Properties

Label 2664.2.r.n.433.5
Level $2664$
Weight $2$
Character 2664.433
Analytic conductor $21.272$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2664,2,Mod(433,2664)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2664, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2664.433");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2664 = 2^{3} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2664.r (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.2721470985\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 9x^{8} + 4x^{7} + 54x^{6} + 6x^{5} + 98x^{4} - 8x^{3} + 148x^{2} - 24x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 296)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 433.5
Root \(-0.917643 + 1.58940i\) of defining polynomial
Character \(\chi\) \(=\) 2664.433
Dual form 2664.2.r.n.1009.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73584 - 3.00655i) q^{5} +(1.47954 - 2.56263i) q^{7} +O(q^{10})\) \(q+(1.73584 - 3.00655i) q^{5} +(1.47954 - 2.56263i) q^{7} -5.67057 q^{11} +(3.28255 - 5.68554i) q^{13} +(-0.500000 - 0.866025i) q^{17} +(-1.44726 + 2.50673i) q^{19} +5.85359 q^{23} +(-3.52625 - 6.10764i) q^{25} +1.19523 q^{29} -5.67057 q^{31} +(-5.13646 - 8.89661i) q^{35} +(-4.18841 + 4.41103i) q^{37} +(5.49792 - 9.52267i) q^{41} +4.47167 q^{43} -7.40187 q^{47} +(-0.878051 - 1.52083i) q^{49} +(2.65082 + 4.59135i) q^{53} +(-9.84318 + 17.0489i) q^{55} +(1.38803 + 2.40413i) q^{59} +(1.72586 - 2.98928i) q^{61} +(-11.3959 - 19.7383i) q^{65} +(3.02441 - 5.23843i) q^{67} +(0.585015 - 1.01328i) q^{71} -15.3611 q^{73} +(-8.38981 + 14.5316i) q^{77} +(-2.66611 + 4.61784i) q^{79} +(5.94287 + 10.2934i) q^{83} -3.47167 q^{85} +(3.49792 + 6.05857i) q^{89} +(-9.71329 - 16.8239i) q^{91} +(5.02441 + 8.70253i) q^{95} -11.0655 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 3 q^{5} + 3 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 10 q - 3 q^{5} + 3 q^{7} - 16 q^{11} + q^{13} - 5 q^{17} - 3 q^{19} + 12 q^{23} - 12 q^{25} - 16 q^{31} - 5 q^{35} - 12 q^{37} - 9 q^{41} + 4 q^{43} - 32 q^{47} - 18 q^{49} - 5 q^{53} + 4 q^{55} + 5 q^{59} + 15 q^{61} - 23 q^{65} + q^{67} + 17 q^{71} - 36 q^{73} + 4 q^{77} + 21 q^{79} + 15 q^{83} + 6 q^{85} - 29 q^{89} - q^{91} + 21 q^{95} - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2664\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1333\) \(1999\) \(2369\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.73584 3.00655i 0.776289 1.34457i −0.157778 0.987475i \(-0.550433\pi\)
0.934067 0.357097i \(-0.116234\pi\)
\(6\) 0 0
\(7\) 1.47954 2.56263i 0.559212 0.968583i −0.438351 0.898804i \(-0.644437\pi\)
0.997562 0.0697793i \(-0.0222295\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.67057 −1.70974 −0.854871 0.518841i \(-0.826364\pi\)
−0.854871 + 0.518841i \(0.826364\pi\)
\(12\) 0 0
\(13\) 3.28255 5.68554i 0.910414 1.57688i 0.0969348 0.995291i \(-0.469096\pi\)
0.813480 0.581593i \(-0.197570\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.500000 0.866025i −0.121268 0.210042i 0.799000 0.601331i \(-0.205363\pi\)
−0.920268 + 0.391289i \(0.872029\pi\)
\(18\) 0 0
\(19\) −1.44726 + 2.50673i −0.332024 + 0.575083i −0.982909 0.184094i \(-0.941065\pi\)
0.650884 + 0.759177i \(0.274398\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.85359 1.22056 0.610279 0.792186i \(-0.291057\pi\)
0.610279 + 0.792186i \(0.291057\pi\)
\(24\) 0 0
\(25\) −3.52625 6.10764i −0.705249 1.22153i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.19523 0.221948 0.110974 0.993823i \(-0.464603\pi\)
0.110974 + 0.993823i \(0.464603\pi\)
\(30\) 0 0
\(31\) −5.67057 −1.01846 −0.509232 0.860629i \(-0.670071\pi\)
−0.509232 + 0.860629i \(0.670071\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.13646 8.89661i −0.868220 1.50380i
\(36\) 0 0
\(37\) −4.18841 + 4.41103i −0.688571 + 0.725169i
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.49792 9.52267i 0.858630 1.48719i −0.0146054 0.999893i \(-0.504649\pi\)
0.873236 0.487298i \(-0.162017\pi\)
\(42\) 0 0
\(43\) 4.47167 0.681923 0.340962 0.940077i \(-0.389247\pi\)
0.340962 + 0.940077i \(0.389247\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −7.40187 −1.07967 −0.539837 0.841770i \(-0.681514\pi\)
−0.539837 + 0.841770i \(0.681514\pi\)
\(48\) 0 0
\(49\) −0.878051 1.52083i −0.125436 0.217261i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.65082 + 4.59135i 0.364118 + 0.630671i 0.988634 0.150341i \(-0.0480371\pi\)
−0.624516 + 0.781012i \(0.714704\pi\)
\(54\) 0 0
\(55\) −9.84318 + 17.0489i −1.32725 + 2.29887i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.38803 + 2.40413i 0.180706 + 0.312991i 0.942121 0.335273i \(-0.108829\pi\)
−0.761415 + 0.648264i \(0.775495\pi\)
