Properties

Label 2695.1.bi.b.2199.1
Level $2695$
Weight $1$
Character 2695.2199
Analytic conductor $1.345$
Analytic rank $0$
Dimension $6$
Projective image $D_{7}$
CM discriminant -55
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2695,1,Mod(274,2695)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2695, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 6, 7]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2695.274");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2695 = 5 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2695.bi (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34498020905\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{7}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{7} + \cdots)\)

Embedding invariants

Embedding label 2199.1
Root \(-0.623490 + 0.781831i\) of defining polynomial
Character \(\chi\) \(=\) 2695.2199
Dual form 2695.1.bi.b.1429.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.277479 - 0.347948i) q^{2} +(0.178448 + 0.781831i) q^{4} +(-0.900969 - 0.433884i) q^{5} +(-0.623490 - 0.781831i) q^{7} +(0.722521 + 0.347948i) q^{8} +(0.623490 + 0.781831i) q^{9} +O(q^{10})\) \(q+(0.277479 - 0.347948i) q^{2} +(0.178448 + 0.781831i) q^{4} +(-0.900969 - 0.433884i) q^{5} +(-0.623490 - 0.781831i) q^{7} +(0.722521 + 0.347948i) q^{8} +(0.623490 + 0.781831i) q^{9} +(-0.400969 + 0.193096i) q^{10} +(0.623490 - 0.781831i) q^{11} +(-0.777479 + 0.974928i) q^{13} -0.445042 q^{14} +(-0.400969 + 0.193096i) q^{16} +(-0.400969 + 1.75676i) q^{17} +0.445042 q^{18} +(0.178448 - 0.781831i) q^{20} +(-0.0990311 - 0.433884i) q^{22} +(0.623490 + 0.781831i) q^{25} +(0.123490 + 0.541044i) q^{26} +(0.500000 - 0.626980i) q^{28} +2.00000 q^{31} +(-0.222521 + 0.974928i) q^{32} +(0.500000 + 0.626980i) q^{34} +(0.222521 + 0.974928i) q^{35} +(-0.500000 + 0.626980i) q^{36} +(-0.500000 - 0.626980i) q^{40} +(1.12349 - 0.541044i) q^{43} +(0.722521 + 0.347948i) q^{44} +(-0.222521 - 0.974928i) q^{45} +(-0.222521 + 0.974928i) q^{49} +0.445042 q^{50} +(-0.900969 - 0.433884i) q^{52} +(-0.900969 + 0.433884i) q^{55} +(-0.178448 - 0.781831i) q^{56} +(-1.12349 + 0.541044i) q^{59} +(0.554958 - 0.695895i) q^{62} +(0.222521 - 0.974928i) q^{63} +(1.12349 - 0.541044i) q^{65} -1.44504 q^{68} +(0.400969 + 0.193096i) q^{70} +(0.0990311 + 0.433884i) q^{71} +(0.178448 + 0.781831i) q^{72} +(1.12349 + 1.40881i) q^{73} -1.00000 q^{77} +0.445042 q^{80} +(-0.222521 + 0.974928i) q^{81} +(-1.24698 - 1.56366i) q^{83} +(1.12349 - 1.40881i) q^{85} +(0.123490 - 0.541044i) q^{86} +(0.722521 - 0.347948i) q^{88} +(0.777479 + 0.974928i) q^{89} +(-0.400969 - 0.193096i) q^{90} +1.24698 q^{91} +(0.277479 + 0.347948i) q^{98} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} - 3 q^{4} - q^{5} + q^{7} + 4 q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 2 q^{2} - 3 q^{4} - q^{5} + q^{7} + 4 q^{8} - q^{9} + 2 q^{10} - q^{11} - 5 q^{13} - 2 q^{14} + 2 q^{16} + 2 q^{17} + 2 q^{18} - 3 q^{20} - 5 q^{22} - q^{25} - 4 q^{26} + 3 q^{28} + 12 q^{31} - q^{32} + 3 q^{34} + q^{35} - 3 q^{36} - 3 q^{40} + 2 q^{43} + 4 q^{44} - q^{45} - q^{49} + 2 q^{50} - q^{52} - q^{55} + 3 q^{56} - 2 q^{59} + 4 q^{62} + q^{63} + 2 q^{65} - 8 q^{68} - 2 q^{70} + 5 q^{71} - 3 q^{72} + 2 q^{73} - 6 q^{77} + 2 q^{80} - q^{81} + 2 q^{83} + 2 q^{85} - 4 q^{86} + 4 q^{88} + 5 q^{89} + 2 q^{90} - 2 q^{91} + 2 q^{98} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2695\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1816\) \(2157\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{7}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.277479 0.347948i 0.277479 0.347948i −0.623490 0.781831i \(-0.714286\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(3\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(4\) 0.178448 + 0.781831i 0.178448 + 0.781831i
