Properties

Label 2664.1.cy.a.1675.4
Level 26642664
Weight 11
Character 2664.1675
Analytic conductor 1.3301.330
Analytic rank 00
Dimension 88
Projective image S4S_{4}
CM/RM no
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2664,1,Mod(1099,2664)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2664, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 0, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2664.1099");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2664=233237 2664 = 2^{3} \cdot 3^{2} \cdot 37
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2664.cy (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.329509193651.32950919365
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ24)\Q(\zeta_{24})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: S4S_{4}
Projective field: Galois closure of 4.2.262848.3

Embedding invariants

Embedding label 1675.4
Root 0.258819+0.965926i0.258819 + 0.965926i of defining polynomial
Character χ\chi == 2664.1675
Dual form 2664.1.cy.a.1099.4

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.9659260.258819i)q2+(0.8660250.500000i)q4+(1.22474+0.707107i)q5+(0.866025+0.500000i)q7+(0.7071070.707107i)q8+(1.00000+1.00000i)q101.41421q11+(0.866025+0.500000i)q13+(0.707107+0.707107i)q14+(0.5000000.866025i)q16+(0.707107+1.22474i)q17+(1.000001.73205i)q19+(0.707107+1.22474i)q20+(1.36603+0.366025i)q22+(0.5000000.866025i)q25+(0.707107+0.707107i)q26+(0.500000+0.866025i)q28+1.41421iq29+1.00000iq31+(0.2588190.965926i)q32+(0.366025+1.36603i)q34+(0.7071071.22474i)q351.00000iq37+(1.414211.41421i)q38+(0.366025+1.36603i)q40+1.00000q43+(1.22474+0.707107i)q44+(0.2588190.965926i)q50+(0.500000+0.866025i)q52+(1.224740.707107i)q53+(1.732051.00000i)q55+(0.258819+0.965926i)q56+(0.366025+1.36603i)q58+(0.258819+0.965926i)q621.00000iq64+(0.7071071.22474i)q65+(0.500000+0.866025i)q67+1.41421iq68+(0.3660251.36603i)q70+1.00000q73+(0.2588190.965926i)q74+(1.732051.00000i)q76+(1.224740.707107i)q77+(0.866025+0.500000i)q79+1.41421iq80+(0.7071071.22474i)q832.00000iq85+(0.9659260.258819i)q86+(1.00000+1.00000i)q88+(0.707107+1.22474i)q89+(0.5000000.866025i)q91+(2.44949+1.41421i)q951.00000q97+O(q100)q+(0.965926 - 0.258819i) q^{2} +(0.866025 - 0.500000i) q^{4} +(-1.22474 + 0.707107i) q^{5} +(-0.866025 + 0.500000i) q^{7} +(0.707107 - 0.707107i) q^{8} +(-1.00000 + 1.00000i) q^{10} -1.41421 q^{11} +(-0.866025 + 0.500000i) q^{13} +(-0.707107 + 0.707107i) q^{14} +(0.500000 - 0.866025i) q^{16} +(-0.707107 + 1.22474i) q^{17} +(-1.00000 - 1.73205i) q^{19} +(-0.707107 + 1.22474i) q^{20} +(-1.36603 + 0.366025i) q^{22} +(0.500000 - 0.866025i) q^{25} +(-0.707107 + 0.707107i) q^{26} +(-0.500000 + 0.866025i) q^{28} +1.41421i q^{29} +1.00000i q^{31} +(0.258819 - 0.965926i) q^{32} +(-0.366025 + 1.36603i) q^{34} +(0.707107 - 1.22474i) q^{35} -1.00000i q^{37} +(-1.41421 - 1.41421i) q^{38} +(-0.366025 + 1.36603i) q^{40} +1.00000 q^{43} +(-1.22474 + 0.707107i) q^{44} +(0.258819 - 0.965926i) q^{50} +(-0.500000 + 0.866025i) q^{52} +(-1.22474 - 0.707107i) q^{53} +(1.73205 - 1.00000i) q^{55} +(-0.258819 + 0.965926i) q^{56} +(0.366025 + 1.36603i) q^{58} +(0.258819 + 0.965926i) q^{62} -1.00000i q^{64} +(0.707107 - 1.22474i) q^{65} +(0.500000 + 0.866025i) q^{67} +1.41421i q^{68} +(0.366025 - 1.36603i) q^{70} +1.00000 q^{73} +(-0.258819 - 0.965926i) q^{74} +(-1.73205 - 1.00000i) q^{76} +(1.22474 - 0.707107i) q^{77} +(-0.866025 + 0.500000i) q^{79} +1.41421i q^{80} +(0.707107 - 1.22474i) q^{83} -2.00000i q^{85} +(0.965926 - 0.258819i) q^{86} +(-1.00000 + 1.00000i) q^{88} +(-0.707107 + 1.22474i) q^{89} +(0.500000 - 0.866025i) q^{91} +(2.44949 + 1.41421i) q^{95} -1.00000 q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q10+4q168q194q22+4q254q28+4q34+4q40+8q434q524q58+4q674q70+8q738q88+4q918q97+O(q100) 8 q - 8 q^{10} + 4 q^{16} - 8 q^{19} - 4 q^{22} + 4 q^{25} - 4 q^{28} + 4 q^{34} + 4 q^{40} + 8 q^{43} - 4 q^{52} - 4 q^{58} + 4 q^{67} - 4 q^{70} + 8 q^{73} - 8 q^{88} + 4 q^{91} - 8 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2664Z)×\left(\mathbb{Z}/2664\mathbb{Z}\right)^\times.