\(60\) 0 0
\(61\) 1.72586 2.98928i 0.220974 0.382738i −0.734130 0.679009i \(-0.762410\pi\)
0.955104 + 0.296271i \(0.0957431\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −11.3959 19.7383i −1.41349 2.44824i
\(66\) 0 0
\(67\) 3.02441 5.23843i 0.369490 0.639976i −0.619995 0.784605i \(-0.712866\pi\)
0.989486 + 0.144629i \(0.0461989\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.585015 1.01328i 0.0694285 0.120254i −0.829221 0.558920i \(-0.811216\pi\)
0.898650 + 0.438667i \(0.144549\pi\)
\(72\) 0 0
\(73\) −15.3611 −1.79788 −0.898940 0.438072i \(-0.855662\pi\)
−0.898940 + 0.438072i \(0.855662\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8.38981 + 14.5316i −0.956108 + 1.65603i
\(78\) 0 0
\(79\) −2.66611 + 4.61784i −0.299961 + 0.519547i −0.976127 0.217202i \(-0.930307\pi\)
0.676166 + 0.736749i \(0.263640\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.94287 + 10.2934i 0.652315 + 1.12984i 0.982560 + 0.185948i \(0.0595355\pi\)
−0.330244 + 0.943895i \(0.607131\pi\)
\(84\) 0 0
\(85\) −3.47167 −0.376555
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.49792 + 6.05857i 0.370778 + 0.642207i 0.989685 0.143257i \(-0.0457576\pi\)
−0.618907 + 0.785464i \(0.712424\pi\)
\(90\) 0 0
\(91\) −9.71329 16.8239i −1.01823 1.76362i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.02441 + 8.70253i 0.515494 + 0.892861i
\(96\) 0 0
\(97\) −11.0655 −1.12353 −0.561765 0.827297i \(-0.689877\pi\)
−0.561765 + 0.827297i \(0.689877\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 12.1186 1.20585 0.602924 0.797799i \(-0.294002\pi\)
0.602924 + 0.797799i \(0.294002\pi\)
\(102\) 0 0
\(103\) −3.94608 −0.388819 −0.194409 0.980920i \(-0.562279\pi\)
−0.194409 + 0.980920i \(0.562279\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.847809 1.46845i 0.0819608 0.141960i −0.822131 0.569298i \(-0.807215\pi\)
0.904092 + 0.427338i \(0.140548\pi\)
\(108\) 0 0
\(109\) 7.06318 + 12.2338i 0.676530 + 1.17178i 0.976019 + 0.217685i \(0.0698504\pi\)
−0.299489 + 0.954100i \(0.596816\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.33712 4.04801i −0.219858 0.380805i 0.734906 0.678169i \(-0.237226\pi\)
−0.954764 + 0.297363i \(0.903893\pi\)
\(114\) 0 0
\(115\) 10.1609 17.5991i 0.947506 1.64113i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.95907 −0.271258
\(120\) 0 0
\(121\) 21.1554 1.92322
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −7.12558 −0.637331
\(126\) 0 0
\(127\) 1.20934 + 2.09464i 0.107312 + 0.185869i 0.914680 0.404178i \(-0.132442\pi\)
−0.807369 + 0.590047i \(0.799109\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.00047 8.66106i −0.436893 0.756720i 0.560555 0.828117i \(-0.310588\pi\)
−0.997448 + 0.0713966i \(0.977254\pi\)
\(132\) 0 0
\(133\) 4.28255 + 7.41759i 0.371344 + 0.643186i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.29561 −0.196127 −0.0980636 0.995180i \(-0.531265\pi\)
−0.0980636 + 0.995180i \(0.531265\pi\)
\(138\) 0 0
\(139\) −0.686769 1.18952i −0.0582509 0.100894i 0.835429 0.549598i \(-0.185219\pi\)
−0.893680 + 0.448704i \(0.851886\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −18.6139 + 32.2402i −1.55657 + 2.69606i
\(144\) 0 0
\(145\) 2.07472 3.59352i 0.172296 0.298425i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.22043 −0.509597 −0.254799 0.966994i \(-0.582009\pi\)
−0.254799 + 0.966994i \(0.582009\pi\)
\(150\) 0 0
\(151\) −0.221400 + 0.383475i −0.0180172 + 0.0312068i −0.874893 0.484315i \(-0.839069\pi\)
0.856876 + 0.515522i \(0.172402\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.84318 + 17.0489i −0.790623 + 1.36940i
\(156\) 0 0
\(157\) 4.19753 + 7.27034i 0.334999 + 0.580236i 0.983485 0.180991i \(-0.0579305\pi\)
−0.648485 + 0.761227i \(0.724597\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.66060 15.0006i 0.682551 1.18221i
\(162\) 0 0
\(163\) −4.77816 8.27602i −0.374254 0.648228i 0.615961 0.787777i \(-0.288768\pi\)
−0.990215 + 0.139549i \(0.955435\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.54742 4.41227i 0.197126 0.341431i −0.750470 0.660905i \(-0.770173\pi\)
0.947595 + 0.319473i \(0.103506\pi\)
\(168\) 0 0
\(169\) −15.0502 26.0677i −1.15771 2.00521i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −5.64400 9.77570i −0.429106 0.743233i 0.567688 0.823244i \(-0.307838\pi\)
−0.996794 + 0.0800108i \(0.974505\pi\)
\(174\) 0 0
\(175\) −20.8688 −1.57754
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.89294 0.216229 0.108114 0.994138i \(-0.465519\pi\)
0.108114 + 0.994138i \(0.465519\pi\)
\(180\) 0 0
\(181\) 4.91886 8.51971i 0.365616 0.633265i −0.623259 0.782015i \(-0.714192\pi\)
0.988875 + 0.148751i \(0.0475251\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.99162 + 20.2495i 0.440513 + 1.48877i
