Properties

Label 2664.2.r.n.433.3
Level $2664$
Weight $2$
Character 2664.433
Analytic conductor $21.272$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2664,2,Mod(433,2664)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2664, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2664.433");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2664 = 2^{3} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2664.r (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.2721470985\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 9x^{8} + 4x^{7} + 54x^{6} + 6x^{5} + 98x^{4} - 8x^{3} + 148x^{2} - 24x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 296)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 433.3
Root \(0.657199 - 1.13830i\) of defining polynomial
Character \(\chi\) \(=\) 2664.433
Dual form 2664.2.r.n.1009.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.883889 + 1.53094i) q^{5} +(0.597948 - 1.03568i) q^{7} +O(q^{10})\) \(q+(-0.883889 + 1.53094i) q^{5} +(0.597948 - 1.03568i) q^{7} +0.628794 q^{11} +(-2.91932 + 5.05641i) q^{13} +(-0.500000 - 0.866025i) q^{17} +(1.60492 - 2.77980i) q^{19} -2.01395 q^{23} +(0.937481 + 1.62376i) q^{25} +4.68823 q^{29} +0.628794 q^{31} +(1.05704 + 1.83085i) q^{35} +(-5.81237 - 1.79342i) q^{37} +(-4.20526 + 7.28372i) q^{41} -0.767778 q^{43} -11.9047 q^{47} +(2.78492 + 4.82362i) q^{49} +(-5.19168 - 8.99225i) q^{53} +(-0.555784 + 0.962647i) q^{55} +(1.29052 + 2.23525i) q^{59} +(-4.45933 + 7.72378i) q^{61} +(-5.16070 - 8.93860i) q^{65} +(0.837143 - 1.44997i) q^{67} +(5.80779 - 10.0594i) q^{71} -9.89329 q^{73} +(0.375986 - 0.651227i) q^{77} +(-5.68494 + 9.84661i) q^{79} +(8.10516 + 14.0385i) q^{83} +1.76778 q^{85} +(-6.20526 - 10.7478i) q^{89} +(3.49120 + 6.04694i) q^{91} +(2.83714 + 4.91408i) q^{95} +9.87569 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 3 q^{5} + 3 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 10 q - 3 q^{5} + 3 q^{7} - 16 q^{11} + q^{13} - 5 q^{17} - 3 q^{19} + 12 q^{23} - 12 q^{25} - 16 q^{31} - 5 q^{35} - 12 q^{37} - 9 q^{41} + 4 q^{43} - 32 q^{47} - 18 q^{49} - 5 q^{53} + 4 q^{55} + 5 q^{59} + 15 q^{61} - 23 q^{65} + q^{67} + 17 q^{71} - 36 q^{73} + 4 q^{77} + 21 q^{79} + 15 q^{83} + 6 q^{85} - 29 q^{89} - q^{91} + 21 q^{95} - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2664\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1333\) \(1999\) \(2369\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.883889 + 1.53094i −0.395287 + 0.684657i −0.993138 0.116950i \(-0.962688\pi\)
0.597851 + 0.801607i \(0.296022\pi\)
\(6\) 0 0
\(7\) 0.597948 1.03568i 0.226003 0.391449i −0.730617 0.682788i \(-0.760767\pi\)
0.956620 + 0.291339i \(0.0941007\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.628794 0.189589 0.0947943 0.995497i \(-0.469781\pi\)
0.0947943 + 0.995497i \(0.469781\pi\)
\(12\) 0 0
\(13\) −2.91932 + 5.05641i −0.809673 + 1.40239i 0.103418 + 0.994638i \(0.467022\pi\)
−0.913091 + 0.407757i \(0.866311\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.500000 0.866025i −0.121268 0.210042i 0.799000 0.601331i \(-0.205363\pi\)
−0.920268 + 0.391289i \(0.872029\pi\)
\(18\) 0 0
\(19\) 1.60492 2.77980i 0.368194 0.637731i −0.621089 0.783740i \(-0.713310\pi\)
0.989283 + 0.146009i \(0.0466429\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.01395 −0.419937 −0.209968 0.977708i \(-0.567336\pi\)
−0.209968 + 0.977708i \(0.567336\pi\)
\(24\) 0 0
\(25\) 0.937481 + 1.62376i 0.187496 + 0.324753i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.68823 0.870583 0.435291 0.900290i \(-0.356645\pi\)
0.435291 + 0.900290i \(0.356645\pi\)
\(30\) 0 0
\(31\) 0.628794 0.112935 0.0564674 0.998404i \(-0.482016\pi\)
0.0564674 + 0.998404i \(0.482016\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.05704 + 1.83085i 0.178672 + 0.309469i
\(36\) 0 0
\(37\) −5.81237 1.79342i −0.955548 0.294836i
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.20526 + 7.28372i −0.656751 + 1.13753i 0.324701 + 0.945817i \(0.394736\pi\)
−0.981452 + 0.191709i \(0.938597\pi\)
\(42\) 0 0
\(43\) −0.767778 −0.117085 −0.0585425 0.998285i \(-0.518645\pi\)
−0.0585425 + 0.998285i \(0.518645\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −11.9047 −1.73648 −0.868240 0.496144i \(-0.834749\pi\)
−0.868240 + 0.496144i \(0.834749\pi\)
\(48\) 0 0
\(49\) 2.78492 + 4.82362i 0.397845 + 0.689088i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.19168 8.99225i −0.713132 1.23518i −0.963676 0.267075i \(-0.913943\pi\)
0.250544 0.968105i \(-0.419391\pi\)
\(54\) 0 0
\(55\) −0.555784 + 0.962647i −0.0749419 + 0.129803i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.29052 + 2.23525i 0.168012 + 0.291005i 0.937721 0.347390i \(-0.112932\pi\)