nn 12971297 13331333 19991999 23692369
χ(n)\chi(n) e(23)e\left(\frac{2}{3}\right) 1-1 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.965926 0.258819i 0.965926 0.258819i
33 0 0
44 0.866025 0.500000i 0.866025 0.500000i
55 −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i 0.916667π-0.916667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
66 0 0
77 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
88 0.707107 0.707107i 0.707107 0.707107i
99 0 0
1010 −1.00000 + 1.00000i −1.00000 + 1.00000i
1111 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
1212 0 0
1313 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
1414 −0.707107 + 0.707107i −0.707107 + 0.707107i
1515 0 0
1616 0.500000 0.866025i 0.500000 0.866025i
1717 −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
1818 0 0
1919 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
2020 −0.707107 + 1.22474i −0.707107 + 1.22474i
2121 0 0
2222 −1.36603 + 0.366025i −1.36603 + 0.366025i
2323 0 0 1.00000 00
−1.00000 π\pi
2424 0 0
2525 0.500000 0.866025i 0.500000 0.866025i
2626 −0.707107 + 0.707107i −0.707107 + 0.707107i
2727 0 0
2828 −0.500000 + 0.866025i −0.500000 + 0.866025i
2929 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
3030 0 0
3131 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
3232 0.258819 0.965926i 0.258819 0.965926i
3333 0 0
3434 −0.366025 + 1.36603i −0.366025 + 1.36603i
3535 0.707107 1.22474i 0.707107 1.22474i
3636 0 0
3737 1.00000i 1.00000i
3838 −1.41421 1.41421i −1.41421 1.41421i
3939 0 0
4040 −0.366025 + 1.36603i −0.366025 + 1.36603i
4141 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
4242 0 0
4343 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4444 −1.22474 + 0.707107i −1.22474 + 0.707107i
4545 0 0
4646 0 0
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 0 0
5050 0.258819 0.965926i 0.258819 0.965926i
5151 0 0
5252 −0.500000 + 0.866025i −0.500000 + 0.866025i
5353 −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i 0.583333π-0.583333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
5454 0 0
5555 1.73205 1.00000i 1.73205 1.00000i
5656 −0.258819 + 0.965926i −0.258819 + 0.965926i
5757 0 0
5858 0.366025 + 1.36603i 0.366025 + 1.36603i
5959 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
6060 0 0
6161 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6262 0.258819 + 0.965926i 0.258819 + 0.965926i
6363 0 0
6464 1.00000i 1.00000i
6565 0.707107 1.22474i 0.707107 1.22474i
6666 0 0
6767 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
6868 1.41421i 1.41421i
6969 0 0
7070 0.366025 1.36603i 0.366025 1.36603i
7171 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
7272 0 0
7373 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
7474 −0.258819 0.965926i −0.258819 0.965926i
7575 0 0
7676 −1.73205 1.00000i −1.73205 1.00000i
7777 1.22474 0.707107i 1.22474 0.707107i
7878 0 0
7979 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
8080 1.41421i 1.41421i
8181 0 0
8282 0 0
8383 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i 0.583333π-0.583333\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
8484 0 0
8585 2.00000i 2.00000i
8686 0.965926 0.258819i 0.965926 0.258819i
8787 0 0
8888 −1.00000 + 1.00000i −1.00000 + 1.00000i
8989 −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
9090 0 0
9191 0.500000 0.866025i 0.500000 0.866025i
9292 0 0
9393 0 0
9494 0 0
9595 2.44949 + 1.41421i 2.44949 + 1.41421i
9696 0 0
9797 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
9898 0 0
9999 0 0
100100 1.00000i 1.00000i
101101 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 −0.258819 + 0.965926i −0.258819 + 0.965926i
105105 0 0
106106 −1.36603 0.366025i −1.36603 0.366025i
107107 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
108108 0 0
109109 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
110110 1.41421 1.41421i 1.41421 1.41421i
111111 0 0
112112 1.00000i 1.00000i
113113 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
114114 0 0
115115 0 0
116116 0.707107 + 1.22474i 0.707107 + 1.22474i
117117 0 0
118118 0 0
119119 1.41421i 1.41421i
120120 0 0
121121 1.00000 1.00000
122122 0 0
123123 0 0
124124 0.500000 + 0.866025i 0.500000 + 0.866025i
125125 0 0
126126 0 0
127127 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
128128 −0.258819 0.965926i −0.258819 0.965926i
129129 0 0
130130 0.366025 1.36603i 0.366025 1.36603i