\(186\) 0 0
\(187\) 2.83529 + 4.91086i 0.207337 + 0.359118i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.03309 0.291824 0.145912 0.989298i \(-0.453388\pi\)
0.145912 + 0.989298i \(0.453388\pi\)
\(192\) 0 0
\(193\) −1.54196 −0.110993 −0.0554965 0.998459i \(-0.517674\pi\)
−0.0554965 + 0.998459i \(0.517674\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.5135 18.2099i −0.749054 1.29740i −0.948277 0.317446i \(-0.897175\pi\)
0.199222 0.979954i \(-0.436158\pi\)
\(198\) 0 0
\(199\) 2.94686 0.208898 0.104449 0.994530i \(-0.466692\pi\)
0.104449 + 0.994530i \(0.466692\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.76838 3.06293i 0.124116 0.214975i
\(204\) 0 0
\(205\) −19.0870 33.0596i −1.33309 2.30898i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 8.20679 14.2146i 0.567676 0.983243i
\(210\) 0 0
\(211\) 13.8286 0.952000 0.476000 0.879445i \(-0.342086\pi\)
0.476000 + 0.879445i \(0.342086\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.76208 13.4443i 0.529370 0.916895i
\(216\) 0 0
\(217\) −8.38981 + 14.5316i −0.569538 + 0.986468i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.56509 −0.441616
\(222\) 0 0
\(223\) −1.03935 −0.0696002 −0.0348001 0.999394i \(-0.511079\pi\)
−0.0348001 + 0.999394i \(0.511079\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3.18748 + 5.52088i −0.211561 + 0.366434i −0.952203 0.305466i \(-0.901188\pi\)
0.740643 + 0.671899i \(0.234521\pi\)
\(228\) 0 0
\(229\) 8.48618 14.6985i 0.560783 0.971304i −0.436646 0.899634i \(-0.643834\pi\)
0.997428 0.0716704i \(-0.0228330\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.01221 0.0663120 0.0331560 0.999450i \(-0.489444\pi\)
0.0331560 + 0.999450i \(0.489444\pi\)
\(234\) 0 0
\(235\) −12.8484 + 22.2541i −0.838139 + 1.45170i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.04463 13.9337i −0.520364 0.901296i −0.999720 0.0236758i \(-0.992463\pi\)
0.479356 0.877621i \(-0.340870\pi\)
\(240\) 0 0
\(241\) −2.08063 + 3.60376i −0.134025 + 0.232138i −0.925225 0.379420i \(-0.876124\pi\)
0.791200 + 0.611558i \(0.209457\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.09661 −0.389498
\(246\) 0 0
\(247\) 9.50140 + 16.4569i 0.604559 + 1.04713i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −0.560874 −0.0354021 −0.0177010 0.999843i \(-0.505635\pi\)
−0.0177010 + 0.999843i \(0.505635\pi\)
\(252\) 0 0
\(253\) −33.1932 −2.08684
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.12805 10.6141i −0.382257 0.662089i 0.609127 0.793073i \(-0.291520\pi\)
−0.991385 + 0.130983i \(0.958187\pi\)
\(258\) 0 0
\(259\) 5.10694 + 17.2596i 0.317330 + 1.07246i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −13.1970 + 22.8579i −0.813763 + 1.40948i 0.0964501 + 0.995338i \(0.469251\pi\)
−0.910213 + 0.414141i \(0.864082\pi\)
\(264\) 0 0
\(265\) 18.4055 1.13064
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 30.8272 1.87957 0.939783 0.341772i \(-0.111027\pi\)
0.939783 + 0.341772i \(0.111027\pi\)
\(270\) 0 0
\(271\) −14.3376 24.8335i −0.870948 1.50853i −0.861017 0.508576i \(-0.830172\pi\)
−0.00993062 0.999951i \(-0.503161\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 19.9958 + 34.6338i 1.20579 + 2.08850i
\(276\) 0 0
\(277\) 9.22745 15.9824i 0.554424 0.960290i −0.443524 0.896262i \(-0.646272\pi\)
0.997948 0.0640281i \(-0.0203947\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.12597 10.6105i −0.365445 0.632969i 0.623403 0.781901i \(-0.285750\pi\)
−0.988847 + 0.148932i \(0.952416\pi\)
\(282\) 0 0
\(283\) 16.5026 28.5834i 0.980981 1.69911i 0.322390 0.946607i \(-0.395514\pi\)
0.658590 0.752502i \(-0.271153\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −16.2687 28.1783i −0.960313 1.66331i
\(288\) 0 0
\(289\) 8.00000 13.8564i 0.470588 0.815083i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 14.0870 24.3993i 0.822969 1.42542i −0.0804934 0.996755i \(-0.525650\pi\)
0.903462 0.428668i \(-0.141017\pi\)
\(294\) 0 0
\(295\) 9.63753 0.561119
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 19.2147 33.2808i 1.11121 1.92468i
\(300\) 0 0
\(301\) 6.61600 11.4592i 0.381340 0.660500i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −5.99162 10.3778i −0.343079 0.594230i
\(306\) 0 0
\(307\) 5.96603 0.340499 0.170250 0.985401i \(-0.445543\pi\)
0.170250 + 0.985401i \(0.445543\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3.42562 + 5.93334i 0.194249 + 0.336449i 0.946654 0.322252i \(-0.104440\pi\)
−0.752405 + 0.658701i \(0.771106\pi\)
\(312\) 0 0
\(313\) −0.741420 1.28418i −0.0419075 0.0725860i 0.844311 0.535854i \(-0.180010\pi\)
−0.886218 + 0.463268i \(0.846677\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.10570 8.84333i −0.286765 0.496691i 0.686271 0.727346i \(-0.259246\pi\)