−0.769709 + 0.638395i \(0.779599\pi\)
\(60\) 0 0
\(61\) −4.45933 + 7.72378i −0.570959 + 0.988929i 0.425509 + 0.904954i \(0.360095\pi\)
−0.996468 + 0.0839752i \(0.973238\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.16070 8.93860i −0.640107 1.10870i
\(66\) 0 0
\(67\) 0.837143 1.44997i 0.102273 0.177143i −0.810348 0.585949i \(-0.800722\pi\)
0.912621 + 0.408807i \(0.134055\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.80779 10.0594i 0.689258 1.19383i −0.282821 0.959173i \(-0.591270\pi\)
0.972078 0.234657i \(-0.0753966\pi\)
\(72\) 0 0
\(73\) −9.89329 −1.15792 −0.578961 0.815355i \(-0.696542\pi\)
−0.578961 + 0.815355i \(0.696542\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.375986 0.651227i 0.0428476 0.0742142i
\(78\) 0 0
\(79\) −5.68494 + 9.84661i −0.639606 + 1.10783i 0.345913 + 0.938267i \(0.387569\pi\)
−0.985519 + 0.169564i \(0.945764\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.10516 + 14.0385i 0.889657 + 1.54093i 0.840282 + 0.542150i \(0.182390\pi\)
0.0493752 + 0.998780i \(0.484277\pi\)
\(84\) 0 0
\(85\) 1.76778 0.191742
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.20526 10.7478i −0.657756 1.13927i −0.981195 0.193018i \(-0.938172\pi\)
0.323439 0.946249i \(-0.395161\pi\)
\(90\) 0 0
\(91\) 3.49120 + 6.04694i 0.365977 + 0.633891i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.83714 + 4.91408i 0.291085 + 0.504174i
\(96\) 0 0
\(97\) 9.87569 1.00272 0.501362 0.865237i \(-0.332832\pi\)
0.501362 + 0.865237i \(0.332832\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.99820 −0.198829 −0.0994144 0.995046i \(-0.531697\pi\)
−0.0994144 + 0.995046i \(0.531697\pi\)
\(102\) 0 0
\(103\) −14.1966 −1.39884 −0.699418 0.714713i \(-0.746557\pi\)
−0.699418 + 0.714713i \(0.746557\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.67441 + 2.90017i −0.161872 + 0.280370i −0.935540 0.353221i \(-0.885086\pi\)
0.773668 + 0.633591i \(0.218420\pi\)
\(108\) 0 0
\(109\) 1.03965 + 1.80072i 0.0995801 + 0.172478i 0.911511 0.411276i \(-0.134917\pi\)
−0.811931 + 0.583754i \(0.801583\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.08902 + 5.35034i 0.290591 + 0.503318i 0.973950 0.226765i \(-0.0728149\pi\)
−0.683359 + 0.730083i \(0.739482\pi\)
\(114\) 0 0
\(115\) 1.78010 3.08323i 0.165996 0.287513i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.19590 −0.109628
\(120\) 0 0
\(121\) −10.6046 −0.964056
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −12.1534 −1.08703
\(126\) 0 0
\(127\) −8.92629 15.4608i −0.792080 1.37192i −0.924677 0.380753i \(-0.875665\pi\)
0.132597 0.991170i \(-0.457669\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.64071 + 13.2341i 0.667572 + 1.15627i 0.978581 + 0.205862i \(0.0659998\pi\)
−0.311009 + 0.950407i \(0.600667\pi\)
\(132\) 0 0
\(133\) −1.91932 3.32436i −0.166426 0.288258i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −17.7690 −1.51811 −0.759053 0.651028i \(-0.774338\pi\)
−0.759053 + 0.651028i \(0.774338\pi\)
\(138\) 0 0
\(139\) 9.53806 + 16.5204i 0.809007 + 1.40124i 0.913552 + 0.406722i \(0.133328\pi\)
−0.104545 + 0.994520i \(0.533339\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.83565 + 3.17944i −0.153505 + 0.265878i
\(144\) 0 0
\(145\) −4.14388 + 7.17740i −0.344130 + 0.596051i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.76088 −0.226180 −0.113090 0.993585i \(-0.536075\pi\)
−0.113090 + 0.993585i \(0.536075\pi\)
\(150\) 0 0
\(151\) −3.35441 + 5.81001i −0.272978 + 0.472812i −0.969623 0.244604i \(-0.921342\pi\)
0.696645 + 0.717416i \(0.254675\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.555784 + 0.962647i −0.0446417 + 0.0773216i
\(156\) 0 0
\(157\) −7.22711 12.5177i −0.576786 0.999022i −0.995845 0.0910636i \(-0.970973\pi\)
0.419059 0.907959i \(-0.362360\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.20423 + 2.08580i −0.0949070 + 0.164384i
\(162\) 0 0
\(163\) −3.79076 6.56579i −0.296915 0.514272i 0.678513 0.734588i \(-0.262625\pi\)
−0.975429 + 0.220316i \(0.929291\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.69626 + 2.93801i −0.131261 + 0.227350i −0.924163 0.381999i \(-0.875236\pi\)
0.792902 + 0.609349i \(0.208569\pi\)
\(168\) 0 0
\(169\) −10.5448 18.2642i −0.811141 1.40494i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.06754 + 7.04518i 0.309249 + 0.535635i 0.978198 0.207673i \(-0.0665890\pi\)
−0.668949 + 0.743308i \(0.733256\pi\)
\(174\) 0 0
\(175\) 2.24226 0.169499
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.31914 0.472315 0.236157 0.971715i \(-0.424112\pi\)
0.236157 + 0.971715i \(0.424112\pi\)
\(180\) 0 0
\(181\) 0.730960 1.26606i 0.0543318 0.0941055i −0.837580 0.546314i \(-0.816030\pi\)
0.891912 + 0.452209i \(0.149364\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.88310 7.31321i 0.579577 0.537678i
