432\) 0 0
\(433\) 28.7375 1.38104 0.690519 0.723314i \(-0.257382\pi\)
0.690519 + 0.723314i \(0.257382\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 10.2942 + 17.8301i 0.493004 + 0.853908i
\(437\) −11.4524 −0.547843
\(438\) 0 0
\(439\) −1.31268 −0.0626507 −0.0313253 0.999509i \(-0.509973\pi\)
−0.0313253 + 0.999509i \(0.509973\pi\)
\(440\) −10.5558 −0.503230
\(441\) 0 0
\(442\) −15.4641 −0.735552
\(443\) −14.9808 −0.711757 −0.355879 0.934532i \(-0.615818\pi\)
−0.355879 + 0.934532i \(0.615818\pi\)
\(444\) 0 0
\(445\) −25.6603 −1.21641
\(446\) 10.3664 + 17.9551i 0.490862 + 0.850197i
\(447\) 0 0
\(448\) 0 0
\(449\) −17.7846 −0.839308 −0.419654 0.907684i \(-0.637849\pi\)
−0.419654 + 0.907684i \(0.637849\pi\)
\(450\) 0 0
\(451\) −15.4548 26.7685i −0.727739 1.26048i
\(452\) 1.33013 2.30385i 0.0625639 0.108364i
\(453\) 0 0
\(454\) 0.448288 0.776457i 0.0210392 0.0364409i
\(455\) 0 0
\(456\) 0 0
\(457\) −25.7321 −1.20369 −0.601847 0.798611i \(-0.705568\pi\)
−0.601847 + 0.798611i \(0.705568\pi\)
\(458\) 9.02150 + 15.6257i 0.421547 + 0.730141i
\(459\) 0 0
\(460\) −5.72620 + 9.91808i −0.266986 + 0.462433i
\(461\) 10.9162 + 18.9074i 0.508418 + 0.880605i 0.999952 + 0.00974723i \(0.00310269\pi\)
−0.491535 + 0.870858i \(0.663564\pi\)
\(462\) 0 0
\(463\) 5.33013 9.23205i 0.247712 0.429050i −0.715179 0.698942i \(-0.753655\pi\)
0.962891 + 0.269892i \(0.0869880\pi\)
\(464\) −0.366025 0.633975i −0.0169923 0.0294315i
\(465\) 0 0
\(466\) −9.69615 + 16.7942i −0.449166 + 0.777978i
\(467\) −2.39872 + 4.15471i −0.111000 + 0.192257i −0.916174 0.400782i \(-0.868739\pi\)
0.805174 + 0.593039i \(0.202072\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −9.19615 15.9282i −0.424187 0.734713i
\(471\) 0 0
\(472\) −5.00052 −0.230167
\(473\) 9.85641 0.453198
\(474\) 0 0
\(475\) −1.22474 2.12132i −0.0561951 0.0973329i
\(476\) 0 0
\(477\) 0 0
\(478\) −2.76795 + 4.79423i −0.126603 + 0.219283i
\(479\) 8.05558 13.9527i 0.368069 0.637514i −0.621195 0.783656i \(-0.713352\pi\)
0.989264 + 0.146142i \(0.0466858\pi\)
\(480\) 0 0
\(481\) 9.79796 + 16.9706i 0.446748 + 0.773791i
\(482\) −6.36396 + 11.0227i −0.289870 + 0.502070i
\(483\) 0 0
\(484\) −9.42820 16.3301i −0.428555 0.742279i
\(485\) −3.73205 + 6.46410i −0.169464 + 0.293520i
\(486\) 0 0
\(487\) −1.16025 2.00962i −0.0525761 0.0910645i 0.838540 0.544841i \(-0.183410\pi\)
−0.891116 + 0.453776i \(0.850077\pi\)
\(488\) −2.96713 −0.134316
\(489\) 0 0
\(490\) 0 0
\(491\) −9.46410 + 16.3923i −0.427109 + 0.739774i −0.996615 0.0822129i \(-0.973801\pi\)
0.569506 + 0.821987i \(0.307135\pi\)
\(492\) 0 0
\(493\) 2.31079 4.00240i 0.104073 0.180259i
\(494\) 2.36603 + 4.09808i 0.106453 + 0.184381i
\(495\) 0 0
\(496\) −7.34847 −0.329956
\(497\) 0 0
\(498\) 0 0
\(499\) 13.6603 + 23.6603i 0.611517 + 1.05918i 0.990985 + 0.133974i \(0.0427737\pi\)
−0.379468 + 0.925205i \(0.623893\pi\)
\(500\) −12.1087 −0.541520
\(501\) 0 0
\(502\) −1.93185 −0.0862228
\(503\) −19.1427 −0.853529 −0.426764 0.904363i \(-0.640347\pi\)
−0.426764 + 0.904363i \(0.640347\pi\)
\(504\) 0 0
\(505\) 3.00000 0.133498