131131 −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
132132 0 0
133133 1.73205 + 1.00000i 1.73205 + 1.00000i
134134 0.707107 + 0.707107i 0.707107 + 0.707107i
135135 0 0
136136 0.366025 + 1.36603i 0.366025 + 1.36603i
137137 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
138138 0 0
139139 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
140140 1.41421i 1.41421i
141141 0 0
142142 0 0
143143 1.22474 0.707107i 1.22474 0.707107i
144144 0 0
145145 −1.00000 1.73205i −1.00000 1.73205i
146146 0.965926 0.258819i 0.965926 0.258819i
147147 0 0
148148 −0.500000 0.866025i −0.500000 0.866025i
149149 0 0 1.00000 00
−1.00000 π\pi
150150 0 0
151151 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
152152 −1.93185 0.517638i −1.93185 0.517638i
153153 0 0
154154 1.00000 1.00000i 1.00000 1.00000i
155155 −0.707107 1.22474i −0.707107 1.22474i
156156 0 0
157157 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
158158 −0.707107 + 0.707107i −0.707107 + 0.707107i
159159 0 0
160160 0.366025 + 1.36603i 0.366025 + 1.36603i
161161 0 0
162162 0 0
163163 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
164164 0 0
165165 0 0
166166 0.366025 1.36603i 0.366025 1.36603i
167167 1.22474 0.707107i 1.22474 0.707107i 0.258819 0.965926i 0.416667π-0.416667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
168168 0 0
169169 0 0
170170 −0.517638 1.93185i −0.517638 1.93185i
171171 0 0
172172 0.866025 0.500000i 0.866025 0.500000i
173173 −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i 0.583333π-0.583333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
174174 0 0
175175 1.00000i 1.00000i
176176 −0.707107 + 1.22474i −0.707107 + 1.22474i
177177 0 0
178178 −0.366025 + 1.36603i −0.366025 + 1.36603i
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
182182 0.258819 0.965926i 0.258819 0.965926i
183183 0 0
184184 0 0
185185 0.707107 + 1.22474i 0.707107 + 1.22474i
186186 0 0
187187 1.00000 1.73205i 1.00000 1.73205i
188188 0 0
189189 0 0
190190 2.73205 + 0.732051i 2.73205 + 0.732051i
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
194194 −0.965926 + 0.258819i −0.965926 + 0.258819i
195195 0 0
196196 0 0
197197 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
198198 0 0
199199 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
200200 −0.258819 0.965926i −0.258819 0.965926i
201201 0 0
202202 0.366025 + 1.36603i 0.366025 + 1.36603i
203203 −0.707107 1.22474i −0.707107 1.22474i
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 1.00000i 1.00000i
209209 1.41421 + 2.44949i 1.41421 + 2.44949i
210210 0 0
211211 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
212212 −1.41421 −1.41421
213213 0 0
214214 0 0
215215 −1.22474 + 0.707107i −1.22474 + 0.707107i
216216 0 0
217217 −0.500000 0.866025i −0.500000 0.866025i
218218 0.965926 + 0.258819i 0.965926 + 0.258819i
219219 0 0
220220 1.00000 1.73205i 1.00000 1.73205i
221221 1.41421i 1.41421i
222222 0 0
223223 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
224224 0.258819 + 0.965926i 0.258819 + 0.965926i
225225 0 0
226226 0 0
227227 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
228228 0 0
229229 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
230230 0 0
231231 0 0
232232 1.00000 + 1.00000i 1.00000 + 1.00000i
233233 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 −0.366025 1.36603i −0.366025 1.36603i
239239 −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i 0.583333π-0.583333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
240240 0 0
241241 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
242242 0.965926 0.258819i 0.965926 0.258819i
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 1.73205 + 1.00000i 1.73205 + 1.00000i
248248 0.707107 + 0.707107i 0.707107 + 0.707107i
249249 0 0
250250 0 0
251251 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
252252 0 0
253253 0 0
254254 −0.965926 0.258819i −0.965926 0.258819i
255255 0 0
256256 −0.500000 0.866025i −0.500000 0.866025i
257257 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
258258 0 0
259259 0.500000 + 0.866025i 0.500000 + 0.866025i
260260 1.41421i 1.41421i
261261 0 0
262262 −0.366025 + 1.36603i −0.366025 + 1.36603i
263263 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
264264 0 0
265265 2.00000 2.00000
266266 1.93185 + 0.517638i 1.93185 + 0.517638i
267267 0 0
268268 0.866025 + 0.500000i 0.866025 + 0.500000i
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