\(186\) 0 0
\(187\) −0.314397 0.544552i −0.0229910 0.0398216i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −9.05717 −0.655354 −0.327677 0.944790i \(-0.606266\pi\)
−0.327677 + 0.944790i \(0.606266\pi\)
\(192\) 0 0
\(193\) −10.5195 −0.757210 −0.378605 0.925558i \(-0.623596\pi\)
−0.378605 + 0.925558i \(0.623596\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.55735 + 11.3577i 0.467192 + 0.809200i 0.999297 0.0374781i \(-0.0119325\pi\)
−0.532106 + 0.846678i \(0.678599\pi\)
\(198\) 0 0
\(199\) −3.87749 −0.274868 −0.137434 0.990511i \(-0.543885\pi\)
−0.137434 + 0.990511i \(0.543885\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.80332 4.85549i 0.196754 0.340789i
\(204\) 0 0
\(205\) −7.43396 12.8760i −0.519210 0.899299i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.00916 1.74792i 0.0698054 0.120906i
\(210\) 0 0
\(211\) −16.2850 −1.12111 −0.560553 0.828119i \(-0.689411\pi\)
−0.560553 + 0.828119i \(0.689411\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.678630 1.17542i 0.0462822 0.0801631i
\(216\) 0 0
\(217\) 0.375986 0.651227i 0.0255236 0.0442082i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.83864 0.392749
\(222\) 0 0
\(223\) −12.3331 −0.825884 −0.412942 0.910757i \(-0.635499\pi\)
−0.412942 + 0.910757i \(0.635499\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.69889 13.3349i 0.510993 0.885066i −0.488926 0.872325i \(-0.662611\pi\)
0.999919 0.0127407i \(-0.00405559\pi\)
\(228\) 0 0
\(229\) −6.60973 + 11.4484i −0.436783 + 0.756531i −0.997439 0.0715178i \(-0.977216\pi\)
0.560656 + 0.828049i \(0.310549\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.07338 0.397880 0.198940 0.980012i \(-0.436250\pi\)
0.198940 + 0.980012i \(0.436250\pi\)
\(234\) 0 0
\(235\) 10.5224 18.2254i 0.686408 1.18889i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.24069 + 9.07714i 0.338992 + 0.587151i 0.984243 0.176819i \(-0.0565807\pi\)
−0.645251 + 0.763970i \(0.723247\pi\)
\(240\) 0 0
\(241\) −12.5179 + 21.6816i −0.806347 + 1.39663i 0.109031 + 0.994038i \(0.465225\pi\)
−0.915378 + 0.402595i \(0.868108\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −9.84623 −0.629052
\(246\) 0 0
\(247\) 9.37055 + 16.2303i 0.596234 + 1.03271i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.2581 0.647483 0.323742 0.946146i \(-0.395059\pi\)
0.323742 + 0.946146i \(0.395059\pi\)
\(252\) 0 0
\(253\) −1.26636 −0.0796152
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −12.3216 21.3417i −0.768601 1.33126i −0.938322 0.345763i \(-0.887620\pi\)
0.169721 0.985492i \(-0.445713\pi\)
\(258\) 0 0
\(259\) −5.33289 + 4.94737i −0.331370 + 0.307414i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −8.02172 + 13.8940i −0.494641 + 0.856743i −0.999981 0.00617757i \(-0.998034\pi\)
0.505340 + 0.862920i \(0.331367\pi\)
\(264\) 0 0
\(265\) 18.3555 1.12757
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.03666 0.124177 0.0620887 0.998071i \(-0.480224\pi\)
0.0620887 + 0.998071i \(0.480224\pi\)
\(270\) 0 0
\(271\) 14.2253 + 24.6389i 0.864124 + 1.49671i 0.867914 + 0.496714i \(0.165460\pi\)
−0.00379005 + 0.999993i \(0.501206\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.589483 + 1.02101i 0.0355471 + 0.0615695i
\(276\) 0 0
\(277\) 8.49921 14.7211i 0.510668 0.884503i −0.489255 0.872141i \(-0.662731\pi\)
0.999924 0.0123628i \(-0.00393529\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.61635 4.53165i −0.156078 0.270336i 0.777373 0.629040i \(-0.216552\pi\)
−0.933451 + 0.358705i \(0.883219\pi\)
\(282\) 0 0
\(283\) −1.03466 + 1.79208i −0.0615040 + 0.106528i −0.895138 0.445789i \(-0.852923\pi\)
0.833634 + 0.552317i \(0.186256\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.02905 + 8.71057i 0.296855 + 0.514169i
\(288\) 0 0
\(289\) 8.00000 13.8564i 0.470588 0.815083i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.43396 4.21575i 0.142194 0.246287i −0.786129 0.618063i \(-0.787918\pi\)
0.928322 + 0.371776i \(0.121251\pi\)
\(294\) 0 0
\(295\) −4.56272 −0.265652
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.87935 10.1833i 0.340011 0.588917i
\(300\) 0 0
\(301\) −0.459091 + 0.795169i −0.0264616 + 0.0458328i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −7.88310 13.6539i −0.451385 0.781822i
\(306\) 0 0
\(307\) 23.3475 1.33251 0.666256 0.745723i \(-0.267896\pi\)
0.666256 + 0.745723i \(0.267896\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 12.7946 + 22.1608i 0.725514 + 1.25663i 0.958762 + 0.284209i \(0.0917311\pi\)
−0.233249 + 0.972417i \(0.574936\pi\)
\(312\) 0 0
\(313\) 12.8114 + 22.1900i 0.724144 + 1.25425i 0.959325 + 0.282303i \(0.0910983\pi\)
−0.235181 + 0.971952i \(0.575568\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 13.4108 + 23.2281i 0.753223 + 1.30462i 0.946253 + 0.323428i \(0.104835\pi\)