\(506\) −32.3923 −1.44001
\(507\) 0 0
\(508\) 7.92820 0.351757
\(509\) 10.8840 + 18.8516i 0.482425 + 0.835585i 0.999796 0.0201764i \(-0.00642278\pi\)
−0.517371 + 0.855761i \(0.673089\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −10.3664 17.9551i −0.457241 0.791964i
\(515\) −8.09808 + 14.0263i −0.356844 + 0.618072i
\(516\) 0 0
\(517\) 26.0106 45.0518i 1.14395 1.98137i
\(518\) 0 0
\(519\) 0 0
\(520\) 4.73205 0.207514
\(521\) −16.2635 28.1691i −0.712515 1.23411i −0.963910 0.266228i \(-0.914223\pi\)
0.251395 0.967885i \(-0.419111\pi\)
\(522\) 0 0
\(523\) −3.70642 + 6.41971i −0.162070 + 0.280714i −0.935611 0.353032i \(-0.885151\pi\)
0.773541 + 0.633747i \(0.218484\pi\)
\(524\) 0.120118 + 0.208051i 0.00524739 + 0.00908875i
\(525\) 0 0
\(526\) −7.33013 + 12.6962i −0.319609 + 0.553579i
\(527\) −23.1962 40.1769i −1.01044 1.75013i
\(528\) 0 0
\(529\) −6.07180 + 10.5167i −0.263991 + 0.457246i
\(530\) 3.15660 5.46739i 0.137114 0.237488i
\(531\) 0 0
\(532\) 0 0
\(533\) 6.92820 + 12.0000i 0.300094 + 0.519778i
\(534\) 0 0
\(535\) −32.7028 −1.41386
\(536\) −14.1962 −0.613180
\(537\) 0 0
\(538\) −0.0185824 0.0321856i −0.000801143 0.00138762i
\(539\) 0 0
\(540\) 0 0
\(541\) −8.63397 + 14.9545i −0.371204 + 0.642943i −0.989751 0.142804i \(-0.954388\pi\)
0.618547 + 0.785747i \(0.287721\pi\)
\(542\) −2.50026 + 4.33057i −0.107395 + 0.186014i
\(543\) 0 0
\(544\) 3.15660 + 5.46739i 0.135338 + 0.234412i
\(545\) 19.8869 34.4452i 0.851862 1.47547i
\(546\) 0 0
\(547\) 2.26795 + 3.92820i 0.0969705 + 0.167958i 0.910429 0.413665i \(-0.135751\pi\)
−0.813459 + 0.581623i \(0.802418\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) −3.46410 6.00000i −0.147710 0.255841i
\(551\) −1.41421 −0.0602475
\(552\) 0 0
\(553\) 0 0
\(554\) 2.90192 5.02628i 0.123291 0.213546i
\(555\) 0 0
\(556\) −0.915158 + 1.58510i −0.0388113 + 0.0672232i
\(557\) 13.5622 + 23.4904i 0.574648 + 0.995319i 0.996080 + 0.0884593i \(0.0281943\pi\)
−0.421432 + 0.906860i \(0.638472\pi\)
\(558\) 0 0
\(559\) −4.41851 −0.186883
\(560\) 0 0
\(561\) 0 0
\(562\) 1.69615 + 2.93782i 0.0715479 + 0.123925i
\(563\) 8.62398 0.363458 0.181729 0.983349i \(-0.441831\pi\)
0.181729 + 0.983349i \(0.441831\pi\)
\(564\) 0 0
\(565\) −5.13922 −0.216208
\(566\) 17.1093 0.719156
\(567\) 0 0
\(568\) 11.1962 0.469780
\(569\) −13.0718 −0.547998 −0.273999 0.961730i \(-0.588347\pi\)
−0.273999 + 0.961730i \(0.588347\pi\)
\(570\) 0 0
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) 6.69213 + 11.5911i 0.279812 + 0.484649i
\(573\) 0 0
\(574\) 0 0
\(575\) −7.51666 −0.313466
\(576\) 0 0
\(577\) 8.90138 + 15.4176i 0.370569 + 0.641845i 0.989653 0.143480i \(-0.0458292\pi\)
−0.619084 + 0.785325i \(0.712496\pi\)
\(578\) −11.4282 + 19.7942i −0.475351 + 0.823331i
\(579\) 0 0
\(580\) −0.707107 + 1.22474i −0.0293610 + 0.0508548i
\(581\) 0 0
\(582\) 0 0
\(583\) 17.8564 0.739537
\(584\) −4.76028 8.24504i −0.196982 0.341182i
\(585\) 0 0
\(586\) 2.19067 3.79435i 0.0904958 0.156743i
\(587\) −16.6102 28.7697i −0.685577 1.18745i −0.973255 0.229727i \(-0.926217\pi\)