272272 0.707107 + 1.22474i 0.707107 + 1.22474i
273273 0 0
274274 0 0
275275 −0.707107 + 1.22474i −0.707107 + 1.22474i
276276 0 0
277277 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
278278 −0.258819 + 0.965926i −0.258819 + 0.965926i
279279 0 0
280280 −0.366025 1.36603i −0.366025 1.36603i
281281 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i 0.583333π-0.583333\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
282282 0 0
283283 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
284284 0 0
285285 0 0
286286 1.00000 1.00000i 1.00000 1.00000i
287287 0 0
288288 0 0
289289 −0.500000 0.866025i −0.500000 0.866025i
290290 −1.41421 1.41421i −1.41421 1.41421i
291291 0 0
292292 0.866025 0.500000i 0.866025 0.500000i
293293 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
294294 0 0
295295 0 0
296296 −0.707107 0.707107i −0.707107 0.707107i
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 −0.866025 + 0.500000i −0.866025 + 0.500000i
302302 0.707107 0.707107i 0.707107 0.707107i
303303 0 0
304304 −2.00000 −2.00000
305305 0 0
306306 0 0
307307 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
308308 0.707107 1.22474i 0.707107 1.22474i
309309 0 0
310310 −1.00000 1.00000i −1.00000 1.00000i
311311 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i 0.0833333π-0.0833333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
312312 0 0
313313 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
314314 0.965926 + 0.258819i 0.965926 + 0.258819i
315315 0 0
316316 −0.500000 + 0.866025i −0.500000 + 0.866025i
317317 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
318318 0 0
319319 2.00000i 2.00000i
320320 0.707107 + 1.22474i 0.707107 + 1.22474i
321321 0 0
322322 0 0
323323 2.82843 2.82843
324324 0 0
325325 1.00000i 1.00000i
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
332332 1.41421i 1.41421i
333333 0 0
334334 1.00000 1.00000i 1.00000 1.00000i
335335 −1.22474 0.707107i −1.22474 0.707107i
336336 0 0
337337 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
338338 0 0
339339 0 0
340340 −1.00000 1.73205i −1.00000 1.73205i
341341 1.41421i 1.41421i
342342 0 0
343343 1.00000i 1.00000i
344344 0.707107 0.707107i 0.707107 0.707107i
345345 0 0
346346 −1.36603 0.366025i −1.36603 0.366025i
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
350350 0.258819 + 0.965926i 0.258819 + 0.965926i
351351 0 0
352352 −0.366025 + 1.36603i −0.366025 + 1.36603i
353353 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
354354 0 0
355355 0 0
356356 1.41421i 1.41421i
357357 0 0
358358 0 0
359359 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
360360 0 0
361361 −1.50000 + 2.59808i −1.50000 + 2.59808i
362362 −0.707107 + 0.707107i −0.707107 + 0.707107i
363363 0 0
364364 1.00000i 1.00000i
365365 −1.22474 + 0.707107i −1.22474 + 0.707107i
366366 0 0
367367 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
368368 0 0
369369 0 0
370370 1.00000 + 1.00000i 1.00000 + 1.00000i
371371 1.41421 1.41421
372372 0 0
373373 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
374374 0.517638 1.93185i 0.517638 1.93185i
375375 0 0
376376 0 0
377377 −0.707107 1.22474i −0.707107 1.22474i
378378 0 0
379379 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
380380 2.82843 2.82843
381381 0 0
382382 0 0
383383 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
384384 0 0
385385 −1.00000 + 1.73205i −1.00000 + 1.73205i
386386 −0.965926 + 0.258819i −0.965926 + 0.258819i
387387 0 0
388388 −0.866025 + 0.500000i −0.866025 + 0.500000i
389389 −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i 0.916667π-0.916667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0.707107 1.22474i 0.707107 1.22474i
396396 0 0
397397 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
398398 −0.258819 0.965926i −0.258819 0.965926i
399399 0 0
400400 −0.500000 0.866025i −0.500000 0.866025i
401401 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
402402 0 0
403403 −0.500000 0.866025i −0.500000 0.866025i
404404 0.707107 + 1.22474i 0.707107 + 1.22474i
405405 0 0
406406 −1.00000 1.00000i −1.00000 1.00000i
407407 1.41421i 1.41421i
408408 0 0
409409 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 2.00000i 2.00000i
416416 0.258819 + 0.965926i 0.258819 + 0.965926i
417417 0 0
418418 2.00000 + 2.00000i 2.00000 + 2.00000i
419419 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
420420 0 0