−0.193030 + 0.981193i \(0.561831\pi\)
\(318\) 0 0
\(319\) 2.94793 0.165053
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3.20984 −0.178600
\(324\) 0 0
\(325\) −10.9472 −0.607242
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −7.11840 + 12.3294i −0.392450 + 0.679743i
\(330\) 0 0
\(331\) 16.7532 + 29.0173i 0.920838 + 1.59494i 0.798122 + 0.602496i \(0.205827\pi\)
0.122716 + 0.992442i \(0.460840\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.47988 + 2.56323i 0.0808546 + 0.140044i
\(336\) 0 0
\(337\) 7.31244 12.6655i 0.398334 0.689935i −0.595186 0.803588i \(-0.702922\pi\)
0.993521 + 0.113653i \(0.0362551\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.395382 0.0214111
\(342\) 0 0
\(343\) 15.0322 0.811663
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 30.7694 1.65179 0.825895 0.563824i \(-0.190670\pi\)
0.825895 + 0.563824i \(0.190670\pi\)
\(348\) 0 0
\(349\) −6.80207 11.7815i −0.364107 0.630651i 0.624526 0.781004i \(-0.285292\pi\)
−0.988632 + 0.150353i \(0.951959\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −7.63411 13.2227i −0.406322 0.703771i 0.588152 0.808750i \(-0.299856\pi\)
−0.994474 + 0.104979i \(0.966522\pi\)
\(354\) 0 0
\(355\) 10.2669 + 17.7828i 0.544909 + 0.943811i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.92580 −0.154418 −0.0772090 0.997015i \(-0.524601\pi\)
−0.0772090 + 0.997015i \(0.524601\pi\)
\(360\) 0 0
\(361\) 4.34846 + 7.53175i 0.228866 + 0.396408i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8.74457 15.1460i 0.457712 0.792780i
\(366\) 0 0
\(367\) 11.4986 19.9161i 0.600220 1.03961i −0.392567 0.919723i \(-0.628413\pi\)
0.992787 0.119889i \(-0.0382538\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −12.4174 −0.644680
\(372\) 0 0
\(373\) 2.14400 3.71352i 0.111012 0.192279i −0.805166 0.593049i \(-0.797924\pi\)
0.916179 + 0.400770i \(0.131257\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −13.6864 + 23.7056i −0.704887 + 1.22090i
\(378\) 0 0
\(379\) −18.1555 31.4463i −0.932587 1.61529i −0.778881 0.627172i \(-0.784212\pi\)
−0.153706 0.988117i \(-0.549121\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.9403 29.3415i 0.865611 1.49928i −0.000828397 1.00000i \(-0.500264\pi\)
0.866439 0.499282i \(-0.166403\pi\)
\(384\) 0 0
\(385\) 0.664660 + 1.15122i 0.0338742 + 0.0586719i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 5.41944 9.38675i 0.274777 0.475927i −0.695302 0.718718i \(-0.744729\pi\)
0.970079 + 0.242790i \(0.0780627\pi\)
\(390\) 0 0
\(391\) 1.00697 + 1.74413i 0.0509248 + 0.0882043i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −10.0497 17.4066i −0.505656 0.875822i
\(396\) 0 0
\(397\) −28.1216 −1.41138 −0.705691 0.708520i \(-0.749363\pi\)
−0.705691 + 0.708520i \(0.749363\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.19915 0.309571 0.154785 0.987948i \(-0.450531\pi\)
0.154785 + 0.987948i \(0.450531\pi\)
\(402\) 0 0
\(403\) −1.83565 + 3.17944i −0.0914403 + 0.158379i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.65479 1.12769i −0.181161 0.0558975i
\(408\) 0 0
\(409\) −11.7159 20.2926i −0.579315 1.00340i −0.995558 0.0941498i \(-0.969987\pi\)
0.416243 0.909253i \(-0.363347\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3.08666 0.151885
\(414\) 0 0
\(415\) −28.6562 −1.40668
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −8.85723 15.3412i −0.432704 0.749466i 0.564401 0.825501i \(-0.309107\pi\)
−0.997105 + 0.0760351i \(0.975774\pi\)
\(420\) 0 0
\(421\) 27.3203 1.33151 0.665756 0.746169i \(-0.268109\pi\)
0.665756 + 0.746169i \(0.268109\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.937481 1.62376i 0.0454745 0.0787642i
\(426\) 0 0
\(427\) 5.33289 + 9.23684i 0.258077 + 0.447002i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −13.4098 + 23.2264i −0.645925 + 1.11878i 0.338162 + 0.941088i \(0.390195\pi\)
−0.984087 + 0.177687i \(0.943138\pi\)
\(432\) 0 0
\(433\) 11.3381 0.544874 0.272437 0.962174i \(-0.412170\pi\)
0.272437 + 0.962174i \(0.412170\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.23222 + 5.59837i −0.154618 + 0.267807i
\(438\) 0 0
\(439\) 9.62993 16.6795i 0.459611 0.796070i −0.539329 0.842095i \(-0.681322\pi\)
0.998940 + 0.0460248i \(0.0146553\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −20.7574 −0.986216 −0.493108 0.869968i \(-0.664139\pi\)
−0.493108 + 0.869968i \(0.664139\pi\)
\(444\) 0 0
\(445\) 21.9390 1.04001
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −10.3286 + 17.8897i −0.487437 + 0.844266i −0.999896 0.0144458i \(-0.995402\pi\)
0.512458 + 0.858712i \(0.328735\pi\)
\(450\) 0 0
\(451\) −2.64424 + 4.57996i −0.124513 + 0.215662i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −12.3433 −0.578664