0.287679 0.957727i \(-0.407117\pi\)
\(588\) 0 0
\(589\) −7.09808 + 12.2942i −0.292471 + 0.506575i
\(590\) 4.83013 + 8.36603i 0.198853 + 0.344424i
\(591\) 0 0
\(592\) 4.00000 6.92820i 0.164399 0.284747i
\(593\) −10.7453 + 18.6114i −0.441257 + 0.764279i −0.997783 0.0665510i \(-0.978801\pi\)
0.556526 + 0.830830i \(0.312134\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 9.19615 + 15.9282i 0.376689 + 0.652445i
\(597\) 0 0
\(598\) 14.5211 0.593811
\(599\) −8.39230 −0.342900 −0.171450 0.985193i \(-0.554845\pi\)
−0.171450 + 0.985193i \(0.554845\pi\)
\(600\) 0 0
\(601\) 8.72552 + 15.1130i 0.355921 + 0.616474i 0.987275 0.159021i \(-0.0508338\pi\)
−0.631354 + 0.775495i \(0.717500\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −1.69615 + 2.93782i −0.0690155 + 0.119538i
\(605\) −18.2139 + 31.5474i −0.740500 + 1.28258i
\(606\) 0 0
\(607\) −6.45189 11.1750i −0.261874 0.453580i 0.704866 0.709341i \(-0.251007\pi\)
−0.966740 + 0.255761i \(0.917674\pi\)
\(608\) 0.965926 1.67303i 0.0391735 0.0678504i
\(609\) 0 0
\(610\) 2.86603 + 4.96410i 0.116042 + 0.200991i
\(611\) −11.6603 + 20.1962i −0.471723 + 0.817049i
\(612\) 0 0
\(613\) 19.2224 + 33.2942i 0.776387 + 1.34474i 0.934012 + 0.357242i \(0.116283\pi\)
−0.157625 + 0.987499i \(0.550384\pi\)
\(614\) −29.0793 −1.17355
\(615\) 0 0
\(616\) 0 0
\(617\) 10.8038 18.7128i 0.434947 0.753349i −0.562345 0.826903i \(-0.690101\pi\)
0.997291 + 0.0735534i \(0.0234339\pi\)
\(618\) 0 0
\(619\) −7.27912 + 12.6078i −0.292572 + 0.506750i −0.974417 0.224746i \(-0.927845\pi\)
0.681845 + 0.731497i \(0.261178\pi\)
\(620\) 7.09808 + 12.2942i 0.285066 + 0.493748i
\(621\) 0 0
\(622\) 21.0101 0.842430
\(623\) 0 0
\(624\) 0 0
\(625\) 8.52628 + 14.7679i 0.341051 + 0.590718i
\(626\) −1.79315 −0.0716687
\(627\) 0 0
\(628\) 24.3562 0.971918
\(629\) 50.5055 2.01379
\(630\) 0 0
\(631\) −28.1244 −1.11961 −0.559806 0.828623i \(-0.689125\pi\)
−0.559806 + 0.828623i \(0.689125\pi\)
\(632\) −10.1244 −0.402725
\(633\) 0 0
\(634\) −1.41154 −0.0560595
\(635\) −7.65806 13.2641i −0.303901 0.526371i
\(636\) 0 0
\(637\) 0 0
\(638\) −4.00000 −0.158362
\(639\) 0 0
\(640\) −0.965926 1.67303i −0.0381816 0.0661324i
\(641\) 17.5263 30.3564i 0.692246 1.19901i −0.278854 0.960334i \(-0.589954\pi\)
0.971100 0.238672i \(-0.0767122\pi\)
\(642\) 0 0
\(643\) −6.50266 + 11.2629i −0.256440 + 0.444167i −0.965286 0.261197i \(-0.915883\pi\)
0.708846 + 0.705364i \(0.249216\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 12.1962 0.479851
\(647\) −0.568406 0.984508i −0.0223463 0.0387050i 0.854636 0.519228i \(-0.173780\pi\)
−0.876982 + 0.480523i \(0.840447\pi\)
\(648\) 0 0
\(649\) −13.6617 + 23.6627i −0.536267 + 0.928842i
\(650\) 1.55291 + 2.68973i 0.0609103 + 0.105500i
\(651\) 0 0
\(652\) 10.4641 18.1244i 0.409806 0.709805i
\(653\) −3.33975 5.78461i −0.130694 0.226369i 0.793250 0.608896i \(-0.208387\pi\)
−0.923944 + 0.382527i \(0.875054\pi\)
\(654\) 0 0
\(655\) 0.232051 0.401924i 0.00906698 0.0157045i
\(656\) 2.82843 4.89898i 0.110432 0.191273i
\(657\) 0 0
\(658\) 0 0
\(659\) −7.43782 12.8827i −0.289736 0.501838i 0.684010 0.729472i \(-0.260234\pi\)