421421 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
422422 0.965926 0.258819i 0.965926 0.258819i
423423 0 0
424424 −1.36603 + 0.366025i −1.36603 + 0.366025i
425425 0.707107 + 1.22474i 0.707107 + 1.22474i
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 −1.00000 + 1.00000i −1.00000 + 1.00000i
431431 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
432432 0 0
433433 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
434434 −0.707107 0.707107i −0.707107 0.707107i
435435 0 0
436436 1.00000 1.00000
437437 0 0
438438 0 0
439439 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
440440 0.517638 1.93185i 0.517638 1.93185i
441441 0 0
442442 −0.366025 1.36603i −0.366025 1.36603i
443443 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
444444 0 0
445445 2.00000i 2.00000i
446446 −0.258819 0.965926i −0.258819 0.965926i
447447 0 0
448448 0.500000 + 0.866025i 0.500000 + 0.866025i
449449 −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i 0.916667π-0.916667\pi
0.258819 0.965926i 0.416667π-0.416667\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 1.41421i 1.41421i
456456 0 0
457457 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
458458 −0.707107 + 0.707107i −0.707107 + 0.707107i
459459 0 0
460460 0 0
461461 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
462462 0 0
463463 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
464464 1.22474 + 0.707107i 1.22474 + 0.707107i
465465 0 0
466466 1.36603 0.366025i 1.36603 0.366025i
467467 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
468468 0 0
469469 −0.866025 0.500000i −0.866025 0.500000i
470470 0 0
471471 0 0
472472 0 0
473473 −1.41421 −1.41421
474474 0 0
475475 −2.00000 −2.00000
476476 −0.707107 1.22474i −0.707107 1.22474i
477477 0 0
478478 −1.36603 0.366025i −1.36603 0.366025i
479479 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
480480 0 0
481481 0.500000 + 0.866025i 0.500000 + 0.866025i
482482 0.707107 + 0.707107i 0.707107 + 0.707107i
483483 0 0
484484 0.866025 0.500000i 0.866025 0.500000i
485485 1.22474 0.707107i 1.22474 0.707107i
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
492492 0 0
493493 −1.73205 1.00000i −1.73205 1.00000i
494494 1.93185 + 0.517638i 1.93185 + 0.517638i
495495 0 0
496496 0.866025 + 0.500000i 0.866025 + 0.500000i
497497 0 0
498498 0 0
499499 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
500500 0 0
501501 0 0
502502 −1.36603 + 0.366025i −1.36603 + 0.366025i
503503 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
504504 0 0
505505 −1.00000 1.73205i −1.00000 1.73205i
506506 0 0
507507 0 0
508508 −1.00000 −1.00000
509509 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
510510 0 0
511511 −0.866025 + 0.500000i −0.866025 + 0.500000i
512512 −0.707107 0.707107i −0.707107 0.707107i
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0.707107 + 0.707107i 0.707107 + 0.707107i
519519 0 0
520520 −0.366025 1.36603i −0.366025 1.36603i
521521 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
522522 0 0
523523 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
524524 1.41421i 1.41421i
525525 0 0
526526 0 0
527527 −1.22474 0.707107i −1.22474 0.707107i
528528 0 0
529529 1.00000 1.00000
530530 1.93185 0.517638i 1.93185 0.517638i
531531 0 0
532532 2.00000 2.00000
533533 0 0
534534 0 0
535535 0 0
536536 0.965926 + 0.258819i 0.965926 + 0.258819i
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
542542 −0.965926 0.258819i −0.965926 0.258819i
543543 0 0
544544 1.00000 + 1.00000i 1.00000 + 1.00000i
545545 −1.41421 −1.41421
546546 0 0
547547 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
548548 0 0
549549 0 0
550550 −0.366025 + 1.36603i −0.366025 + 1.36603i
551551 2.44949 1.41421i 2.44949 1.41421i
552552 0 0
553553 0.500000 0.866025i 0.500000 0.866025i
554554 0 0
555555 0 0
556556 1.00000i 1.00000i
557557 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i 0.0833333π-0.0833333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
558558 0 0
559559 −0.866025 + 0.500000i −0.866025 + 0.500000i
560560 −0.707107 1.22474i −0.707107 1.22474i
561561 0 0
562562 0.366025 1.36603i 0.366025 1.36603i
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 0 0
566566 0.707107 + 0.707107i 0.707107 + 0.707107i
567567 0 0
568568 0 0
569569 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
570570 0 0
571571 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
572572 0.707107 1.22474i 0.707107 1.22474i