\(5\) −0.900969 0.433884i −0.900969 0.433884i
\(6\) 0 0
\(7\) −0.623490 0.781831i −0.623490 0.781831i
\(8\) 0.722521 + 0.347948i 0.722521 + 0.347948i
\(9\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(10\) −0.400969 + 0.193096i −0.400969 + 0.193096i
\(11\) 0.623490 0.781831i 0.623490 0.781831i
\(12\) 0 0
\(13\) −0.777479 + 0.974928i −0.777479 + 0.974928i 0.222521 + 0.974928i \(0.428571\pi\)
−1.00000 \(\pi\)
\(14\) −0.445042 −0.445042
\(15\) 0 0
\(16\) −0.400969 + 0.193096i −0.400969 + 0.193096i
\(17\) −0.400969 + 1.75676i −0.400969 + 1.75676i 0.222521 + 0.974928i \(0.428571\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(18\) 0.445042 0.445042
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0.178448 0.781831i 0.178448 0.781831i
\(21\) 0 0
\(22\) −0.0990311 0.433884i −0.0990311 0.433884i
\(23\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(24\) 0 0
\(25\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(26\) 0.123490 + 0.541044i 0.123490 + 0.541044i
\(27\) 0 0
\(28\) 0.500000 0.626980i 0.500000 0.626980i
\(29\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(30\) 0 0
\(31\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(32\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(33\) 0 0
\(34\) 0.500000 + 0.626980i 0.500000 + 0.626980i
\(35\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(36\) −0.500000 + 0.626980i −0.500000 + 0.626980i
\(37\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −0.500000 0.626980i −0.500000 0.626980i
\(41\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(42\) 0 0
\(43\) 1.12349 0.541044i 1.12349 0.541044i 0.222521 0.974928i \(-0.428571\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(44\) 0.722521 + 0.347948i 0.722521 + 0.347948i
\(45\) −0.222521 0.974928i −0.222521 0.974928i
\(46\) 0 0
\(47\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(48\) 0 0
\(49\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(50\) 0.445042 0.445042
\(51\) 0 0
\(52\) −0.900969 0.433884i −0.900969 0.433884i
\(53\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(54\) 0 0
\(55\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(56\) −0.178448 0.781831i −0.178448 0.781831i
\(57\) 0 0
\(58\) 0 0
\(59\) −1.12349 + 0.541044i −1.12349 + 0.541044i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(60\) 0 0
\(61\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(62\) 0.554958 0.695895i 0.554958 0.695895i
\(63\) 0.222521 0.974928i 0.222521 0.974928i
\(64\) 0 0
\(65\) 1.12349 0.541044i 1.12349 0.541044i
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) −1.44504 −1.44504
\(69\) 0 0
\(70\) 0.400969 + 0.193096i 0.400969 + 0.193096i
\(71\) 0.0990311 + 0.433884i 0.0990311 + 0.433884i 1.00000 \(0\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(72\) 0.178448 + 0.781831i 0.178448 + 0.781831i
\(73\) 1.12349 + 1.40881i 1.12349 + 1.40881i 0.900969 + 0.433884i \(0.142857\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.00000 −1.00000
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0.445042 0.445042
\(81\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(82\) 0 0
\(83\) −1.24698 1.56366i −1.24698 1.56366i −0.623490 0.781831i \(-0.714286\pi\)
−0.623490 0.781831i \(-0.714286\pi\)
\(84\) 0 0
\(85\) 1.12349 1.40881i 1.12349 1.40881i
\(86\) 0.123490 0.541044i 0.123490 0.541044i
\(87\) 0 0
\(88\) 0.722521 0.347948i 0.722521 0.347948i