−0.973036 + 0.230655i \(0.925913\pi\)
\(318\) 0 0
\(319\) −6.77763 −0.379474
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.89452 0.161055
\(324\) 0 0
\(325\) −46.3003 −2.56828
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −10.9513 + 18.9683i −0.603766 + 1.04575i
\(330\) 0 0
\(331\) 13.2127 + 22.8851i 0.726238 + 1.25788i 0.958462 + 0.285219i \(0.0920664\pi\)
−0.232224 + 0.972662i \(0.574600\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −10.4998 18.1861i −0.573663 0.993613i
\(336\) 0 0
\(337\) −6.07874 + 10.5287i −0.331130 + 0.573534i −0.982734 0.185026i \(-0.940763\pi\)
0.651604 + 0.758560i \(0.274097\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 32.1554 1.74131
\(342\) 0 0
\(343\) 15.5171 0.837843
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −15.9890 −0.858336 −0.429168 0.903225i \(-0.641193\pi\)
−0.429168 + 0.903225i \(0.641193\pi\)
\(348\) 0 0
\(349\) 9.96783 + 17.2648i 0.533565 + 0.924162i 0.999231 + 0.0392018i \(0.0124815\pi\)
−0.465666 + 0.884961i \(0.654185\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 7.08016 + 12.2632i 0.376839 + 0.652705i 0.990600 0.136787i \(-0.0436776\pi\)
−0.613761 + 0.789492i \(0.710344\pi\)
\(354\) 0 0
\(355\) −2.03098 3.51776i −0.107793 0.186703i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 31.9371 1.68557 0.842787 0.538247i \(-0.180913\pi\)
0.842787 + 0.538247i \(0.180913\pi\)
\(360\) 0 0
\(361\) 5.31088 + 9.19871i 0.279520 + 0.484142i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −26.6643 + 46.1840i −1.39567 + 2.41738i
\(366\) 0 0
\(367\) −8.62511 + 14.9391i −0.450227 + 0.779817i −0.998400 0.0565487i \(-0.981990\pi\)
0.548173 + 0.836365i \(0.315324\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 15.6879 0.814477
\(372\) 0 0
\(373\) −10.9713 + 19.0029i −0.568075 + 0.983935i 0.428681 + 0.903456i \(0.358978\pi\)
−0.996756 + 0.0804788i \(0.974355\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.92339 6.79551i 0.202065 0.349987i
\(378\) 0 0
\(379\) −2.85619 4.94707i −0.146713 0.254114i 0.783298 0.621647i \(-0.213536\pi\)
−0.930011 + 0.367533i \(0.880203\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −9.80862 + 16.9890i −0.501197 + 0.868099i 0.498802 + 0.866716i \(0.333774\pi\)
−0.999999 + 0.00138286i \(0.999560\pi\)
\(384\) 0 0
\(385\) 29.1267 + 50.4489i 1.48443 + 2.57111i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −7.67918 + 13.3007i −0.389350 + 0.674373i −0.992362 0.123358i \(-0.960634\pi\)
0.603013 + 0.797732i \(0.293967\pi\)
\(390\) 0 0
\(391\) −2.92680 5.06936i −0.148014 0.256369i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 9.25586 + 16.0316i 0.465713 + 0.806638i
\(396\) 0 0
\(397\) 14.7190 0.738728 0.369364 0.929285i \(-0.379576\pi\)
0.369364 + 0.929285i \(0.379576\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.94829 −0.0972929 −0.0486464 0.998816i \(-0.515491\pi\)
−0.0486464 + 0.998816i \(0.515491\pi\)
\(402\) 0 0
\(403\) −18.6139 + 32.2402i −0.927225 + 1.60600i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 23.7507 25.0131i 1.17728 1.23985i
\(408\) 0 0
\(409\) −11.1518 19.3155i −0.551422 0.955091i −0.998172 0.0604326i \(-0.980752\pi\)
0.446750 0.894659i \(-0.352581\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 8.21453 0.404211
\(414\) 0 0
\(415\) 41.2634 2.02554
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 19.5824 + 33.9178i 0.956665 + 1.65699i 0.730512 + 0.682900i \(0.239282\pi\)
0.226153 + 0.974092i \(0.427385\pi\)
\(420\) 0 0
\(421\) 13.6602 0.665759 0.332879 0.942969i \(-0.391980\pi\)
0.332879 + 0.942969i \(0.391980\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.52625 + 6.10764i −0.171048 + 0.296264i
\(426\) 0 0
\(427\) −5.10694 8.84549i −0.247142 0.428063i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3.41932 5.92244i 0.164703 0.285274i −0.771847 0.635809i \(-0.780667\pi\)
0.936550 + 0.350535i \(0.114000\pi\)
\(432\) 0 0
\(433\) 0.552496 0.0265513 0.0132756 0.999912i \(-0.495774\pi\)
0.0132756 + 0.999912i \(0.495774\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −8.47167 + 14.6734i −0.405255 + 0.701922i
\(438\) 0 0
\(439\) 11.2789 19.5356i 0.538311 0.932382i −0.460684 0.887564i \(-0.652396\pi\)
0.998995 0.0448181i \(-0.0142708\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 27.5511 1.30899 0.654496 0.756065i \(-0.272881\pi\)
0.654496 + 0.756065i \(0.272881\pi\)
\(444\) 0 0
\(445\) 24.2872 1.15132
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −3.22272 + 5.58192i −0.152090 + 0.263427i −0.931995 0.362470i \(-0.881934\pi\)
0.779906 + 0.625897i \(0.215267\pi\)
\(450\) 0 0
\(451\) −31.1763 + 53.9990i −1.46804 + 2.54271i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −67.4427 −3.16176
\(456\) 0 0