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
578578 −0.707107 0.707107i −0.707107 0.707107i
579579 0 0
580580 −1.73205 1.00000i −1.73205 1.00000i
581581 1.41421i 1.41421i
582582 0 0
583583 1.73205 + 1.00000i 1.73205 + 1.00000i
584584 0.707107 0.707107i 0.707107 0.707107i
585585 0 0
586586 0 0
587587 0.707107 + 1.22474i 0.707107 + 1.22474i 0.965926 + 0.258819i 0.0833333π0.0833333\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
588588 0 0
589589 1.73205 1.00000i 1.73205 1.00000i
590590 0 0
591591 0 0
592592 −0.866025 0.500000i −0.866025 0.500000i
593593 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
594594 0 0
595595 1.00000 + 1.73205i 1.00000 + 1.73205i
596596 0 0
597597 0 0
598598 0 0
599599 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
600600 0 0
601601 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
602602 −0.707107 + 0.707107i −0.707107 + 0.707107i
603603 0 0
604604 0.500000 0.866025i 0.500000 0.866025i
605605 −1.22474 + 0.707107i −1.22474 + 0.707107i
606606 0 0
607607 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
608608 −1.93185 + 0.517638i −1.93185 + 0.517638i
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
614614 −0.965926 + 0.258819i −0.965926 + 0.258819i
615615 0 0
616616 0.366025 1.36603i 0.366025 1.36603i
617617 −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
618618 0 0
619619 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
620620 −1.22474 0.707107i −1.22474 0.707107i
621621 0 0
622622 1.36603 + 0.366025i 1.36603 + 0.366025i
623623 1.41421i 1.41421i
624624 0 0
625625 0.500000 + 0.866025i 0.500000 + 0.866025i
626626 −0.258819 + 0.965926i −0.258819 + 0.965926i
627627 0 0
628628 1.00000 1.00000
629629 1.22474 + 0.707107i 1.22474 + 0.707107i
630630 0 0
631631 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
632632 −0.258819 + 0.965926i −0.258819 + 0.965926i
633633 0 0
634634 0 0
635635 1.41421 1.41421
636636 0 0
637637 0 0
638638 −0.517638 1.93185i −0.517638 1.93185i
639639 0 0
640640 1.00000 + 1.00000i 1.00000 + 1.00000i
641641 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
642642 0 0
643643 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
644644 0 0
645645 0 0
646646 2.73205 0.732051i 2.73205 0.732051i
647647 −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i 0.916667π-0.916667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
648648 0 0
649649 0 0
650650 0.258819 + 0.965926i 0.258819 + 0.965926i
651651 0 0
652652 0 0
653653 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
654654 0 0
655655 2.00000i 2.00000i
656656 0 0
657657 0 0
658658 0 0
659659 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
660660 0 0
661661 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
662662 −0.258819 + 0.965926i −0.258819 + 0.965926i
663663 0 0
664664 −0.366025 1.36603i −0.366025 1.36603i
665665 −2.82843 −2.82843
666666 0 0
667667 0 0
668668 0.707107 1.22474i 0.707107 1.22474i
669669 0 0
670670 −1.36603 0.366025i −1.36603 0.366025i
671671 0 0
672672 0 0
673673 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
674674 −0.707107 0.707107i −0.707107 0.707107i
675675 0 0
676676 0 0
677677 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
678678 0 0
679679 0.866025 0.500000i 0.866025 0.500000i
680680 −1.41421 1.41421i −1.41421 1.41421i
681681 0 0
682682 −0.366025 1.36603i −0.366025 1.36603i
683683 −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
684684 0 0
685685 0 0
686686 −0.258819 0.965926i −0.258819 0.965926i
687687 0 0
688688 0.500000 0.866025i 0.500000 0.866025i
689689 1.41421 1.41421
690690 0 0
691691 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
692692 −1.41421 −1.41421
693693 0 0
694694 0 0
695695 1.41421i 1.41421i
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0.500000 + 0.866025i 0.500000 + 0.866025i
701701 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
702702 0 0
703703 −1.73205 + 1.00000i −1.73205 + 1.00000i
704704 1.41421i 1.41421i
705705 0 0
706706 0 0
707707 −0.707107 1.22474i −0.707107 1.22474i
708708 0 0
709709 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
710710 0 0
711711 0 0
712712 0.366025 + 1.36603i 0.366025 + 1.36603i
713713 0 0
714714 0 0
715715 −1.00000 + 1.73205i −1.00000 + 1.73205i
716716 0 0
717717 0 0
718718 −0.366025 1.36603i −0.366025 1.36603i
719719 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
720720 0 0
721721 0 0