−0.973747 + 0.227634i \(0.926901\pi\)
\(660\) 0 0
\(661\) 33.7009 1.31081 0.655406 0.755276i \(-0.272497\pi\)
0.655406 + 0.755276i \(0.272497\pi\)
\(662\) 26.0526 1.01256
\(663\) 0 0
\(664\) −4.94975 8.57321i −0.192087 0.332705i
\(665\) 0 0
\(666\) 0 0
\(667\) −2.16987 + 3.75833i −0.0840178 + 0.145523i
\(668\) −8.05558 + 13.9527i −0.311680 + 0.539845i
\(669\) 0 0
\(670\) 13.7124 + 23.7506i 0.529757 + 0.917567i
\(671\) −8.10634 + 14.0406i −0.312942 + 0.542031i
\(672\) 0 0
\(673\) −11.0885 19.2058i −0.427429 0.740328i 0.569215 0.822189i \(-0.307247\pi\)
−0.996644 + 0.0818605i \(0.973914\pi\)
\(674\) −6.66025 + 11.5359i −0.256543 + 0.444346i
\(675\) 0 0
\(676\) 3.50000 + 6.06218i 0.134615 + 0.233161i
\(677\) −15.8338 −0.608540 −0.304270 0.952586i \(-0.598413\pi\)
−0.304270 + 0.952586i \(0.598413\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 6.09808 10.5622i 0.233851 0.405041i
\(681\) 0 0
\(682\) −20.0764 + 34.7733i −0.768765 + 1.33154i
\(683\) −17.1962 29.7846i −0.657992 1.13968i −0.981135 0.193326i \(-0.938073\pi\)
0.323142 0.946350i \(-0.395261\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0.901924 + 1.56218i 0.0343855 + 0.0595575i
\(689\) −8.00481 −0.304959
\(690\) 0 0
\(691\) 24.2547 0.922691 0.461345 0.887221i \(-0.347367\pi\)
0.461345 + 0.887221i \(0.347367\pi\)
\(692\) 14.5211 0.552008
\(693\) 0 0
\(694\) 33.7128 1.27972
\(695\) 3.53590 0.134124
\(696\) 0 0
\(697\) 35.7128 1.35272
\(698\) 12.3998 + 21.4770i 0.469338 + 0.812916i
\(699\) 0 0
\(700\) 0 0
\(701\) −27.4641 −1.03730 −0.518652 0.854985i \(-0.673566\pi\)
−0.518652 + 0.854985i \(0.673566\pi\)
\(702\) 0 0
\(703\) −7.72741 13.3843i −0.291445 0.504797i
\(704\) 2.73205 4.73205i 0.102968 0.178346i
\(705\) 0 0
\(706\) 9.84873 17.0585i 0.370662 0.642005i
\(707\) 0 0
\(708\) 0 0
\(709\) −29.4641 −1.10655 −0.553274 0.832999i \(-0.686622\pi\)
−0.553274 + 0.832999i \(0.686622\pi\)
\(710\) −10.8147 18.7315i −0.405867 0.702982i
\(711\) 0 0
\(712\) 6.64136 11.5032i 0.248896 0.431100i
\(713\) 21.7816 + 37.7269i 0.815728 + 1.41288i
\(714\) 0 0
\(715\) 12.9282 22.3923i 0.483487 0.837425i
\(716\) 1.09808 + 1.90192i 0.0410370 + 0.0710782i
\(717\) 0 0
\(718\) −0.0358984 + 0.0621778i −0.00133972 + 0.00232046i
\(719\) 9.93666 17.2108i 0.370575 0.641855i −0.619079 0.785329i \(-0.712494\pi\)
0.989654 + 0.143474i \(0.0458274\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 7.63397 + 13.2224i 0.284107 + 0.492088i
\(723\) 0 0
\(724\) −8.72552 −0.324281
\(725\) −0.928203 −0.0344726
\(726\) 0 0
\(727\) −12.0580 20.8850i −0.447206 0.774583i 0.550997 0.834507i \(-0.314247\pi\)
−0.998203 + 0.0599240i \(0.980914\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −9.19615 + 15.9282i −0.340365 + 0.589529i
\(731\) −5.69402 + 9.86233i −0.210601 + 0.364771i
\(732\) 0 0
\(733\) −4.03459 6.98811i −0.149021 0.258112i 0.781845 0.623473i \(-0.214279\pi\)
−0.930866 + 0.365361i \(0.880946\pi\)
\(734\) −7.20977 + 12.4877i −0.266117 + 0.460929i
\(735\) 0 0
\(736\) −2.96410 5.13397i −0.109258 0.189241i