\(456\) 0 0
\(457\) 5.31147 9.19974i 0.248460 0.430346i −0.714639 0.699494i \(-0.753409\pi\)
0.963099 + 0.269148i \(0.0867421\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −7.57302 13.1169i −0.352711 0.610913i 0.634013 0.773323i \(-0.281407\pi\)
−0.986723 + 0.162410i \(0.948073\pi\)
\(462\) 0 0
\(463\) 5.44600 9.43275i 0.253097 0.438377i −0.711280 0.702909i \(-0.751884\pi\)
0.964377 + 0.264532i \(0.0852174\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 24.1884 1.11931 0.559654 0.828727i \(-0.310934\pi\)
0.559654 + 0.828727i \(0.310934\pi\)
\(468\) 0 0
\(469\) −1.00114 1.73402i −0.0462281 0.0800695i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.482774 −0.0221980
\(474\) 0 0
\(475\) 6.01833 0.276140
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9.02676 15.6348i −0.412443 0.714372i 0.582713 0.812678i \(-0.301991\pi\)
−0.995156 + 0.0983056i \(0.968658\pi\)
\(480\) 0 0
\(481\) 26.0364 24.1542i 1.18716 1.10134i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −8.72901 + 15.1191i −0.396364 + 0.686523i
\(486\) 0 0
\(487\) 15.2208 0.689720 0.344860 0.938654i \(-0.387926\pi\)
0.344860 + 0.938654i \(0.387926\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −18.6105 −0.839879 −0.419939 0.907552i \(-0.637949\pi\)
−0.419939 + 0.907552i \(0.637949\pi\)
\(492\) 0 0
\(493\) −2.34412 4.06013i −0.105574 0.182859i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.94551 12.0300i −0.311549 0.539618i
\(498\) 0 0
\(499\) −6.67830 + 11.5672i −0.298962 + 0.517817i −0.975899 0.218224i \(-0.929974\pi\)
0.676937 + 0.736041i \(0.263307\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4.28610 + 7.42374i 0.191108 + 0.331008i 0.945618 0.325280i \(-0.105459\pi\)
−0.754510 + 0.656289i \(0.772125\pi\)
\(504\) 0 0
\(505\) 1.76619 3.05913i 0.0785945 0.136130i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 12.3473 + 21.3861i 0.547283 + 0.947922i 0.998459 + 0.0554872i \(0.0176712\pi\)
−0.451176 + 0.892435i \(0.648995\pi\)
\(510\) 0 0
\(511\) −5.91567 + 10.2462i −0.261694 + 0.453267i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 12.5482 21.7342i 0.552941 0.957723i
\(516\) 0 0
\(517\) −7.48562 −0.329217
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.55347 2.69068i 0.0680586 0.117881i −0.829988 0.557781i \(-0.811653\pi\)
0.898047 + 0.439900i \(0.144986\pi\)
\(522\) 0 0
\(523\) 17.6268 30.5305i 0.770765 1.33500i −0.166380 0.986062i \(-0.553208\pi\)
0.937144 0.348942i \(-0.113459\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.314397 0.544552i −0.0136954 0.0237210i
\(528\) 0 0
\(529\) −18.9440 −0.823653
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −24.5530 42.5270i −1.06351 1.84205i
\(534\) 0 0
\(535\) −2.95999 5.12685i −0.127971 0.221653i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.75114 + 3.03306i 0.0754269 + 0.130643i
\(540\) 0 0
\(541\) 10.8483 0.466404 0.233202 0.972428i \(-0.425080\pi\)
0.233202 + 0.972428i \(0.425080\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.67573 −0.157451
\(546\) 0 0
\(547\) 41.8843 1.79084 0.895421 0.445221i \(-0.146875\pi\)
0.895421 + 0.445221i \(0.146875\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7.52424 13.0324i 0.320543 0.555197i
\(552\) 0 0
\(553\) 6.79860 + 11.7755i 0.289106 + 0.500746i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.57901 9.66314i −0.236390 0.409440i 0.723285 0.690549i \(-0.242631\pi\)
−0.959676 + 0.281109i \(0.909298\pi\)
\(558\) 0 0
\(559\) 2.24139 3.88220i 0.0948006 0.164199i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 41.5032 1.74915 0.874577 0.484887i \(-0.161139\pi\)
0.874577 + 0.484887i \(0.161139\pi\)
\(564\) 0 0
\(565\) −10.9214 −0.459467
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 32.9432 1.38105 0.690526 0.723308i \(-0.257379\pi\)
0.690526 + 0.723308i \(0.257379\pi\)
\(570\) 0 0
\(571\) −2.51196 4.35085i −0.105122 0.182077i 0.808666 0.588268i \(-0.200190\pi\)
−0.913788 + 0.406191i \(0.866857\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.88804 3.27017i −0.0787365 0.136376i
\(576\) 0 0
\(577\) 16.4003 + 28.4061i 0.682753 + 1.18256i 0.974137 + 0.225957i \(0.0725509\pi\)
−0.291384 + 0.956606i \(0.594116\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 19.3858 0.804261
\(582\) 0 0
\(583\) −3.26450 5.65428i −0.135202 0.234176i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −11.5744 + 20.0474i −0.477726 + 0.827446i −0.999674 0.0255317i \(-0.991872\pi\)
0.521948 + 0.852977i \(0.325205\pi\)
\(588\) 0 0
\(589\) 1.00916 1.74792i 0.0415819 0.0720220i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −28.6917 −1.17823 −0.589113 0.808051i \(-0.700523\pi\)
−0.589113 + 0.808051i \(0.700523\pi\)
\(594\) 0 0
