Properties

Label 2664.1.m.a.739.1
Level 26642664
Weight 11
Character 2664.739
Self dual yes
Analytic conductor 1.3301.330
Analytic rank 00
Dimension 22
Projective image D5D_{5}
CM discriminant -296
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2664,1,Mod(739,2664)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2664, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2664.739");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2664=233237 2664 = 2^{3} \cdot 3^{2} \cdot 37
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2664.m (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.329509193651.32950919365
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ10)+\Q(\zeta_{10})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x1 x^{2} - x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 296)
Projective image: D5D_{5}
Projective field: Galois closure of 5.1.87616.1

Embedding invariants

Embedding label 739.1
Root 1.618031.61803 of defining polynomial
Character χ\chi == 2664.739

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000q2+1.00000q40.618034q51.00000q8+0.618034q100.618034q111.61803q13+1.00000q160.618034q20+0.618034q22+1.61803q230.618034q25+1.61803q26+1.61803q29+0.618034q311.00000q32+1.00000q37+0.618034q40+1.61803q410.618034q441.61803q46+1.00000q49+0.618034q501.61803q52+0.381966q551.61803q58+0.618034q610.618034q62+1.00000q64+1.00000q65+0.618034q67+0.618034q731.00000q741.61803q790.618034q801.61803q822.00000q83+0.618034q88+1.61803q921.00000q98+O(q100)q-1.00000 q^{2} +1.00000 q^{4} -0.618034 q^{5} -1.00000 q^{8} +0.618034 q^{10} -0.618034 q^{11} -1.61803 q^{13} +1.00000 q^{16} -0.618034 q^{20} +0.618034 q^{22} +1.61803 q^{23} -0.618034 q^{25} +1.61803 q^{26} +1.61803 q^{29} +0.618034 q^{31} -1.00000 q^{32} +1.00000 q^{37} +0.618034 q^{40} +1.61803 q^{41} -0.618034 q^{44} -1.61803 q^{46} +1.00000 q^{49} +0.618034 q^{50} -1.61803 q^{52} +0.381966 q^{55} -1.61803 q^{58} +0.618034 q^{61} -0.618034 q^{62} +1.00000 q^{64} +1.00000 q^{65} +0.618034 q^{67} +0.618034 q^{73} -1.00000 q^{74} -1.61803 q^{79} -0.618034 q^{80} -1.61803 q^{82} -2.00000 q^{83} +0.618034 q^{88} +1.61803 q^{92} -1.00000 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q2+2q4+q52q8q10+q11q13+2q16+q20q22+q23+q25+q26+q29q312q32+2q37q40+q41+q44+2q98+O(q100) 2 q - 2 q^{2} + 2 q^{4} + q^{5} - 2 q^{8} - q^{10} + q^{11} - q^{13} + 2 q^{16} + q^{20} - q^{22} + q^{23} + q^{25} + q^{26} + q^{29} - q^{31} - 2 q^{32} + 2 q^{37} - q^{40} + q^{41} + q^{44}+ \cdots - 2 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2664Z)×\left(\mathbb{Z}/2664\mathbb{Z}\right)^\times.

nn 12971297 13331333 19991999 23692369
χ(n)\chi(n) 1-1 1-1 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.00000 −1.00000
33 0 0
44 1.00000 1.00000
55 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
66 0 0
77 0 0 1.00000 00
−1.00000 π\pi
88 −1.00000 −1.00000
99 0 0
1010 0.618034 0.618034
1111 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
1212 0 0
1313 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
1414 0 0
1515 0 0
1616 1.00000 1.00000
1717 0 0 1.00000 00
−1.00000 π\pi
1818 0 0
1919 0 0 1.00000 00
−1.00000 π\pi
2020 −0.618034 −0.618034
2121 0 0
2222 0.618034 0.618034
2323 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
2424 0 0
2525 −0.618034 −0.618034
2626 1.61803 1.61803
2727 0 0
2828 0 0
2929 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
3030 0 0
3131 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
3232 −1.00000 −1.00000
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 1.00000 1.00000
3838 0 0
3939 0 0
4040 0.618034 0.618034
4141 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
4242 0 0
4343 0 0 1.00000 00
−1.00000 π\pi
4444 −0.618034 −0.618034
4545 0 0
4646 −1.61803 −1.61803
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 1.00000 1.00000
5050 0.618034 0.618034
5151 0 0
5252 −1.61803 −1.61803
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 0.381966 0.381966
5656 0 0
5757 0 0
5858 −1.61803 −1.61803
5959 0 0 1.00000 00
−1.00000 π\pi
6060 0 0
6161 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
6262 −0.618034 −0.618034
6363 0 0
6464 1.00000 1.00000
6565 1.00000 1.00000
6666 0 0
6767 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 0 0
7373 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