\(89\) 0.777479 + 0.974928i 0.777479 + 0.974928i 1.00000 \(0\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(90\) −0.400969 0.193096i −0.400969 0.193096i
\(91\) 1.24698 1.24698
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0.277479 + 0.347948i 0.277479 + 0.347948i
\(99\) 1.00000 1.00000
\(100\) −0.500000 + 0.626980i −0.500000 + 0.626980i
\(101\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(102\) 0 0
\(103\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(104\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(105\) 0 0
\(106\) 0 0
\(107\) 0.277479 + 0.347948i 0.277479 + 0.347948i 0.900969 0.433884i \(-0.142857\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(108\) 0 0
\(109\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(110\) −0.0990311 + 0.433884i −0.0990311 + 0.433884i
\(111\) 0 0
\(112\) 0.400969 + 0.193096i 0.400969 + 0.193096i
\(113\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1.24698 −1.24698
\(118\) −0.123490 + 0.541044i −0.123490 + 0.541044i
\(119\) 1.62349 0.781831i 1.62349 0.781831i
\(120\) 0 0
\(121\) −0.222521 0.974928i −0.222521 0.974928i
\(122\) 0 0
\(123\) 0 0
\(124\) 0.356896 + 1.56366i 0.356896 + 1.56366i
\(125\) −0.222521 0.974928i −0.222521 0.974928i
\(126\) −0.277479 0.347948i −0.277479 0.347948i
\(127\) −0.0990311 + 0.433884i −0.0990311 + 0.433884i 0.900969 + 0.433884i \(0.142857\pi\)
−1.00000 \(\pi\)
\(128\) −1.00000 −1.00000
\(129\) 0 0
\(130\) 0.123490 0.541044i 0.123490 0.541044i
\(131\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −0.900969 + 1.12978i −0.900969 + 1.12978i
\(137\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(138\) 0 0
\(139\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(140\) −0.722521 + 0.347948i −0.722521 + 0.347948i
\(141\) 0 0
\(142\) 0.178448 + 0.0859360i 0.178448 + 0.0859360i
\(143\) 0.277479 + 1.21572i 0.277479 + 1.21572i
\(144\) −0.400969 0.193096i −0.400969 0.193096i
\(145\) 0 0
\(146\) 0.801938 0.801938
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(150\) 0 0
\(151\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(152\) 0 0
\(153\) −1.62349 + 0.781831i −1.62349 + 0.781831i
\(154\) −0.277479 + 0.347948i −0.277479 + 0.347948i
\(155\) −1.80194 0.867767i −1.80194 0.867767i
\(156\) 0 0
\(157\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0.623490 0.781831i 0.623490 0.781831i
\(161\) 0 0
\(162\) 0.277479 + 0.347948i 0.277479 + 0.347948i
\(163\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −0.890084 −0.890084
\(167\) 0.445042 1.94986i 0.445042 1.94986i 0.222521 0.974928i \(-0.428571\pi\)
0.222521 0.974928i \(-0.428571\pi\)
\(168\) 0 0
\(169\) −0.123490 0.541044i −0.123490 0.541044i
\(170\) −0.178448 0.781831i −0.178448 0.781831i
\(171\) 0 0
\(172\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(173\) −0.0990311 0.433884i −0.0990311 0.433884i 0.900969 0.433884i \(-0.142857\pi\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0.222521 0.974928i 0.222521 0.974928i
\(176\) −0.0990311 + 0.433884i −0.0990311 + 0.433884i
\(177\) 0 0
\(178\) 0.554958 0.554958
\(179\) 0.0990311 0.433884i 0.0990311 0.433884i −0.900969 0.433884i \(-0.857143\pi\)
1.00000 \(0\)
\(180\) 0.722521 0.347948i 0.722521 0.347948i
\(181\) −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(182\) 0.346011 0.433884i 0.346011 0.433884i
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.12349 + 1.40881i 1.12349 + 1.40881i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.80194 0.867767i −1.80194 0.867767i −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 0.433884i \(-0.857143\pi\)
\(192\) 0 0