\(737\) −38.7846 + 67.1769i −1.42865 + 2.47449i
\(738\) 0 0
\(739\) 21.9282 + 37.9808i 0.806642 + 1.39714i 0.915177 + 0.403052i \(0.132051\pi\)
−0.108535 + 0.994093i \(0.534616\pi\)
\(740\) −15.4548 −0.568130
\(741\) 0 0
\(742\) 0 0
\(743\) 10.1244 17.5359i 0.371427 0.643330i −0.618359 0.785896i \(-0.712202\pi\)
0.989785 + 0.142566i \(0.0455354\pi\)
\(744\) 0 0
\(745\) 17.7656 30.7709i 0.650881 1.12736i
\(746\) 2.56218 + 4.43782i 0.0938080 + 0.162480i
\(747\) 0 0
\(748\) 34.4959 1.26130
\(749\) 0 0
\(750\) 0 0
\(751\) −6.08846 10.5455i −0.222171 0.384811i 0.733296 0.679910i \(-0.237981\pi\)
−0.955467 + 0.295098i \(0.904648\pi\)
\(752\) 9.52056 0.347179
\(753\) 0 0
\(754\) 1.79315 0.0653027
\(755\) 6.55343 0.238504
\(756\) 0 0
\(757\) −28.2487 −1.02672 −0.513358 0.858174i \(-0.671599\pi\)
−0.513358 + 0.858174i \(0.671599\pi\)
\(758\) 17.5167 0.636234
\(759\) 0 0
\(760\) −3.73205 −0.135376
\(761\) −2.74049 4.74668i −0.0993428 0.172067i 0.812070 0.583560i \(-0.198341\pi\)
−0.911413 + 0.411493i \(0.865007\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −3.19615 −0.115633
\(765\) 0 0
\(766\) −9.76079 16.9062i −0.352672 0.610846i
\(767\) 6.12436 10.6077i 0.221138 0.383022i
\(768\) 0 0
\(769\) 2.20925 3.82654i 0.0796677 0.137989i −0.823439 0.567405i \(-0.807947\pi\)
0.903107 + 0.429416i \(0.141281\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −20.2679 −0.729459
\(773\) −1.81173 3.13801i −0.0651635 0.112867i 0.831603 0.555371i \(-0.187424\pi\)
−0.896767 + 0.442504i \(0.854090\pi\)
\(774\) 0 0
\(775\) −4.65874 + 8.06918i −0.167347 + 0.289853i
\(776\) −1.93185 3.34607i −0.0693494 0.120117i
\(777\) 0 0
\(778\) −14.5622 + 25.2224i −0.522079 + 0.904268i
\(779\) −5.46410 9.46410i −0.195772 0.339087i
\(780\) 0 0
\(781\) 30.5885 52.9808i 1.09454 1.89580i
\(782\) 18.7129 32.4118i 0.669174 1.15904i
\(783\) 0 0
\(784\) 0 0
\(785\) −23.5263 40.7487i −0.839689 1.45438i
\(786\) 0 0
\(787\) 7.90327 0.281721 0.140861 0.990029i \(-0.455013\pi\)
0.140861 + 0.990029i \(0.455013\pi\)
\(788\) 7.66025 0.272885
\(789\) 0 0
\(790\) 9.77938 + 16.9384i 0.347935 + 0.602640i
\(791\) 0 0
\(792\) 0 0
\(793\) 3.63397 6.29423i 0.129046 0.223515i
\(794\) −0.947343 + 1.64085i −0.0336200 + 0.0582315i
\(795\) 0 0
\(796\) 1.55291 + 2.68973i 0.0550416 + 0.0953348i
\(797\) 11.0549 19.1476i 0.391584 0.678244i −0.601074 0.799193i \(-0.705260\pi\)
0.992659 + 0.120949i \(0.0385938\pi\)
\(798\) 0 0
\(799\) 30.0526 + 52.0526i 1.06318 + 1.84149i
\(800\) 0.633975 1.09808i 0.0224144 0.0388229i
\(801\) 0 0
\(802\) 6.52628 + 11.3038i 0.230451 + 0.399153i
\(803\) −52.0213 −1.83579
\(804\) 0 0
\(805\) 0 0
\(806\) 9.00000 15.5885i 0.317011 0.549080i
\(807\) 0 0
\(808\) −0.776457 + 1.34486i −0.0273157 + 0.0473121i
\(809\) −0.660254 1.14359i −0.0232133 0.0402066i 0.854185 0.519969i \(-0.174056\pi\)
−0.877399 + 0.479762i \(0.840723\pi\)
\(810\) 0 0
\(811\) 17.6269 0.618964 0.309482 0.950905i \(-0.399844\pi\)
0.309482 + 0.950905i \(0.399844\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −21.8564 37.8564i −0.766067 1.32687i
\(815\) −40.4302 −1.41621