722722 −0.776457 + 2.89778i −0.776457 + 2.89778i
723723 0 0
724724 −0.500000 + 0.866025i −0.500000 + 0.866025i
725725 1.22474 + 0.707107i 1.22474 + 0.707107i
726726 0 0
727727 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
728728 −0.258819 0.965926i −0.258819 0.965926i
729729 0 0
730730 −1.00000 + 1.00000i −1.00000 + 1.00000i
731731 −0.707107 + 1.22474i −0.707107 + 1.22474i
732732 0 0
733733 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
734734 −0.707107 + 0.707107i −0.707107 + 0.707107i
735735 0 0
736736 0 0
737737 −0.707107 1.22474i −0.707107 1.22474i
738738 0 0
739739 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
740740 1.22474 + 0.707107i 1.22474 + 0.707107i
741741 0 0
742742 1.36603 0.366025i 1.36603 0.366025i
743743 −1.22474 + 0.707107i −1.22474 + 0.707107i −0.965926 0.258819i 0.916667π-0.916667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
744744 0 0
745745 0 0
746746 −0.707107 + 0.707107i −0.707107 + 0.707107i
747747 0 0
748748 2.00000i 2.00000i
749749 0 0
750750 0 0
751751 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
752752 0 0
753753 0 0
754754 −1.00000 1.00000i −1.00000 1.00000i
755755 −0.707107 + 1.22474i −0.707107 + 1.22474i
756756 0 0
757757 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
758758 0 0
759759 0 0
760760 2.73205 0.732051i 2.73205 0.732051i
761761 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i 0.583333π-0.583333\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
762762 0 0
763763 −1.00000 −1.00000
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
770770 −0.517638 + 1.93185i −0.517638 + 1.93185i
771771 0 0
772772 −0.866025 + 0.500000i −0.866025 + 0.500000i
773773 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
774774 0 0
775775 0.866025 + 0.500000i 0.866025 + 0.500000i
776776 −0.707107 + 0.707107i −0.707107 + 0.707107i
777777 0 0
778778 −1.00000 + 1.00000i −1.00000 + 1.00000i
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 −1.41421 −1.41421
786786 0 0
787787 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
788788 0 0
789789 0 0
790790 0.366025 1.36603i 0.366025 1.36603i
791791 0 0
792792 0 0
793793 0 0
794794 −0.258819 0.965926i −0.258819 0.965926i
795795 0 0
796796 −0.500000 0.866025i −0.500000 0.866025i
797797 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
798798 0 0
799799 0 0
800800 −0.707107 0.707107i −0.707107 0.707107i
801801 0 0
802802 0 0
803803 −1.41421 −1.41421
804804 0 0
805805 0 0
806806 −0.707107 0.707107i −0.707107 0.707107i
807807 0 0
808808 1.00000 + 1.00000i 1.00000 + 1.00000i
809809 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
810810 0 0
811811 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
812812 −1.22474 0.707107i −1.22474 0.707107i
813813 0 0
814814 0.366025 + 1.36603i 0.366025 + 1.36603i
815815 0 0
816816 0 0
817817 −1.00000 1.73205i −1.00000 1.73205i
818818 −0.258819 + 0.965926i −0.258819 + 0.965926i
819819 0 0
820820 0 0
821821 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
822822 0 0
823823 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
828828 0 0
829829 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
830830 0.517638 + 1.93185i 0.517638 + 1.93185i
831831 0 0
832832 0.500000 + 0.866025i 0.500000 + 0.866025i
833833 0 0
834834 0 0
835835 −1.00000 + 1.73205i −1.00000 + 1.73205i
836836 2.44949 + 1.41421i 2.44949 + 1.41421i
837837 0 0
838838 0 0
839839 1.22474 + 0.707107i 1.22474 + 0.707107i 0.965926 0.258819i 0.0833333π-0.0833333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
840840 0 0
841841 −1.00000 −1.00000
842842 0.517638 + 1.93185i 0.517638 + 1.93185i
843843 0 0
844844 0.866025 0.500000i 0.866025 0.500000i
845845 0 0
846846 0 0
847847 −0.866025 + 0.500000i −0.866025 + 0.500000i
848848 −1.22474 + 0.707107i −1.22474 + 0.707107i
849849 0 0
850850 1.00000 + 1.00000i 1.00000 + 1.00000i
851851 0 0
852852 0 0
853853 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
858858 0 0
859859 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
860860 −0.707107 + 1.22474i −0.707107 + 1.22474i
861861 0 0
862862 0 0
863863 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
864864 0 0
865865 2.00000 2.00000
866866 0 0
867867 0 0
868868 −0.866025 0.500000i −0.866025 0.500000i
869869 1.22474 0.707107i 1.22474 0.707107i
870870 0 0
871871 −0.866025 0.500000i −0.866025 0.500000i
872872 0.965926 0.258819i 0.965926 0.258819i