\(193\) −1.62349 0.781831i −1.62349 0.781831i −0.623490 0.781831i \(-0.714286\pi\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.801938 −0.801938
\(197\) 0.445042 0.445042 0.222521 0.974928i \(-0.428571\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(198\) 0.277479 0.347948i 0.277479 0.347948i
\(199\) 0.400969 + 0.193096i 0.400969 + 0.193096i 0.623490 0.781831i \(-0.285714\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(200\) 0.178448 + 0.781831i 0.178448 + 0.781831i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0.123490 0.541044i 0.123490 0.541044i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0.198062 0.198062
\(215\) −1.24698 −1.24698
\(216\) 0 0
\(217\) −1.24698 1.56366i −1.24698 1.56366i
\(218\) 0 0
\(219\) 0 0
\(220\) −0.500000 0.626980i −0.500000 0.626980i
\(221\) −1.40097 1.75676i −1.40097 1.75676i
\(222\) 0 0
\(223\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(224\) 0.900969 0.433884i 0.900969 0.433884i
\(225\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(226\) 0 0
\(227\) 1.80194 1.80194 0.900969 0.433884i \(-0.142857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(228\) 0 0
\(229\) 0.400969 0.193096i 0.400969 0.193096i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.445042 1.94986i 0.445042 1.94986i 0.222521 0.974928i \(-0.428571\pi\)
0.222521 0.974928i \(-0.428571\pi\)
\(234\) −0.346011 + 0.433884i −0.346011 + 0.433884i
\(235\) 0 0
\(236\) −0.623490 0.781831i −0.623490 0.781831i
\(237\) 0 0
\(238\) 0.178448 0.781831i 0.178448 0.781831i
\(239\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(240\) 0 0
\(241\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(242\) −0.400969 0.193096i −0.400969 0.193096i
\(243\) 0 0
\(244\) 0 0
\(245\) 0.623490 0.781831i 0.623490 0.781831i
\(246\) 0 0
\(247\) 0 0
\(248\) 1.44504 + 0.695895i 1.44504 + 0.695895i
\(249\) 0 0
\(250\) −0.400969 0.193096i −0.400969 0.193096i
\(251\) 0.400969 0.193096i 0.400969 0.193096i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(252\) 0.801938 0.801938
\(253\) 0 0
\(254\) 0.123490 + 0.154851i 0.123490 + 0.154851i
\(255\) 0 0
\(256\) −0.277479 + 0.347948i −0.277479 + 0.347948i
\(257\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(261\) 0 0
\(262\) 0 0
\(263\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(270\) 0 0
\(271\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(272\) −0.178448 0.781831i −0.178448 0.781831i
\(273\) 0 0
\(274\) 0 0
\(275\) 1.00000 1.00000
\(276\) 0 0
\(277\) −0.400969 + 1.75676i −0.400969 + 1.75676i 0.222521 + 0.974928i \(0.428571\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(278\) 0 0
\(279\) 1.24698 + 1.56366i 1.24698 + 1.56366i
\(280\) −0.178448 + 0.781831i −0.178448 + 0.781831i
\(281\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(282\) 0 0
\(283\) −0.777479 + 0.974928i −0.777479 + 0.974928i 0.222521 + 0.974928i \(0.428571\pi\)
−1.00000 \(\pi\)
\(284\) −0.321552 + 0.154851i −0.321552 + 0.154851i
\(285\) 0 0
\(286\) 0.500000 + 0.240787i 0.500000 + 0.240787i
\(287\) 0 0
\(288\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(289\) −2.02446 0.974928i −2.02446 0.974928i
\(290\) 0 0
\(291\) 0 0
\(292\) −0.900969 + 1.12978i −0.900969 + 1.12978i
\(293\) 1.80194 1.80194 0.900969 0.433884i \(-0.142857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(294\) 0 0
\(295\) 1.24698 1.24698
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −1.12349 0.541044i −1.12349 0.541044i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) −0.178448 + 0.781831i −0.178448 + 0.781831i
\(307\) 0.277479 0.347948i 0.277479 0.347948i −0.623490 0.781831i \(-0.714286\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(308\) −0.178448 0.781831i −0.178448 0.781831i