\(457\) −3.37090 + 5.83857i −0.157684 + 0.273117i −0.934033 0.357186i \(-0.883736\pi\)
0.776349 + 0.630303i \(0.217069\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −8.51870 14.7548i −0.396756 0.687201i 0.596568 0.802563i \(-0.296531\pi\)
−0.993324 + 0.115362i \(0.963197\pi\)
\(462\) 0 0
\(463\) −12.6720 + 21.9486i −0.588919 + 1.02004i 0.405456 + 0.914115i \(0.367113\pi\)
−0.994374 + 0.105923i \(0.966220\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19.0670 −0.882314 −0.441157 0.897430i \(-0.645432\pi\)
−0.441157 + 0.897430i \(0.645432\pi\)
\(468\) 0 0
\(469\) −8.94944 15.5009i −0.413247 0.715765i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −25.3569 −1.16591
\(474\) 0 0
\(475\) 20.4136 0.936640
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 14.6566 + 25.3860i 0.669678 + 1.15992i 0.977994 + 0.208633i \(0.0669014\pi\)
−0.308316 + 0.951284i \(0.599765\pi\)
\(480\) 0 0
\(481\) 11.3304 + 38.2928i 0.516623 + 1.74600i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −19.2079 + 33.2690i −0.872184 + 1.51067i
\(486\) 0 0
\(487\) 30.4309 1.37896 0.689478 0.724307i \(-0.257840\pi\)
0.689478 + 0.724307i \(0.257840\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.08416 0.0940567 0.0470283 0.998894i \(-0.485025\pi\)
0.0470283 + 0.998894i \(0.485025\pi\)
\(492\) 0 0
\(493\) −0.597614 1.03510i −0.0269152 0.0466185i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.73110 2.99836i −0.0776505 0.134495i
\(498\) 0 0
\(499\) 1.43505 2.48558i 0.0642418 0.111270i −0.832116 0.554602i \(-0.812870\pi\)
0.896357 + 0.443332i \(0.146204\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −3.09054 5.35297i −0.137800 0.238677i 0.788863 0.614569i \(-0.210670\pi\)
−0.926664 + 0.375892i \(0.877337\pi\)
\(504\) 0 0
\(505\) 21.0359 36.4353i 0.936086 1.62135i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −5.92410 10.2608i −0.262581 0.454804i 0.704346 0.709857i \(-0.251240\pi\)
−0.966927 + 0.255053i \(0.917907\pi\)
\(510\) 0 0
\(511\) −22.7273 + 39.3648i −1.00540 + 1.74140i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −6.84975 + 11.8641i −0.301836 + 0.522795i
\(516\) 0 0
\(517\) 41.9728 1.84596
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 6.60622 11.4423i 0.289424 0.501296i −0.684249 0.729249i \(-0.739870\pi\)
0.973672 + 0.227952i \(0.0732030\pi\)
\(522\) 0 0
\(523\) 12.8531 22.2623i 0.562028 0.973461i −0.435291 0.900290i \(-0.643355\pi\)
0.997319 0.0731714i \(-0.0233120\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.83529 + 4.91086i 0.123507 + 0.213920i
\(528\) 0 0
\(529\) 11.2645 0.489762
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −36.0943 62.5172i −1.56342 2.70792i
\(534\) 0 0
\(535\) −2.94331 5.09797i −0.127251 0.220404i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4.97905 + 8.62397i 0.214463 + 0.371461i
\(540\) 0 0
\(541\) 7.42197 0.319095 0.159548 0.987190i \(-0.448996\pi\)
0.159548 + 0.987190i \(0.448996\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 49.0421 2.10073
\(546\) 0 0
\(547\) −29.2749 −1.25171 −0.625853 0.779941i \(-0.715249\pi\)
−0.625853 + 0.779941i \(0.715249\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.72981 + 2.99611i −0.0736922 + 0.127639i
\(552\) 0 0
\(553\) 7.88921 + 13.6645i 0.335483 + 0.581074i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.23270 + 15.9915i 0.391202 + 0.677582i 0.992608 0.121361i \(-0.0387260\pi\)
−0.601406 + 0.798943i \(0.705393\pi\)
\(558\) 0 0
\(559\) 14.6785 25.4238i 0.620833 1.07531i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 41.0334 1.72935 0.864676 0.502329i \(-0.167524\pi\)
0.864676 + 0.502329i \(0.167524\pi\)
\(564\) 0 0
\(565\) −16.2274 −0.682693
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −37.1894 −1.55906 −0.779530 0.626364i \(-0.784542\pi\)
−0.779530 + 0.626364i \(0.784542\pi\)
\(570\) 0 0
\(571\) −22.1390 38.3459i −0.926490 1.60473i −0.789148 0.614204i \(-0.789477\pi\)
−0.137342 0.990524i \(-0.543856\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −20.6412 35.7516i −0.860798 1.49095i
\(576\) 0 0
\(577\) 20.9558 + 36.2964i 0.872400 + 1.51104i 0.859507 + 0.511124i \(0.170771\pi\)
0.0128925 + 0.999917i \(0.495896\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 35.1708 1.45913
\(582\) 0 0
\(583\) −15.0317 26.0356i −0.622548 1.07828i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4.82583 + 8.35858i −0.199183 + 0.344996i −0.948264 0.317483i \(-0.897162\pi\)
0.749081 + 0.662479i \(0.230496\pi\)
\(588\) 0 0
\(589\) 8.20679 14.2146i 0.338155 0.585702i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 35.2684 1.44830 0.724150 0.689643i \(-0.242232\pi\)
0.724150 + 0.689643i \(0.242232\pi\)
\(594\) 0 0