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
878878 0.707107 0.707107i 0.707107 0.707107i
879879 0 0
880880 2.00000i 2.00000i
881881 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
882882 0 0
883883 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
884884 −0.707107 1.22474i −0.707107 1.22474i
885885 0 0
886886 −1.36603 + 0.366025i −1.36603 + 0.366025i
887887 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
888888 0 0
889889 1.00000 1.00000
890890 −0.517638 1.93185i −0.517638 1.93185i
891891 0 0
892892 −0.500000 0.866025i −0.500000 0.866025i
893893 0 0
894894 0 0
895895 0 0
896896 0.707107 + 0.707107i 0.707107 + 0.707107i
897897 0 0
898898 −1.00000 1.00000i −1.00000 1.00000i
899899 −1.41421 −1.41421
900900 0 0
901901 1.73205 1.00000i 1.73205 1.00000i
902902 0 0
903903 0 0
904904 0 0
905905 0.707107 1.22474i 0.707107 1.22474i
906906 0 0
907907 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
908908 0 0
909909 0 0
910910 0.366025 + 1.36603i 0.366025 + 1.36603i
911911 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
912912 0 0
913913 −1.00000 + 1.73205i −1.00000 + 1.73205i
914914 0 0
915915 0 0
916916 −0.500000 + 0.866025i −0.500000 + 0.866025i
917917 1.41421i 1.41421i
918918 0 0
919919 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 −0.866025 0.500000i −0.866025 0.500000i
926926 −0.707107 + 0.707107i −0.707107 + 0.707107i
927927 0 0
928928 1.36603 + 0.366025i 1.36603 + 0.366025i
929929 −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i 0.916667π-0.916667\pi
0.258819 0.965926i 0.416667π-0.416667\pi
930930 0 0
931931 0 0
932932 1.22474 0.707107i 1.22474 0.707107i
933933 0 0
934934 1.36603 0.366025i 1.36603 0.366025i
935935 2.82843i 2.82843i
936936 0 0
937937 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
938938 −0.965926 0.258819i −0.965926 0.258819i
939939 0 0
940940 0 0
941941 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 −1.36603 + 0.366025i −1.36603 + 0.366025i
947947 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i 0.583333π-0.583333\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
948948 0 0
949949 −0.866025 + 0.500000i −0.866025 + 0.500000i
950950 −1.93185 + 0.517638i −1.93185 + 0.517638i
951951 0 0
952952 −1.00000 1.00000i −1.00000 1.00000i
953953 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i 0.583333π-0.583333\pi
0.965926 0.258819i 0.0833333π-0.0833333\pi
954954 0 0
955955 0 0
956956 −1.41421 −1.41421
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 0 0
962962 0.707107 + 0.707107i 0.707107 + 0.707107i
963963 0 0
964964 0.866025 + 0.500000i 0.866025 + 0.500000i
965965 1.22474 0.707107i 1.22474 0.707107i
966966 0 0
967967 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
968968 0.707107 0.707107i 0.707107 0.707107i
969969 0 0
970970 1.00000 1.00000i 1.00000 1.00000i
971971 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
972972 0 0
973973 1.00000i 1.00000i
974974 0 0
975975 0 0
976976 0 0
977977 −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i 0.416667π0.416667\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
978978 0 0
979979 1.00000 1.73205i 1.00000 1.73205i
980980 0 0
981981 0 0
982982 0 0
983983 −1.22474 0.707107i −1.22474 0.707107i −0.258819 0.965926i 0.583333π-0.583333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
984984 0 0
985985 0 0
986986 −1.93185 0.517638i −1.93185 0.517638i
987987 0 0
988988 2.00000 2.00000
989989 0 0
990990 0 0
991991 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
992992 0.965926 + 0.258819i 0.965926 + 0.258819i
993993 0 0
994994 0 0
995995 0.707107 + 1.22474i 0.707107 + 1.22474i
996996 0 0
997997 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2664.1.cy.a.1675.4 yes 8
3.2 odd 2 inner 2664.1.cy.a.1675.1 yes 8
8.3 odd 2 inner 2664.1.cy.a.1675.2 yes 8
24.11 even 2 inner 2664.1.cy.a.1675.3 yes 8
37.26 even 3 inner 2664.1.cy.a.1099.2 yes 8
111.26 odd 6 inner 2664.1.cy.a.1099.3 yes 8
296.211 odd 6 inner 2664.1.cy.a.1099.4 yes 8
888.803 even 6 inner 2664.1.cy.a.1099.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2664.1.cy.a.1099.1 8 888.803 even 6 inner
2664.1.cy.a.1099.2 yes 8 37.26 even 3 inner
2664.1.cy.a.1099.3 yes 8 111.26 odd 6 inner
2664.1.cy.a.1099.4 yes 8 296.211 odd 6 inner
2664.1.cy.a.1675.1 yes 8 3.2 odd 2 inner
2664.1.cy.a.1675.2 yes 8 8.3 odd 2 inner
2664.1.cy.a.1675.3 yes 8 24.11 even 2 inner
2664.1.cy.a.1675.4 yes 8 1.1 even 1 trivial