\(816\) 0 0
\(817\) 3.48477 0.121917
\(818\) −26.2880 −0.919140
\(819\) 0 0
\(820\) −10.9282 −0.381629
\(821\) 41.3205 1.44210 0.721048 0.692885i \(-0.243661\pi\)
0.721048 + 0.692885i \(0.243661\pi\)
\(822\) 0 0
\(823\) 27.3205 0.952333 0.476167 0.879355i \(-0.342026\pi\)
0.476167 + 0.879355i \(0.342026\pi\)
\(824\) −4.19187 7.26054i −0.146031 0.252933i
\(825\) 0 0
\(826\) 0 0
\(827\) 49.2679 1.71321 0.856607 0.515969i \(-0.172568\pi\)
0.856607 + 0.515969i \(0.172568\pi\)
\(828\) 0 0
\(829\) 13.1948 + 22.8541i 0.458274 + 0.793754i 0.998870 0.0475285i \(-0.0151345\pi\)
−0.540596 + 0.841282i \(0.681801\pi\)
\(830\) −9.56218 + 16.5622i −0.331908 + 0.574882i
\(831\) 0 0
\(832\) −1.22474 + 2.12132i −0.0424604 + 0.0735436i
\(833\) 0 0
\(834\) 0 0
\(835\) 31.1244 1.07710
\(836\) −5.27792 9.14162i −0.182541 0.316170i
\(837\) 0 0
\(838\) 2.13990 3.70642i 0.0739217 0.128036i
\(839\) 6.91876 + 11.9837i 0.238862 + 0.413722i 0.960388 0.278666i \(-0.0898922\pi\)
−0.721526 + 0.692388i \(0.756559\pi\)
\(840\) 0 0
\(841\) 14.2321 24.6506i 0.490760 0.850022i
\(842\) 5.02628 + 8.70577i 0.173217 + 0.300021i
\(843\) 0 0
\(844\) −2.36603 + 4.09808i −0.0814420 + 0.141062i
\(845\) 6.76148 11.7112i 0.232602 0.402878i
\(846\) 0 0
\(847\) 0 0
\(848\) 1.63397 + 2.83013i 0.0561109 + 0.0971870i
\(849\) 0 0
\(850\) 8.00481 0.274563
\(851\) −47.4256 −1.62573
\(852\) 0 0
\(853\) 13.9205 + 24.1110i 0.476628 + 0.825544i 0.999641 0.0267804i \(-0.00852547\pi\)
−0.523013 + 0.852325i \(0.675192\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 8.46410 14.6603i 0.289297 0.501077i
\(857\) −16.8690 + 29.2180i −0.576235 + 0.998068i 0.419671 + 0.907676i \(0.362145\pi\)
−0.995906 + 0.0903921i \(0.971188\pi\)
\(858\) 0 0
\(859\) 14.7477 + 25.5438i 0.503185 + 0.871542i 0.999993 + 0.00368192i \(0.00117200\pi\)
−0.496808 + 0.867860i \(0.665495\pi\)
\(860\) 1.74238 3.01790i 0.0594148 0.102909i
\(861\) 0 0
\(862\) 7.39230 + 12.8038i 0.251783 + 0.436101i
\(863\) 5.40192 9.35641i 0.183884 0.318496i −0.759316 0.650722i \(-0.774466\pi\)
0.943200 + 0.332226i \(0.107800\pi\)
\(864\) 0 0
\(865\) −14.0263 24.2942i −0.476908 0.826029i
\(866\) 28.7375 0.976541
\(867\) 0 0
\(868\) 0 0
\(869\) −27.6603 + 47.9090i −0.938310 + 1.62520i
\(870\) 0 0
\(871\) 17.3867 30.1146i 0.589125 1.02039i
\(872\) 10.2942 + 17.8301i 0.348607 + 0.603804i
\(873\) 0 0
\(874\) −11.4524 −0.387384
\(875\) 0 0
\(876\) 0 0
\(877\) 7.02628 + 12.1699i 0.237261 + 0.410947i 0.959927 0.280249i \(-0.0904171\pi\)
−0.722667 + 0.691197i \(0.757084\pi\)
\(878\) −1.31268 −0.0443007
\(879\) 0 0
\(880\) −10.5558 −0.355837
\(881\) −24.9754 −0.841442 −0.420721 0.907190i \(-0.638223\pi\)
−0.420721 + 0.907190i \(0.638223\pi\)
\(882\) 0 0
\(883\) −10.2487 −0.344897 −0.172448 0.985019i \(-0.555168\pi\)
−0.172448 + 0.985019i \(0.555168\pi\)
\(884\) −15.4641 −0.520114
\(885\) 0 0
\(886\) −14.9808 −0.503289
\(887\) 23.2838 + 40.3286i 0.781792 + 1.35410i 0.930897 + 0.365282i \(0.119027\pi\)
−0.149105 + 0.988821i \(0.547639\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −25.6603 −0.860134