7474 −1.00000 −1.00000
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
8080 −0.618034 −0.618034
8181 0 0
8282 −1.61803 −1.61803
8383 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0.618034 0.618034
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 0 0
9292 1.61803 1.61803
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 1.00000 00
−1.00000 π\pi
9898 −1.00000 −1.00000
9999 0 0
100100 −0.618034 −0.618034
101101 0 0 1.00000 00
−1.00000 π\pi
102102 0 0
103103 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
104104 1.61803 1.61803
105105 0 0
106106 0 0
107107 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
108108 0 0
109109 2.00000 2.00000 1.00000 00
1.00000 00
110110 −0.381966 −0.381966
111111 0 0
112112 0 0
113113 0 0 1.00000 00
−1.00000 π\pi
114114 0 0
115115 −1.00000 −1.00000
116116 1.61803 1.61803
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −0.618034 −0.618034
122122 −0.618034 −0.618034
123123 0 0
124124 0.618034 0.618034
125125 1.00000 1.00000
126126 0 0
127127 0 0 1.00000 00
−1.00000 π\pi
128128 −1.00000 −1.00000
129129 0 0
130130 −1.00000 −1.00000
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 −0.618034 −0.618034
135135 0 0
136136 0 0
137137 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
138138 0 0
139139 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
140140 0 0
141141 0 0
142142 0 0
143143 1.00000 1.00000
144144 0 0
145145 −1.00000 −1.00000
146146 −0.618034 −0.618034
147147 0 0
148148 1.00000 1.00000
149149 0 0 1.00000 00
−1.00000 π\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 0 0
154154 0 0
155155 −0.381966 −0.381966
156156 0 0
157157 0 0 1.00000 00
−1.00000 π\pi
158158 1.61803 1.61803
159159 0 0
160160 0.618034 0.618034
161161 0 0
162162 0 0
163163 0 0 1.00000 00
−1.00000 π\pi
164164 1.61803 1.61803
165165 0 0
166166 2.00000 2.00000
167167 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
168168 0 0
169169 1.61803 1.61803
170170 0 0
171171 0 0
172172 0 0
173173 0 0 1.00000 00
−1.00000 π\pi
174174 0 0
175175 0 0
176176 −0.618034 −0.618034
177177 0 0
178178 0 0
179179 0 0 1.00000 00
−1.00000 π\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 −1.61803 −1.61803
185185 −0.618034 −0.618034
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
192192 0 0
193193 0 0 1.00000 00
−1.00000 π\pi
194194 0 0
195195 0 0
196196 1.00000 1.00000
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 2.00000 2.00000 1.00000 00
1.00000 00
200200 0.618034 0.618034
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 −1.00000 −1.00000
206206 −0.618034 −0.618034
207207 0 0
208208 −1.61803 −1.61803
209209 0 0
210210 0 0
211211 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
212212 0 0
213213 0 0
214214 −1.61803 −1.61803
215215 0 0
216216 0 0
217217 0 0
218218 −2.00000 −2.00000
219219 0 0
220220 0.381966 0.381966
221221 0 0
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 0 0
225225 0 0
226226 0 0
227227 0 0 1.00000 00
−1.00000 π\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 1.00000 1.00000
231231 0 0
232232 −1.61803 −1.61803
233233 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
240240 0 0
241241 0 0 1.00000 00
−1.00000 π\pi
242242 0.618034 0.618034
243243 0 0
244244 0.618034 0.618034
245245 −0.618034 −0.618034
246246 0 0
247247 0 0
248248 −0.618034 −0.618034
249249 0 0
250250 −1.00000 −1.00000
251251 0 0 1.00000 00
−1.00000 π\pi
252252 0 0
253253 −1.00000 −1.00000
254254 0 0
255255 0 0
256256 1.00000 1.00000
257257 0 0 1.00000 00
−1.00000 π\pi
258258 0 0
259259 0 0
260260 1.00000 1.00000
261261 0 0
262262 0 0
263263 0 0 1.00000 00
−1.00000 π\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0.618034 0.618034
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 0 0
273273 0 0
274274 0.618034 0.618034
275275 0.381966 0.381966
276276 0 0
277277 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
278278 1.61803 1.61803
279279 0 0
280280 0 0
281281 0 0 1.00000 00
−1.00000 π\pi
282282 0 0
283283 0 0 1.00000 00
−1.00000 π\pi
284284 0 0
285285 0 0
286286 −1.00000 −1.00000
287287 0 0
288288 0 0
289289 1.00000 1.00000
290290 1.00000 1.00000
291291 0 0
292292 0.618034 0.618034
293293 0 0 1.00000 00
−1.00000 π\pi
294294 0 0
295295 0 0
296296 −1.00000 −1.00000
297297 0 0
298298 0 0
299299 −2.61803 −2.61803