\(309\) 0 0
\(310\) −0.801938 + 0.386193i −0.801938 + 0.386193i
\(311\) 0.400969 1.75676i 0.400969 1.75676i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(316\) 0 0
\(317\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.801938 −0.801938
\(325\) −1.24698 −1.24698
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −0.277479 + 1.21572i −0.277479 + 1.21572i 0.623490 + 0.781831i \(0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(332\) 1.00000 1.25396i 1.00000 1.25396i
\(333\) 0 0
\(334\) −0.554958 0.695895i −0.554958 0.695895i
\(335\) 0 0
\(336\) 0 0
\(337\) 1.12349 0.541044i 1.12349 0.541044i 0.222521 0.974928i \(-0.428571\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(338\) −0.222521 0.107160i −0.222521 0.107160i
\(339\) 0 0
\(340\) 1.30194 + 0.626980i 1.30194 + 0.626980i
\(341\) 1.24698 1.56366i 1.24698 1.56366i
\(342\) 0 0
\(343\) 0.900969 0.433884i 0.900969 0.433884i
\(344\) 1.00000 1.00000
\(345\) 0 0
\(346\) −0.178448 0.0859360i −0.178448 0.0859360i
\(347\) −0.0990311 0.433884i −0.0990311 0.433884i 0.900969 0.433884i \(-0.142857\pi\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(350\) −0.277479 0.347948i −0.277479 0.347948i
\(351\) 0 0
\(352\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(353\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(354\) 0 0
\(355\) 0.0990311 0.433884i 0.0990311 0.433884i
\(356\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(357\) 0 0
\(358\) −0.123490 0.154851i −0.123490 0.154851i
\(359\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(360\) 0.178448 0.781831i 0.178448 0.781831i
\(361\) 1.00000 1.00000
\(362\) −0.801938 −0.801938
\(363\) 0 0
\(364\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(365\) −0.400969 1.75676i −0.400969 1.75676i
\(366\) 0 0
\(367\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 1.80194 1.80194 0.900969 0.433884i \(-0.142857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(374\) 0.801938 0.801938
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −1.12349 + 1.40881i −1.12349 + 1.40881i −0.222521 + 0.974928i \(0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −0.801938 + 0.386193i −0.801938 + 0.386193i
\(383\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(384\) 0 0
\(385\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(386\) −0.722521 + 0.347948i −0.722521 + 0.347948i
\(387\) 1.12349 + 0.541044i 1.12349 + 0.541044i
\(388\) 0 0
\(389\) 1.62349 + 0.781831i 1.62349 + 0.781831i 1.00000 \(0\)
0.623490 + 0.781831i \(0.285714\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.500000 + 0.626980i −0.500000 + 0.626980i
\(393\) 0 0
\(394\) 0.123490 0.154851i 0.123490 0.154851i
\(395\) 0 0
\(396\) 0.178448 + 0.781831i 0.178448 + 0.781831i
\(397\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(398\) 0.178448 0.0859360i 0.178448 0.0859360i
\(399\) 0 0
\(400\) −0.400969 0.193096i −0.400969 0.193096i
\(401\) 0.777479 + 0.974928i 0.777479 + 0.974928i 1.00000 \(0\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(402\) 0 0
\(403\) −1.55496 + 1.94986i −1.55496 + 1.94986i
\(404\) 0 0
\(405\) 0.623490 0.781831i 0.623490 0.781831i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.12349 + 0.541044i 1.12349 + 0.541044i
\(414\) 0 0
\(415\) 0.445042 + 1.94986i 0.445042 + 1.94986i
\(416\) −0.777479 0.974928i −0.777479 0.974928i
\(417\) 0 0
\(418\) 0 0
\(419\) −0.277479 1.21572i −0.277479 1.21572i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(420\) 0 0
\(421\) 0.400969 1.75676i 0.400969 1.75676i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.62349 + 0.781831i −1.62349 + 0.781831i