\(891\) 0 0
\(892\) 10.3664 + 17.9551i 0.347092 + 0.601180i
\(893\) 9.19615 15.9282i 0.307738 0.533017i
\(894\) 0 0
\(895\) 2.12132 3.67423i 0.0709079 0.122816i
\(896\) 0 0
\(897\) 0 0
\(898\) −17.7846 −0.593480
\(899\) 2.68973 + 4.65874i 0.0897074 + 0.155378i
\(900\) 0 0
\(901\) −10.3156 + 17.8671i −0.343662 + 0.595241i
\(902\) −15.4548 26.7685i −0.514589 0.891294i
\(903\) 0 0
\(904\) 1.33013 2.30385i 0.0442394 0.0766248i
\(905\) 8.42820 + 14.5981i 0.280163 + 0.485256i
\(906\) 0 0
\(907\) −9.56218 + 16.5622i −0.317507 + 0.549938i −0.979967 0.199159i \(-0.936179\pi\)
0.662460 + 0.749097i \(0.269512\pi\)
\(908\) 0.448288 0.776457i 0.0148770 0.0257676i
\(909\) 0 0
\(910\) 0 0
\(911\) −6.89230 11.9378i −0.228352 0.395518i 0.728968 0.684548i \(-0.240000\pi\)
−0.957320 + 0.289030i \(0.906667\pi\)
\(912\) 0 0
\(913\) −54.0918 −1.79018
\(914\) −25.7321 −0.851141
\(915\) 0 0
\(916\) 9.02150 + 15.6257i 0.298079 + 0.516288i
\(917\) 0 0
\(918\) 0 0
\(919\) 28.1865 48.8205i 0.929788 1.61044i 0.146114 0.989268i \(-0.453323\pi\)
0.783674 0.621172i \(-0.213343\pi\)
\(920\) −5.72620 + 9.91808i −0.188787 + 0.326989i
\(921\) 0 0
\(922\) 10.9162 + 18.9074i 0.359506 + 0.622682i
\(923\) −13.7124 + 23.7506i −0.451350 + 0.781761i
\(924\) 0 0
\(925\) −5.07180 8.78461i −0.166760 0.288836i
\(926\) 5.33013 9.23205i 0.175159 0.303384i
\(927\) 0 0
\(928\) −0.366025 0.633975i −0.0120154 0.0208112i
\(929\) 35.1523 1.15331 0.576654 0.816988i \(-0.304358\pi\)
0.576654 + 0.816988i \(0.304358\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −9.69615 + 16.7942i −0.317608 + 0.550113i
\(933\) 0 0
\(934\) −2.39872 + 4.15471i −0.0784886 + 0.135946i
\(935\) −33.3205 57.7128i −1.08970 1.88741i
\(936\) 0 0
\(937\) 21.9711 0.717764 0.358882 0.933383i \(-0.383158\pi\)
0.358882 + 0.933383i \(0.383158\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −9.19615 15.9282i −0.299945 0.519521i
\(941\) 36.3535 1.18509 0.592544 0.805538i \(-0.298124\pi\)
0.592544 + 0.805538i \(0.298124\pi\)
\(942\) 0 0
\(943\) −33.5350 −1.09205
\(944\) −5.00052 −0.162753
\(945\) 0 0
\(946\) 9.85641 0.320459
\(947\) 18.3397 0.595962 0.297981 0.954572i \(-0.403687\pi\)
0.297981 + 0.954572i \(0.403687\pi\)
\(948\) 0 0
\(949\) 23.3205 0.757016
\(950\) −1.22474 2.12132i −0.0397360 0.0688247i
\(951\) 0 0
\(952\) 0 0
\(953\) 31.7128 1.02728 0.513639 0.858006i \(-0.328297\pi\)
0.513639 + 0.858006i \(0.328297\pi\)
\(954\) 0 0
\(955\) 3.08725 + 5.34727i 0.0999009 + 0.173034i
\(956\) −2.76795 + 4.79423i −0.0895219 + 0.155056i
\(957\) 0 0
\(958\) 8.05558 13.9527i 0.260264 0.450790i
\(959\) 0 0
\(960\) 0 0
\(961\) 23.0000 0.741935
\(962\) 9.79796 + 16.9706i 0.315899 + 0.547153i
\(963\) 0 0
\(964\) −6.36396 + 11.0227i −0.204969 + 0.355017i
\(965\) 19.5773 + 33.9089i 0.630217 + 1.09157i
\(966\) 0 0
\(967\) −3.23205 + 5.59808i −0.103936 + 0.180022i −0.913303 0.407281i \(-0.866477\pi\)
0.809367 + 0.587303i \(0.199810\pi\)
\(968\) −9.42820 16.3301i −0.303034 0.524870i
\(969\) 0 0
\(970\) −3.73205 + 6.46410i −0.119829 + 0.207550i