\(595\) 1.05704 1.83085i 0.0433344 0.0750573i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0.422970 0.732606i 0.0172821 0.0299335i −0.857255 0.514892i \(-0.827832\pi\)
0.874537 + 0.484959i \(0.161165\pi\)
\(600\) 0 0
\(601\) 20.4989 + 35.5052i 0.836169 + 1.44829i 0.893075 + 0.449908i \(0.148543\pi\)
−0.0569062 + 0.998380i \(0.518124\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9.37330 16.2350i 0.381079 0.660048i
\(606\) 0 0
\(607\) 7.72152 + 13.3741i 0.313407 + 0.542837i 0.979098 0.203391i \(-0.0651963\pi\)
−0.665691 + 0.746228i \(0.731863\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 34.7536 60.1951i 1.40598 2.43523i
\(612\) 0 0
\(613\) 19.0465 + 32.9894i 0.769279 + 1.33243i 0.937954 + 0.346759i \(0.112718\pi\)
−0.168675 + 0.985672i \(0.553949\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15.1851 + 26.3014i 0.611329 + 1.05885i 0.991017 + 0.133738i \(0.0426982\pi\)
−0.379687 + 0.925115i \(0.623968\pi\)
\(618\) 0 0
\(619\) 12.4445 0.500188 0.250094 0.968222i \(-0.419538\pi\)
0.250094 + 0.968222i \(0.419538\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −14.8417 −0.594620
\(624\) 0 0
\(625\) 6.05485 10.4873i 0.242194 0.419493i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.35304 + 5.93037i 0.0539493 + 0.236459i
\(630\) 0 0
\(631\) 4.07849 + 7.06415i 0.162362 + 0.281219i 0.935715 0.352756i \(-0.114755\pi\)
−0.773353 + 0.633975i \(0.781422\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 31.5594 1.25240
\(636\) 0 0
\(637\) −32.5202 −1.28850
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.48370 6.03395i −0.137598 0.238327i 0.788989 0.614407i \(-0.210605\pi\)
−0.926587 + 0.376081i \(0.877272\pi\)
\(642\) 0 0
\(643\) −20.1146 −0.793241 −0.396621 0.917983i \(-0.629817\pi\)
−0.396621 + 0.917983i \(0.629817\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9.99452 + 17.3110i −0.392925 + 0.680566i −0.992834 0.119502i \(-0.961870\pi\)
0.599909 + 0.800068i \(0.295204\pi\)
\(648\) 0 0
\(649\) 0.811474 + 1.40551i 0.0318531 + 0.0551712i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −15.3946 + 26.6641i −0.602435 + 1.04345i 0.390016 + 0.920808i \(0.372470\pi\)
−0.992451 + 0.122641i \(0.960864\pi\)
\(654\) 0 0
\(655\) −27.0142 −1.05553
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 6.40235 11.0892i 0.249400 0.431973i −0.713960 0.700187i \(-0.753100\pi\)
0.963359 + 0.268214i \(0.0864333\pi\)
\(660\) 0 0
\(661\) 11.8458 20.5175i 0.460747 0.798037i −0.538251 0.842784i \(-0.680915\pi\)
0.998998 + 0.0447472i \(0.0142482\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.78585 0.263144
\(666\) 0 0
\(667\) −9.44184 −0.365590
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −2.80400 + 4.85667i −0.108247 + 0.187490i
\(672\) 0 0
\(673\) 10.9460 18.9590i 0.421937 0.730816i −0.574192 0.818721i \(-0.694684\pi\)
0.996129 + 0.0879047i \(0.0280171\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −30.9548 −1.18969 −0.594845 0.803841i \(-0.702786\pi\)
−0.594845 + 0.803841i \(0.702786\pi\)
\(678\) 0 0
\(679\) 5.90515 10.2280i 0.226619 0.392515i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −7.31212 12.6650i −0.279790 0.484611i 0.691542 0.722336i \(-0.256932\pi\)
−0.971333 + 0.237725i \(0.923598\pi\)
\(684\) 0 0
\(685\) 15.7058 27.2033i 0.600088 1.03938i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 60.6246 2.30961
\(690\) 0 0
\(691\) −14.2504 24.6824i −0.542110 0.938963i −0.998783 0.0493278i \(-0.984292\pi\)
0.456672 0.889635i \(-0.349041\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −33.7223 −1.27916
\(696\) 0 0
\(697\) 8.41052 0.318571
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −4.71426 8.16533i −0.178055 0.308400i 0.763159 0.646210i \(-0.223647\pi\)
−0.941214 + 0.337810i \(0.890314\pi\)
\(702\) 0 0
\(703\) −14.3137 + 13.2790i −0.539853 + 0.500826i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.19482 + 2.06949i −0.0449359 + 0.0778313i
\(708\) 0 0
\(709\) 22.2276 0.834777 0.417388 0.908728i \(-0.362945\pi\)
0.417388 + 0.908728i \(0.362945\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.26636 −0.0474255
\(714\) 0 0
\(715\) −3.24502 5.62054i −0.121357 0.210196i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 10.5233 + 18.2269i 0.392452 + 0.679747i 0.992772 0.120012i \(-0.0382935\pi\)
−0.600320 + 0.799760i \(0.704960\pi\)
\(720\) 0 0
\(721\) −8.48884 + 14.7031i −0.316141 + 0.547572i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4.39513 + 7.61258i 0.163231 + 0.282724i
\(726\) 0 0
\(727\) 20.4073 35.3466i 0.756867 1.31093i −0.187574 0.982250i \(-0.560063\pi\)
0.944441 0.328681i \(-0.106604\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.383889 + 0.664915i 0.0141986 + 0.0245928i
\(732\) 0 0