\(595\) −5.13646 + 8.89661i −0.210574 + 0.364725i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −12.2599 + 21.2348i −0.500927 + 0.867631i 0.499073 + 0.866560i \(0.333674\pi\)
−0.999999 + 0.00107059i \(0.999659\pi\)
\(600\) 0 0
\(601\) −5.63161 9.75423i −0.229718 0.397883i 0.728006 0.685570i \(-0.240447\pi\)
−0.957725 + 0.287687i \(0.907114\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 36.7223 63.6048i 1.49297 2.58590i
\(606\) 0 0
\(607\) −5.61455 9.72468i −0.227888 0.394713i 0.729294 0.684200i \(-0.239849\pi\)
−0.957182 + 0.289487i \(0.906515\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −24.2970 + 42.0836i −0.982951 + 1.70252i
\(612\) 0 0
\(613\) 18.5965 + 32.2101i 0.751107 + 1.30096i 0.947287 + 0.320388i \(0.103813\pi\)
−0.196180 + 0.980568i \(0.562854\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.29094 + 14.3603i 0.333781 + 0.578125i 0.983250 0.182263i \(-0.0583421\pi\)
−0.649469 + 0.760388i \(0.725009\pi\)
\(618\) 0 0
\(619\) 9.98466 0.401317 0.200659 0.979661i \(-0.435692\pi\)
0.200659 + 0.979661i \(0.435692\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 20.7012 0.829375
\(624\) 0 0
\(625\) 5.26240 9.11475i 0.210496 0.364590i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5.91427 + 1.42175i 0.235817 + 0.0566891i
\(630\) 0 0
\(631\) −0.851042 1.47405i −0.0338795 0.0586809i 0.848589 0.529053i \(-0.177453\pi\)
−0.882468 + 0.470372i \(0.844120\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.39687 0.333220
\(636\) 0 0
\(637\) −11.5290 −0.456795
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2.31984 + 4.01809i 0.0916284 + 0.158705i 0.908196 0.418544i \(-0.137459\pi\)
−0.816568 + 0.577249i \(0.804126\pi\)
\(642\) 0 0
\(643\) −42.5723 −1.67889 −0.839443 0.543448i \(-0.817119\pi\)
−0.839443 + 0.543448i \(0.817119\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0.662706 1.14784i 0.0260537 0.0451263i −0.852705 0.522393i \(-0.825039\pi\)
0.878758 + 0.477267i \(0.158373\pi\)
\(648\) 0 0
\(649\) −7.87090 13.6328i −0.308960 0.535134i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −21.9139 + 37.9560i −0.857557 + 1.48533i 0.0166945 + 0.999861i \(0.494686\pi\)
−0.874252 + 0.485472i \(0.838648\pi\)
\(654\) 0 0
\(655\) −34.7199 −1.35662
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 11.2811 19.5395i 0.439450 0.761150i −0.558197 0.829708i \(-0.688507\pi\)
0.997647 + 0.0685586i \(0.0218400\pi\)
\(660\) 0 0
\(661\) −8.36705 + 14.4922i −0.325441 + 0.563680i −0.981601 0.190941i \(-0.938846\pi\)
0.656161 + 0.754621i \(0.272179\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 29.7352 1.15308
\(666\) 0 0
\(667\) 6.99638 0.270901
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −9.78662 + 16.9509i −0.377808 + 0.654383i
\(672\) 0 0
\(673\) 7.51137 13.0101i 0.289542 0.501502i −0.684158 0.729333i \(-0.739830\pi\)
0.973700 + 0.227832i \(0.0731637\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 39.6180 1.52264 0.761322 0.648374i \(-0.224551\pi\)
0.761322 + 0.648374i \(0.224551\pi\)
\(678\) 0 0
\(679\) −16.3718 + 28.3567i −0.628291 + 1.08823i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −19.4817 33.7432i −0.745445 1.29115i −0.949986 0.312291i \(-0.898904\pi\)
0.204541 0.978858i \(-0.434430\pi\)
\(684\) 0 0
\(685\) −3.98480 + 6.90187i −0.152251 + 0.263707i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 34.8058 1.32599
\(690\) 0 0
\(691\) 18.3572 + 31.7955i 0.698340 + 1.20956i 0.969042 + 0.246897i \(0.0794108\pi\)
−0.270702 + 0.962663i \(0.587256\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.76847 −0.180878
\(696\) 0 0
\(697\) −10.9958 −0.416497
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 10.4484 + 18.0972i 0.394631 + 0.683521i 0.993054 0.117659i \(-0.0375391\pi\)
−0.598423 + 0.801180i \(0.704206\pi\)
\(702\) 0 0
\(703\) −4.99554 16.8831i −0.188410 0.636759i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 17.9299 31.0555i 0.674324 1.16796i
\(708\) 0 0
\(709\) 25.0407 0.940422 0.470211 0.882554i \(-0.344178\pi\)
0.470211 + 0.882554i \(0.344178\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −33.1932 −1.24310
\(714\) 0 0
\(715\) 64.6214 + 111.927i 2.41670 + 4.18585i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −10.6596 18.4630i −0.397537 0.688555i 0.595884 0.803070i \(-0.296802\pi\)
−0.993421 + 0.114515i \(0.963468\pi\)
\(720\) 0 0
\(721\) −5.83837 + 10.1124i −0.217432 + 0.376604i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.21467 7.30002i −0.156529 0.271116i
\(726\) 0 0
\(727\) 25.7943 44.6770i 0.956656 1.65698i 0.226125 0.974098i \(-0.427394\pi\)
0.730532 0.682879i \(-0.239272\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2.23584 3.87258i −0.0826953 0.143233i
\(732\) 0 0