\(971\) −6.52124 + 11.2951i −0.209277 + 0.362478i −0.951487 0.307689i \(-0.900444\pi\)
0.742210 + 0.670167i \(0.233778\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −1.16025 2.00962i −0.0371769 0.0643923i
\(975\) 0 0
\(976\) −2.96713 −0.0949754
\(977\) 43.8564 1.40309 0.701545 0.712625i \(-0.252494\pi\)
0.701545 + 0.712625i \(0.252494\pi\)
\(978\) 0 0
\(979\) −36.2891 62.8545i −1.15980 2.00884i
\(980\) 0 0
\(981\) 0 0
\(982\) −9.46410 + 16.3923i −0.302012 + 0.523099i
\(983\) 27.3741 47.4133i 0.873098 1.51225i 0.0143228 0.999897i \(-0.495441\pi\)
0.858775 0.512353i \(-0.171226\pi\)
\(984\) 0 0
\(985\) −7.39924 12.8159i −0.235759 0.408347i
\(986\) 2.31079 4.00240i 0.0735905 0.127463i
\(987\) 0 0
\(988\) 2.36603 + 4.09808i 0.0752733 + 0.130377i
\(989\) 5.34679 9.26091i 0.170018 0.294480i
\(990\) 0 0
\(991\) −24.6603 42.7128i −0.783359 1.35682i −0.929975 0.367624i \(-0.880171\pi\)
0.146616 0.989194i \(-0.453162\pi\)
\(992\) −7.34847 −0.233314
\(993\) 0 0
\(994\) 0 0
\(995\) 3.00000 5.19615i 0.0951064 0.164729i
\(996\) 0 0
\(997\) −8.46670 + 14.6648i −0.268143 + 0.464437i −0.968382 0.249471i \(-0.919743\pi\)
0.700239 + 0.713908i \(0.253077\pi\)
\(998\) 13.6603 + 23.6603i 0.432408 + 0.748952i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.e.t.1549.1 8
3.2 odd 2 882.2.e.q.373.1 8
7.2 even 3 2646.2.f.q.1765.1 8
7.3 odd 6 2646.2.h.q.361.1 8
7.4 even 3 2646.2.h.q.361.4 8
7.5 odd 6 2646.2.f.q.1765.4 8
7.6 odd 2 inner 2646.2.e.t.1549.4 8
9.2 odd 6 882.2.h.t.79.3 8
9.7 even 3 2646.2.h.q.667.4 8
21.2 odd 6 882.2.f.s.589.3 yes 8
21.5 even 6 882.2.f.s.589.2 yes 8
21.11 odd 6 882.2.h.t.67.3 8
21.17 even 6 882.2.h.t.67.2 8
21.20 even 2 882.2.e.q.373.4 8
63.2 odd 6 882.2.f.s.295.4 yes 8
63.5 even 6 7938.2.a.cj.1.4 4
63.11 odd 6 882.2.e.q.655.1 8
63.16 even 3 2646.2.f.q.883.1 8
63.20 even 6 882.2.h.t.79.2 8
63.23 odd 6 7938.2.a.cj.1.1 4
63.25 even 3 inner 2646.2.e.t.2125.1 8
63.34 odd 6 2646.2.h.q.667.1 8
63.38 even 6 882.2.e.q.655.4 8
63.40 odd 6 7938.2.a.co.1.1 4
63.47 even 6 882.2.f.s.295.1 8
63.52 odd 6 inner 2646.2.e.t.2125.4 8
63.58 even 3 7938.2.a.co.1.4 4
63.61 odd 6 2646.2.f.q.883.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.q.373.1 8 3.2 odd 2
882.2.e.q.373.4 8 21.20 even 2
882.2.e.q.655.1 8 63.11 odd 6
882.2.e.q.655.4 8 63.38 even 6
882.2.f.s.295.1 8 63.47 even 6
882.2.f.s.295.4 yes 8 63.2 odd 6
882.2.f.s.589.2 yes 8 21.5 even 6
882.2.f.s.589.3 yes 8 21.2 odd 6
882.2.h.t.67.2 8 21.17 even 6
882.2.h.t.67.3 8 21.11 odd 6
882.2.h.t.79.2 8 63.20 even 6
882.2.h.t.79.3 8 9.2 odd 6
2646.2.e.t.1549.1 8 1.1 even 1 trivial
2646.2.e.t.1549.4 8 7.6 odd 2 inner
2646.2.e.t.2125.1 8 63.25 even 3 inner
2646.2.e.t.2125.4 8 63.52 odd 6 inner
2646.2.f.q.883.1 8 63.16 even 3
2646.2.f.q.883.4 8 63.61 odd 6
2646.2.f.q.1765.1 8 7.2 even 3
2646.2.f.q.1765.4 8 7.5 odd 6
2646.2.h.q.361.1 8 7.3 odd 6
2646.2.h.q.361.4 8 7.4 even 3
2646.2.h.q.667.1 8 63.34 odd 6
2646.2.h.q.667.4 8 9.7 even 3
7938.2.a.cj.1.1 4 63.23 odd 6
7938.2.a.cj.1.4 4 63.5 even 6
7938.2.a.co.1.1 4 63.40 odd 6
7938.2.a.co.1.4 4 63.58 even 3