\(733\) −8.09809 + 14.0263i −0.299110 + 0.518073i −0.975933 0.218073i \(-0.930023\pi\)
0.676823 + 0.736146i \(0.263356\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.526391 0.911735i 0.0193898 0.0335842i
\(738\) 0 0
\(739\) 31.3025 1.15148 0.575741 0.817632i \(-0.304714\pi\)
0.575741 + 0.817632i \(0.304714\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −14.6168 + 25.3171i −0.536239 + 0.928793i 0.462863 + 0.886430i \(0.346822\pi\)
−0.999102 + 0.0423635i \(0.986511\pi\)
\(744\) 0 0
\(745\) 2.44031 4.22675i 0.0894062 0.154856i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.00242 + 3.46830i 0.0731669 + 0.126729i
\(750\) 0 0
\(751\) 4.06848 0.148461 0.0742304 0.997241i \(-0.476350\pi\)
0.0742304 + 0.997241i \(0.476350\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −5.92985 10.2708i −0.215809 0.373793i
\(756\) 0 0
\(757\) 5.56856 + 9.64503i 0.202393 + 0.350555i 0.949299 0.314375i \(-0.101795\pi\)
−0.746906 + 0.664930i \(0.768462\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.42071 + 7.65689i 0.160250 + 0.277562i 0.934958 0.354757i \(-0.115436\pi\)
−0.774708 + 0.632319i \(0.782103\pi\)
\(762\) 0 0
\(763\) 2.48662 0.0900216
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −15.0698 −0.544139
\(768\) 0 0
\(769\) −6.07005 −0.218892 −0.109446 0.993993i \(-0.534908\pi\)
−0.109446 + 0.993993i \(0.534908\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.352621 0.610757i 0.0126829 0.0219674i −0.859614 0.510943i \(-0.829296\pi\)
0.872297 + 0.488976i \(0.162629\pi\)
\(774\) 0 0
\(775\) 0.589483 + 1.02101i 0.0211748 + 0.0366759i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 13.4982 + 23.3796i 0.483624 + 0.837661i
\(780\) 0 0
\(781\) 3.65190 6.32528i 0.130675 0.226336i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 25.5518 0.911984
\(786\) 0 0
\(787\) −17.2276 −0.614096 −0.307048 0.951694i \(-0.599341\pi\)
−0.307048 + 0.951694i \(0.599341\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 7.38829 0.262697
\(792\) 0 0
\(793\) −26.0364 45.0964i −0.924580 1.60142i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 22.9290 + 39.7141i 0.812185 + 1.40675i 0.911331 + 0.411673i \(0.135056\pi\)
−0.0991461 + 0.995073i \(0.531611\pi\)
\(798\) 0 0
\(799\) 5.95236 + 10.3098i 0.210579 + 0.364734i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −6.22085 −0.219529
\(804\) 0 0
\(805\) −2.12882 3.68722i −0.0750310 0.129958i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 8.50823 14.7367i 0.299133 0.518114i −0.676805 0.736163i \(-0.736636\pi\)
0.975938 + 0.218049i \(0.0699691\pi\)
\(810\) 0 0
\(811\) 9.73127 16.8550i 0.341711 0.591861i −0.643040 0.765833i \(-0.722327\pi\)
0.984751 + 0.173972i \(0.0556603\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 13.4024 0.469467
\(816\) 0 0
\(817\) −1.23222 + 2.13427i −0.0431100 + 0.0746687i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 23.9274 41.4435i 0.835073 1.44639i −0.0588987 0.998264i \(-0.518759\pi\)
0.893971 0.448124i \(-0.147908\pi\)
\(822\) 0 0
\(823\) −7.21568 12.4979i −0.251523 0.435650i 0.712423 0.701751i \(-0.247598\pi\)
−0.963945 + 0.266101i \(0.914265\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −9.05625 + 15.6859i −0.314917 + 0.545452i −0.979420 0.201834i \(-0.935310\pi\)
0.664503 + 0.747286i \(0.268643\pi\)
\(828\) 0 0
\(829\) 20.7127 + 35.8754i 0.719381 + 1.24600i 0.961245 + 0.275695i \(0.0889079\pi\)
−0.241864 + 0.970310i \(0.577759\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.78492 4.82362i 0.0964916 0.167128i
\(834\) 0 0
\(835\) −2.99861 5.19375i −0.103771 0.179737i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −1.06229 1.83994i −0.0366743 0.0635217i 0.847106 0.531424i \(-0.178343\pi\)
−0.883780 + 0.467903i \(0.845010\pi\)
\(840\) 0 0
\(841\) −7.02049 −0.242086
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 37.2818 1.28253
\(846\) 0 0
\(847\) −6.34101 + 10.9829i −0.217880 + 0.377379i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 11.7058 + 3.61184i 0.401270 + 0.123812i
\(852\) 0 0
\(853\) −14.6351 25.3487i −0.501096 0.867924i −0.999999 0.00126632i \(-0.999597\pi\)
0.498903 0.866658i \(-0.333736\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0.908844 0.0310455 0.0155228 0.999880i \(-0.495059\pi\)
0.0155228 + 0.999880i \(0.495059\pi\)
\(858\) 0 0
\(859\) 11.8389 0.403938 0.201969 0.979392i \(-0.435266\pi\)
0.201969 + 0.979392i \(0.435266\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −5.86015 10.1501i −0.199482 0.345513i 0.748879 0.662707i \(-0.230593\pi\)
−0.948361 + 0.317194i \(0.897259\pi\)
\(864\) 0 0
\(865\) −14.3810 −0.488969
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3.57466 + 6.19149i −0.121262 + 0.210032i
\(870\) 0 0