\(733\) 20.9698 36.3207i 0.774537 1.34154i −0.160518 0.987033i \(-0.551317\pi\)
0.935055 0.354504i \(-0.115350\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −17.1501 + 29.7049i −0.631733 + 1.09419i
\(738\) 0 0
\(739\) 8.72502 0.320955 0.160478 0.987039i \(-0.448697\pi\)
0.160478 + 0.987039i \(0.448697\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.37379 + 5.84357i −0.123772 + 0.214380i −0.921252 0.388965i \(-0.872833\pi\)
0.797480 + 0.603345i \(0.206166\pi\)
\(744\) 0 0
\(745\) −10.7976 + 18.7020i −0.395595 + 0.685190i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −2.50873 4.34525i −0.0916669 0.158772i
\(750\) 0 0
\(751\) −28.7334 −1.04849 −0.524247 0.851566i \(-0.675653\pi\)
−0.524247 + 0.851566i \(0.675653\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0.768626 + 1.33130i 0.0279732 + 0.0484509i
\(756\) 0 0
\(757\) −3.98132 6.89585i −0.144704 0.250634i 0.784559 0.620055i \(-0.212890\pi\)
−0.929262 + 0.369421i \(0.879556\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7.62636 13.2092i −0.276455 0.478835i 0.694046 0.719931i \(-0.255826\pi\)
−0.970501 + 0.241096i \(0.922493\pi\)
\(762\) 0 0
\(763\) 41.8009 1.51329
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 18.2250 0.658068
\(768\) 0 0
\(769\) 28.1883 1.01649 0.508247 0.861211i \(-0.330294\pi\)
0.508247 + 0.861211i \(0.330294\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −0.364769 + 0.631798i −0.0131198 + 0.0227242i −0.872511 0.488595i \(-0.837510\pi\)
0.859391 + 0.511319i \(0.170843\pi\)
\(774\) 0 0
\(775\) 19.9958 + 34.6338i 0.718272 + 1.24408i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 15.9138 + 27.5636i 0.570172 + 0.987567i
\(780\) 0 0
\(781\) −3.31737 + 5.74585i −0.118705 + 0.205603i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 29.1449 1.04023
\(786\) 0 0
\(787\) 31.8972 1.13701 0.568506 0.822679i \(-0.307522\pi\)
0.568506 + 0.822679i \(0.307522\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −13.8314 −0.491789
\(792\) 0 0
\(793\) −11.3304 19.6249i −0.402356 0.696900i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 25.7045 + 44.5215i 0.910501 + 1.57703i 0.813358 + 0.581763i \(0.197637\pi\)
0.0971422 + 0.995271i \(0.469030\pi\)
\(798\) 0 0
\(799\) 3.70094 + 6.41021i 0.130930 + 0.226777i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 87.1062 3.07391
\(804\) 0 0
\(805\) −30.0667 52.0771i −1.05971 1.83548i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −10.9064 + 18.8905i −0.383450 + 0.664154i −0.991553 0.129704i \(-0.958597\pi\)
0.608103 + 0.793858i \(0.291931\pi\)
\(810\) 0 0
\(811\) −3.37318 + 5.84251i −0.118448 + 0.205158i −0.919153 0.393901i \(-0.871125\pi\)
0.800705 + 0.599059i \(0.204459\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −33.1764 −1.16212
\(816\) 0 0
\(817\) −6.47167 + 11.2093i −0.226415 + 0.392162i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.20736 + 2.09121i −0.0421372 + 0.0729839i −0.886325 0.463064i \(-0.846750\pi\)
0.844188 + 0.536048i \(0.180083\pi\)
\(822\) 0 0
\(823\) 10.7708 + 18.6555i 0.375445 + 0.650290i 0.990394 0.138277i \(-0.0441565\pi\)
−0.614948 + 0.788567i \(0.710823\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −3.59099 + 6.21978i −0.124871 + 0.216283i −0.921683 0.387945i \(-0.873185\pi\)
0.796811 + 0.604228i \(0.206518\pi\)
\(828\) 0 0
\(829\) 7.00650 + 12.1356i 0.243346 + 0.421487i 0.961665 0.274226i \(-0.0884217\pi\)
−0.718319 + 0.695713i \(0.755088\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.878051 + 1.52083i −0.0304227 + 0.0526936i
\(834\) 0 0
\(835\) −8.84381 15.3179i −0.306053 0.530099i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −21.1686 36.6650i −0.730820 1.26582i −0.956533 0.291624i \(-0.905805\pi\)
0.225713 0.974194i \(-0.427529\pi\)
\(840\) 0 0
\(841\) −27.5714 −0.950739
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −104.499 −3.59487
\(846\) 0 0
\(847\) 31.3001 54.2134i 1.07549 1.86280i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −24.5172 + 25.8204i −0.840441 + 0.885111i
\(852\) 0 0
\(853\) 18.2990 + 31.6948i 0.626546 + 1.08521i 0.988240 + 0.152912i \(0.0488651\pi\)
−0.361694 + 0.932297i \(0.617802\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 32.4623 1.10889 0.554446 0.832220i \(-0.312930\pi\)
0.554446 + 0.832220i \(0.312930\pi\)
\(858\) 0 0
\(859\) −14.3584 −0.489901 −0.244950 0.969536i \(-0.578772\pi\)
−0.244950 + 0.969536i \(0.578772\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −16.1233 27.9264i −0.548843 0.950625i −0.998354 0.0573498i \(-0.981735\pi\)
0.449511 0.893275i \(-0.351598\pi\)
\(864\) 0 0
\(865\) −39.1882 −1.33244
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 15.1184 26.1858i 0.512856 0.888292i
\(870\) 0 0