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 −0.381966 −0.381966
306306 0 0
307307 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
308308 0 0
309309 0 0
310310 0.381966 0.381966
311311 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 0 0
315315 0 0
316316 −1.61803 −1.61803
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 −1.00000 −1.00000
320320 −0.618034 −0.618034
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 1.00000 1.00000
326326 0 0
327327 0 0
328328 −1.61803 −1.61803
329329 0 0
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 −2.00000 −2.00000
333333 0 0
334334 0.618034 0.618034
335335 −0.381966 −0.381966
336336 0 0
337337 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
338338 −1.61803 −1.61803
339339 0 0
340340 0 0
341341 −0.381966 −0.381966
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 0 0 1.00000 00
−1.00000 π\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 0 0
351351 0 0
352352 0.618034 0.618034
353353 0 0 1.00000 00
−1.00000 π\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000 00
−1.00000 π\pi
360360 0 0
361361 1.00000 1.00000
362362 0 0
363363 0 0
364364 0 0
365365 −0.381966 −0.381966
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 1.61803 1.61803
369369 0 0
370370 0.618034 0.618034
371371 0 0
372372 0 0
373373 0 0 1.00000 00
−1.00000 π\pi
374374 0 0
375375 0 0
376376 0 0
377377 −2.61803 −2.61803
378378 0 0
379379 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
380380 0 0
381381 0 0
382382 0.618034 0.618034
383383 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
390390 0 0
391391 0 0
392392 −1.00000 −1.00000
393393 0 0
394394 0 0
395395 1.00000 1.00000
396396 0 0
397397 0 0 1.00000 00
−1.00000 π\pi
398398 −2.00000 −2.00000
399399 0 0
400400 −0.618034 −0.618034
401401 0 0 1.00000 00
−1.00000 π\pi
402402 0 0
403403 −1.00000 −1.00000
404404 0 0
405405 0 0
406406 0 0
407407 −0.618034 −0.618034
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 1.00000 1.00000
411411 0 0
412412 0.618034 0.618034
413413 0 0
414414 0 0
415415 1.23607 1.23607
416416 1.61803 1.61803
417417 0 0
418418 0 0
419419 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
420420 0 0
421421 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
422422 −0.618034 −0.618034
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 1.61803 1.61803
429429 0 0
430430 0 0
431431 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
432432 0 0
433433 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
434434 0 0
435435 0 0
436436 2.00000 2.00000
437437 0 0
438438 0 0
439439 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
440440 −0.381966 −0.381966
441441 0 0
442442 0 0
443443 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0 0
451451 −1.00000 −1.00000
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 0 0
459459 0 0
460460 −1.00000 −1.00000
461461 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
462462 0 0
463463 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
464464 1.61803 1.61803
465465 0 0
466466 −1.61803 −1.61803
467467 0 0 1.00000 00
−1.00000 π\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0.618034 0.618034
479479 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
480480 0 0
481481 −1.61803 −1.61803
482482 0 0
483483 0 0
484484 −0.618034 −0.618034
485485 0 0
486486 0 0
487487 2.00000 2.00000 1.00000 00
1.00000 00
488488 −0.618034 −0.618034
489489 0 0
490490 0.618034 0.618034
491491 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0.618034 0.618034
497497 0 0
498498 0 0
499499 0 0 1.00000 00
−1.00000 π\pi
500500 1.00000 1.00000
501501 0 0
502502 0 0
503503 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
504504 0 0
505505 0 0
506506 1.00000 1.00000
507507 0 0
508508 0 0
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 −1.00000 −1.00000
513513 0 0
514514 0 0
515515 −0.381966 −0.381966
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 −1.00000 −1.00000
521521 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
522522 0 0
523523 0 0 1.00000 00
−1.00000 π\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 1.61803 1.61803
530530 0 0
531531 0 0
532532 0 0
533533 −2.61803 −2.61803
534534 0 0
535535 −1.00000 −1.00000
536536 −0.618034 −0.618034
537537 0 0
538538 0 0
539539 −0.618034 −0.618034
540540 0 0
541541 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