\(871\) 4.88777 + 8.46587i 0.165616 + 0.286855i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −7.26710 + 12.5870i −0.245673 + 0.425518i
\(876\) 0 0
\(877\) −20.0129 −0.675789 −0.337895 0.941184i \(-0.609715\pi\)
−0.337895 + 0.941184i \(0.609715\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 23.4902 40.6863i 0.791406 1.37076i −0.133690 0.991023i \(-0.542683\pi\)
0.925096 0.379733i \(-0.123984\pi\)
\(882\) 0 0
\(883\) −8.81576 + 15.2693i −0.296674 + 0.513854i −0.975373 0.220562i \(-0.929211\pi\)
0.678699 + 0.734416i \(0.262544\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −16.4698 −0.553001 −0.276501 0.961014i \(-0.589175\pi\)
−0.276501 + 0.961014i \(0.589175\pi\)
\(888\) 0 0
\(889\) −21.3498 −0.716050
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −19.1061 + 33.0928i −0.639362 + 1.10741i
\(894\) 0 0
\(895\) −5.58542 + 9.67422i −0.186700 + 0.323374i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.94793 0.0983191
\(900\) 0 0
\(901\) −5.19168 + 8.99225i −0.172960 + 0.299575i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.29217 + 2.23811i 0.0429533 + 0.0743974i
\(906\) 0 0
\(907\) −3.52059 + 6.09785i −0.116899 + 0.202476i −0.918537 0.395334i \(-0.870629\pi\)
0.801638 + 0.597810i \(0.203962\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −3.13128 −0.103744 −0.0518719 0.998654i \(-0.516519\pi\)
−0.0518719 + 0.998654i \(0.516519\pi\)
\(912\) 0 0
\(913\) 5.09648 + 8.82736i 0.168669 + 0.292143i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 18.2750 0.603493
\(918\) 0 0
\(919\) −35.2994 −1.16442 −0.582210 0.813038i \(-0.697812\pi\)
−0.582210 + 0.813038i \(0.697812\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 33.9096 + 58.7331i 1.11615 + 1.93322i
\(924\) 0 0
\(925\) −2.53690 11.1192i −0.0834129 0.365598i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −12.8384 + 22.2368i −0.421215 + 0.729567i −0.996059 0.0886970i \(-0.971730\pi\)
0.574843 + 0.818264i \(0.305063\pi\)
\(930\) 0 0
\(931\) 17.8783 0.585937
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.11157 0.0363522
\(936\) 0 0
\(937\) 29.5162 + 51.1235i 0.964252 + 1.67013i 0.711612 + 0.702572i \(0.247965\pi\)
0.252639 + 0.967560i \(0.418701\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −26.0269 45.0799i −0.848452 1.46956i −0.882589 0.470145i \(-0.844201\pi\)
0.0341365 0.999417i \(-0.489132\pi\)
\(942\) 0 0
\(943\) 8.46916 14.6690i 0.275794 0.477689i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 6.96068 + 12.0562i 0.226192 + 0.391775i 0.956676 0.291154i \(-0.0940391\pi\)
−0.730485 + 0.682929i \(0.760706\pi\)
\(948\) 0 0
\(949\) 28.8817 50.0245i 0.937538 1.62386i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 14.3770 + 24.9017i 0.465718 + 0.806646i 0.999234 0.0391435i \(-0.0124630\pi\)
−0.533516 + 0.845790i \(0.679130\pi\)
\(954\) 0 0
\(955\) 8.00553 13.8660i 0.259053 0.448693i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −10.6249 + 18.4029i −0.343097 + 0.594261i
\(960\) 0 0
\(961\) −30.6046 −0.987246
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 9.29807 16.1047i 0.299315 0.518429i
\(966\) 0 0
\(967\) 19.0404 32.9790i 0.612300 1.06053i −0.378552 0.925580i \(-0.623578\pi\)
0.990852 0.134954i \(-0.0430887\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −0.0548866 0.0950663i −0.00176139 0.00305082i 0.865143 0.501525i \(-0.167227\pi\)
−0.866905 + 0.498474i \(0.833894\pi\)
\(972\) 0 0
\(973\) 22.8130 0.731353
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0.767944 + 1.33012i 0.0245687 + 0.0425543i 0.878048 0.478572i \(-0.158845\pi\)
−0.853480 + 0.521126i \(0.825512\pi\)
\(978\) 0 0
\(979\) −3.90183 6.75817i −0.124703 0.215992i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −9.04473 15.6659i −0.288482 0.499666i 0.684966 0.728575i \(-0.259817\pi\)
−0.973448 + 0.228910i \(0.926484\pi\)
\(984\) 0 0
\(985\) −23.1839 −0.738699
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.54626 0.0491683
\(990\) 0 0
\(991\) −19.2773 −0.612364 −0.306182 0.951973i \(-0.599052\pi\)
−0.306182 + 0.951973i \(0.599052\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 3.42727 5.93620i 0.108652 0.188190i
\(996\) 0 0
\(997\) 20.3347 + 35.2207i 0.644006 + 1.11545i 0.984530 + 0.175215i \(0.0560621\pi\)
−0.340524 + 0.940236i \(0.610605\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2664.2.r.n.433.3 10
3.2 odd 2 296.2.i.c.137.5 yes 10
12.11 even 2 592.2.i.h.433.1 10
37.10 even 3 inner 2664.2.r.n.1009.3 10
111.47 odd 6 296.2.i.c.121.5 10
444.47 even 6 592.2.i.h.417.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
296.2.i.c.121.5 10 111.47 odd 6
296.2.i.c.137.5 yes 10 3.2 odd 2
592.2.i.h.417.1 10 444.47 even 6
592.2.i.h.433.1 10 12.11 even 2
2664.2.r.n.433.3 10 1.1 even 1 trivial
2664.2.r.n.1009.3 10 37.10 even 3 inner