\(871\) −19.8555 34.3908i −0.672779 1.16529i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −10.5425 + 18.2602i −0.356403 + 0.617308i
\(876\) 0 0
\(877\) 7.94227 0.268192 0.134096 0.990968i \(-0.457187\pi\)
0.134096 + 0.990968i \(0.457187\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −8.05813 + 13.9571i −0.271485 + 0.470226i −0.969242 0.246108i \(-0.920848\pi\)
0.697757 + 0.716335i \(0.254182\pi\)
\(882\) 0 0
\(883\) 18.5606 32.1479i 0.624614 1.08186i −0.364001 0.931399i \(-0.618590\pi\)
0.988615 0.150465i \(-0.0480771\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −52.7711 −1.77188 −0.885939 0.463801i \(-0.846485\pi\)
−0.885939 + 0.463801i \(0.846485\pi\)
\(888\) 0 0
\(889\) 7.15706 0.240040
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 10.7124 18.5545i 0.358478 0.620902i
\(894\) 0 0
\(895\) 5.02167 8.69780i 0.167856 0.290735i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −6.77763 −0.226047
\(900\) 0 0
\(901\) 2.65082 4.59135i 0.0883116 0.152960i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −17.0766 29.5776i −0.567647 0.983193i
\(906\) 0 0
\(907\) −17.2800 + 29.9299i −0.573774 + 0.993805i 0.422400 + 0.906410i \(0.361188\pi\)
−0.996174 + 0.0873957i \(0.972146\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 27.0339 0.895672 0.447836 0.894116i \(-0.352195\pi\)
0.447836 + 0.894116i \(0.352195\pi\)
\(912\) 0 0
\(913\) −33.6995 58.3692i −1.11529 1.93174i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −29.5935 −0.977262
\(918\) 0 0
\(919\) 0.901918 0.0297515 0.0148758 0.999889i \(-0.495265\pi\)
0.0148758 + 0.999889i \(0.495265\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.84068 6.65225i −0.126417 0.218961i
\(924\) 0 0
\(925\) 41.7104 + 10.0269i 1.37143 + 0.329683i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −19.0987 + 33.0799i −0.626608 + 1.08532i 0.361620 + 0.932326i \(0.382224\pi\)
−0.988228 + 0.152991i \(0.951110\pi\)
\(930\) 0 0
\(931\) 5.08307 0.166591
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 19.6864 0.643813
\(936\) 0 0
\(937\) 12.7488 + 22.0815i 0.416484 + 0.721372i 0.995583 0.0938855i \(-0.0299288\pi\)
−0.579099 + 0.815257i \(0.696595\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3.38085 + 5.85581i 0.110213 + 0.190894i 0.915856 0.401507i \(-0.131513\pi\)
−0.805643 + 0.592401i \(0.798180\pi\)
\(942\) 0 0
\(943\) 32.1826 55.7418i 1.04801 1.81520i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −24.6236 42.6493i −0.800159 1.38592i −0.919511 0.393064i \(-0.871415\pi\)
0.119352 0.992852i \(-0.461918\pi\)
\(948\) 0 0
\(949\) −50.4235 + 87.3360i −1.63682 + 2.83505i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −17.2798 29.9295i −0.559748 0.969512i −0.997517 0.0704248i \(-0.977565\pi\)
0.437769 0.899088i \(-0.355769\pi\)
\(954\) 0 0
\(955\) 7.00078 12.1257i 0.226540 0.392378i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −3.39644 + 5.88280i −0.109677 + 0.189965i
\(960\) 0 0
\(961\) 1.15538 0.0372704
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2.67659 + 4.63600i −0.0861626 + 0.149238i
\(966\) 0 0
\(967\) 1.28304 2.22229i 0.0412598 0.0714640i −0.844658 0.535306i \(-0.820196\pi\)
0.885918 + 0.463842i \(0.153530\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −2.28387 3.95577i −0.0732928 0.126947i 0.827050 0.562129i \(-0.190017\pi\)
−0.900343 + 0.435182i \(0.856684\pi\)
\(972\) 0 0
\(973\) −4.06439 −0.130298
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 8.18562 + 14.1779i 0.261881 + 0.453591i 0.966742 0.255754i \(-0.0823239\pi\)
−0.704861 + 0.709346i \(0.748991\pi\)
\(978\) 0 0
\(979\) −19.8352 34.3556i −0.633935 1.09801i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −22.2959 38.6176i −0.711129 1.23171i −0.964434 0.264325i \(-0.914851\pi\)
0.253305 0.967387i \(-0.418482\pi\)
\(984\) 0 0
\(985\) −72.9986 −2.32593
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 26.1753 0.832327
\(990\) 0 0
\(991\) 42.0614 1.33612 0.668062 0.744106i \(-0.267124\pi\)
0.668062 + 0.744106i \(0.267124\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5.11527 8.85990i 0.162165 0.280878i
\(996\) 0 0
\(997\) −14.2958 24.7611i −0.452754 0.784192i 0.545802 0.837914i \(-0.316225\pi\)
−0.998556 + 0.0537216i \(0.982892\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2664.2.r.n.433.5 10
3.2 odd 2 296.2.i.c.137.4 yes 10
12.11 even 2 592.2.i.h.433.2 10
37.10 even 3 inner 2664.2.r.n.1009.5 10
111.47 odd 6 296.2.i.c.121.4 10
444.47 even 6 592.2.i.h.417.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
296.2.i.c.121.4 10 111.47 odd 6
296.2.i.c.137.4 yes 10 3.2 odd 2
592.2.i.h.417.2 10 444.47 even 6
592.2.i.h.433.2 10 12.11 even 2
2664.2.r.n.433.5 10 1.1 even 1 trivial
2664.2.r.n.1009.5 10 37.10 even 3 inner