\(426\) 0 0
\(427\) 0 0
\(428\) −0.222521 + 0.279032i −0.222521 + 0.279032i
\(429\) 0 0
\(430\) −0.346011 + 0.433884i −0.346011 + 0.433884i
\(431\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(432\) 0 0
\(433\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(434\) −0.890084 −0.890084
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(440\) −0.801938 −0.801938
\(441\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(442\) −1.00000 −1.00000
\(443\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(444\) 0 0
\(445\) −0.277479 1.21572i −0.277479 1.21572i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1.12349 0.541044i −1.12349 0.541044i −0.222521 0.974928i \(-0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(450\) 0.277479 + 0.347948i 0.277479 + 0.347948i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0.500000 0.626980i 0.500000 0.626980i
\(455\) −1.12349 0.541044i −1.12349 0.541044i
\(456\) 0 0
\(457\) 1.80194 0.867767i 1.80194 0.867767i 0.900969 0.433884i \(-0.142857\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(458\) 0.0440730 0.193096i 0.0440730 0.193096i
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(462\) 0 0
\(463\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −0.554958 0.695895i −0.554958 0.695895i
\(467\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(468\) −0.222521 0.974928i −0.222521 0.974928i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −1.00000 −1.00000
\(473\) 0.277479 1.21572i 0.277479 1.21572i
\(474\) 0 0
\(475\) 0 0
\(476\) 0.900969 + 1.12978i 0.900969 + 1.12978i
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0.722521 0.347948i 0.722521 0.347948i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −0.0990311 0.433884i −0.0990311 0.433884i
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −0.900969 0.433884i −0.900969 0.433884i
\(496\) −0.801938 + 0.386193i −0.801938 + 0.386193i
\(497\) 0.277479 0.347948i 0.277479 0.347948i
\(498\) 0 0
\(499\) 0.777479 + 0.974928i 0.777479 + 0.974928i 1.00000 \(0\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(500\) 0.722521 0.347948i 0.722521 0.347948i
\(501\) 0 0
\(502\) 0.0440730 0.193096i 0.0440730 0.193096i
\(503\) −1.24698 + 1.56366i −1.24698 + 1.56366i −0.623490 + 0.781831i \(0.714286\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(504\) 0.500000 0.626980i 0.500000 0.626980i
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −0.356896 −0.356896
\(509\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(510\) 0 0
\(511\) 0.400969 1.75676i 0.400969 1.75676i
\(512\) −0.178448 0.781831i −0.178448 0.781831i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 1.00000 1.00000
\(521\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(522\) 0 0
\(523\) 1.12349 0.541044i 1.12349 0.541044i 0.222521 0.974928i \(-0.428571\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −0.554958 + 0.695895i −0.554958 + 0.695895i
\(527\) −0.801938 + 3.51352i −0.801938 + 3.51352i
\(528\) 0 0
\(529\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(530\) 0 0
\(531\) −1.12349 0.541044i −1.12349 0.541044i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −0.0990311 0.433884i −0.0990311 0.433884i
\(536\) 0 0
\(537\) 0 0
\(538\) −0.801938 −0.801938
\(539\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(540\) 0 0
\(541\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −1.62349 0.781831i −1.62349 0.781831i
\(545\) 0 0
\(546\) 0 0