542542 0 0
543543 0 0
544544 0 0
545545 −1.23607 −1.23607
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 −0.618034 −0.618034
549549 0 0
550550 −0.381966 −0.381966
551551 0 0
552552 0 0
553553 0 0
554554 −0.618034 −0.618034
555555 0 0
556556 −1.61803 −1.61803
557557 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000 00
−1.00000 π\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
572572 1.00000 1.00000
573573 0 0
574574 0 0
575575 −1.00000 −1.00000
576576 0 0
577577 0 0 1.00000 00
−1.00000 π\pi
578578 −1.00000 −1.00000
579579 0 0
580580 −1.00000 −1.00000
581581 0 0
582582 0 0
583583 0 0
584584 −0.618034 −0.618034
585585 0 0
586586 0 0
587587 0 0 1.00000 00
−1.00000 π\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 1.00000 1.00000
593593 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 2.61803 2.61803
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
602602 0 0
603603 0 0
604604 0 0
605605 0.381966 0.381966
606606 0 0
607607 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
608608 0 0
609609 0 0
610610 0.381966 0.381966
611611 0 0
612612 0 0
613613 0 0 1.00000 00
−1.00000 π\pi
614614 1.61803 1.61803
615615 0 0
616616 0 0
617617 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
618618 0 0
619619 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
620620 −0.381966 −0.381966
621621 0 0
622622 −1.61803 −1.61803
623623 0 0
624624 0 0
625625 0 0
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
632632 1.61803 1.61803
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 −1.61803 −1.61803
638638 1.00000 1.00000
639639 0 0
640640 0.618034 0.618034
641641 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
648648 0 0
649649 0 0
650650 −1.00000 −1.00000
651651 0 0
652652 0 0
653653 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
654654 0 0
655655 0 0
656656 1.61803 1.61803
657657 0 0
658658 0 0
659659 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
660660 0 0
661661 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
662662 0 0
663663 0 0
664664 2.00000 2.00000
665665 0 0
666666 0 0
667667 2.61803 2.61803
668668 −0.618034 −0.618034
669669 0 0
670670 0.381966 0.381966
671671 −0.381966 −0.381966
672672 0 0
673673 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
674674 −0.618034 −0.618034
675675 0 0
676676 1.61803 1.61803
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0.381966 0.381966
683683 0 0 1.00000 00
−1.00000 π\pi
684684 0 0
685685 0.381966 0.381966
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 2.00000 2.00000 1.00000 00
1.00000 00
692692 0 0
693693 0 0
694694 0 0
695695 1.00000 1.00000
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
702702 0 0
703703 0 0
704704 −0.618034 −0.618034
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
710710 0 0
711711 0 0
712712 0 0
713713 1.00000 1.00000
714714 0 0
715715 −0.618034 −0.618034
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000 00
−1.00000 π\pi
720720 0 0
721721 0 0
722722 −1.00000 −1.00000
723723 0 0
724724 0 0
725725 −1.00000 −1.00000
726726 0 0
727727 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
728728 0 0
729729 0 0
730730 0.381966 0.381966
731731 0 0
732732 0 0
733733 0 0 1.00000 00
−1.00000 π\pi
734734 0 0
735735 0 0
736736 −1.61803 −1.61803
737737 −0.381966 −0.381966
738738 0 0
739739 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
740740 −0.618034 −0.618034
741741 0 0
742742 0 0
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000 00
−1.00000 π\pi
752752 0 0
753753 0 0
754754 2.61803 2.61803
755755 0 0
756756 0 0
757757 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
758758 1.61803 1.61803
759759 0 0
760760 0 0
761761 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
762762 0 0
763763 0 0
764764 −0.618034 −0.618034
765765 0 0
766766 2.00000 2.00000
767767 0 0
768768 0 0
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 1.00000 00
−1.00000 π\pi
774774 0 0
775775 −0.381966 −0.381966
776776 0 0
777777 0 0
778778 −1.61803 −1.61803
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 1.00000 1.00000
785785 0 0
786786 0 0
787787 2.00000 2.00000 1.00000 00
1.00000 00
788788 0 0
789789 0 0
790790 −1.00000 −1.00000
791791 0 0
792792 0 0
793793 −1.00000 −1.00000
794794 0 0
795795 0 0
796796 2.00000 2.00000
797797 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
798798 0 0
799799 0 0
800800 0.618034 0.618034
801801 0 0
802802 0 0
803803 −0.381966 −0.381966
804804 0 0
805805 0 0
806806 1.00000 1.00000
807807 0 0
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 0 0
811811 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
812812 0 0
813813 0 0
814814 0.618034 0.618034
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 −1.00000 −1.00000
821821 0 0 1.00000 00
−1.00000 π\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 −0.618034 −0.618034
825825 0 0
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
830830 −1.23607 −1.23607
831831 0 0
832832 −1.61803 −1.61803
833833 0 0
834834 0 0
835835 0.381966 0.381966
836836 0 0
837837 0 0
838838 −1.61803 −1.61803
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 1.61803 1.61803
842842 1.61803 1.61803
843843 0 0
844844 0.618034 0.618034
845845 −1.00000 −1.00000
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 1.61803 1.61803
852852 0 0
853853 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
854854 0 0
855855 0 0
856856 −1.61803 −1.61803
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 0 0
861861 0 0
862862 2.00000 2.00000
863863 0 0 1.00000 00
−1.00000 π\pi
864864 0 0
865865 0 0
866866 1.61803 1.61803
867867 0 0
868868 0 0
869869 1.00000 1.00000
870870 0 0
871871 −1.00000 −1.00000
872872 −2.00000 −2.00000
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 0 0 1.00000 00
−1.00000 π\pi
878878 1.61803 1.61803
879879 0 0
880880 0.381966 0.381966
881881 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
882882 0 0
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 0 0
886886 0.618034 0.618034
887887 0 0 1.00000 00
−1.00000 π\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 1.00000 1.00000
900900 0 0
901901 0 0
902902 1.00000 1.00000
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 1.00000 00
−1.00000 π\pi
908908 0 0
909909 0 0
910910 0 0
911911 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
912912 0 0
913913 1.23607 1.23607
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 2.00000 2.00000 1.00000 00
1.00000 00
920920 1.00000 1.00000
921921 0 0
922922 2.00000 2.00000
923923 0 0
924924 0 0
925925 −0.618034 −0.618034
926926 1.61803 1.61803
927927 0 0
928928 −1.61803 −1.61803
929929 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
930930 0 0
931931 0 0
932932 1.61803 1.61803
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 2.61803 2.61803
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000 00
−1.00000 π\pi
948948 0 0
949949 −1.00000 −1.00000
950950 0 0
951951 0 0
952952 0 0
953953 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
954954 0 0
955955 0.381966 0.381966
956956 −0.618034 −0.618034
957957 0 0
958958 −1.61803 −1.61803
959959 0 0
960960 0 0
961961 −0.618034 −0.618034
962962 1.61803 1.61803
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
968968 0.618034 0.618034
969969 0 0
970970 0 0
971971 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
972972 0 0
973973 0 0
974974 −2.00000 −2.00000
975975 0 0
976976 0.618034 0.618034
977977 0 0 1.00000 00
−1.00000 π\pi
978978 0 0
979979 0 0
980980 −0.618034 −0.618034
981981 0 0
982982 −1.61803 −1.61803
983983 0 0 1.00000 00
−1.00000 π\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
992992 −0.618034 −0.618034
993993 0 0
994994 0 0
995995 −1.23607 −1.23607
996996 0 0
997997 2.00000 2.00000 1.00000 00
1.00000 00
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2664.1.m.a.739.1 2
3.2 odd 2 296.1.h.b.147.1 yes 2
8.3 odd 2 2664.1.m.b.739.2 2
12.11 even 2 1184.1.h.a.591.2 2
24.5 odd 2 1184.1.h.b.591.2 2
24.11 even 2 296.1.h.a.147.1 2
37.36 even 2 2664.1.m.b.739.2 2
111.110 odd 2 296.1.h.a.147.1 2
296.147 odd 2 CM 2664.1.m.a.739.1 2
444.443 even 2 1184.1.h.b.591.2 2
888.221 odd 2 1184.1.h.a.591.2 2
888.443 even 2 296.1.h.b.147.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
296.1.h.a.147.1 2 24.11 even 2
296.1.h.a.147.1 2 111.110 odd 2
296.1.h.b.147.1 yes 2 3.2 odd 2
296.1.h.b.147.1 yes 2 888.443 even 2
1184.1.h.a.591.2 2 12.11 even 2
1184.1.h.a.591.2 2 888.221 odd 2
1184.1.h.b.591.2 2 24.5 odd 2
1184.1.h.b.591.2 2 444.443 even 2
2664.1.m.a.739.1 2 1.1 even 1 trivial
2664.1.m.a.739.1 2 296.147 odd 2 CM
2664.1.m.b.739.2 2 8.3 odd 2
2664.1.m.b.739.2 2 37.36 even 2