\(547\) −1.62349 0.781831i −1.62349 0.781831i −0.623490 0.781831i \(-0.714286\pi\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0.277479 0.347948i 0.277479 0.347948i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0.500000 + 0.626980i 0.500000 + 0.626980i
\(555\) 0 0
\(556\) 0 0
\(557\) −1.24698 −1.24698 −0.623490 0.781831i \(-0.714286\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(558\) 0.890084 0.890084
\(559\) −0.346011 + 1.51597i −0.346011 + 1.51597i
\(560\) −0.277479 0.347948i −0.277479 0.347948i
\(561\) 0 0
\(562\) 0 0
\(563\) 0.277479 + 0.347948i 0.277479 + 0.347948i 0.900969 0.433884i \(-0.142857\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0.123490 + 0.541044i 0.123490 + 0.541044i
\(567\) 0.900969 0.433884i 0.900969 0.433884i
\(568\) −0.0794168 + 0.347948i −0.0794168 + 0.347948i
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(572\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(578\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(579\) 0 0
\(580\) 0 0
\(581\) −0.445042 + 1.94986i −0.445042 + 1.94986i
\(582\) 0 0
\(583\) 0 0
\(584\) 0.321552 + 1.40881i 0.321552 + 1.40881i
\(585\) 1.12349 + 0.541044i 1.12349 + 0.541044i
\(586\) 0.500000 0.626980i 0.500000 0.626980i
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0.346011 0.433884i 0.346011 0.433884i
\(591\) 0 0
\(592\) 0 0
\(593\) 1.12349 + 0.541044i 1.12349 + 0.541044i 0.900969 0.433884i \(-0.142857\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(594\) 0 0
\(595\) −1.80194 −1.80194
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.12349 + 1.40881i −1.12349 + 1.40881i −0.222521 + 0.974928i \(0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(600\) 0 0
\(601\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(602\) −0.500000 + 0.240787i −0.500000 + 0.240787i
\(603\) 0 0
\(604\) 0 0
\(605\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(606\) 0 0
\(607\) 1.80194 1.80194 0.900969 0.433884i \(-0.142857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −0.900969 1.12978i −0.900969 1.12978i
\(613\) 0.277479 + 0.347948i 0.277479 + 0.347948i 0.900969 0.433884i \(-0.142857\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(614\) −0.0440730 0.193096i −0.0440730 0.193096i
\(615\) 0 0
\(616\) −0.722521 0.347948i −0.722521 0.347948i
\(617\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(618\) 0 0
\(619\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(620\) 0.356896 1.56366i 0.356896 1.56366i
\(621\) 0 0
\(622\) −0.500000 0.626980i −0.500000 0.626980i
\(623\) 0.277479 1.21572i 0.277479 1.21572i
\(624\) 0 0
\(625\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0.0990311 + 0.433884i 0.0990311 + 0.433884i
\(631\) 0.400969 0.193096i 0.400969 0.193096i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.277479 0.347948i 0.277479 0.347948i
\(636\) 0 0
\(637\) −0.777479 0.974928i −0.777479 0.974928i
\(638\) 0 0
\(639\) −0.277479 + 0.347948i −0.277479 + 0.347948i
\(640\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(641\) 0.0990311 + 0.433884i 0.0990311 + 0.433884i 1.00000 \(0\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(642\) 0 0
\(643\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(648\) −0.500000 + 0.626980i −0.500000 + 0.626980i
\(649\) −0.277479 + 1.21572i −0.277479 + 1.21572i
\(650\) −0.346011 + 0.433884i −0.346011 + 0.433884i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −0.400969 + 1.75676i −0.400969 + 1.75676i
\(658\) 0 0
\(659\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(660\) 0 0
\(661\) −0.277479 0.347948i −0.277479 0.347948i 0.623490 0.781831i \(-0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(662\) 0.346011 + 0.433884i 0.346011 + 0.433884i
\(663\) 0 0
\(664\) −0.356896 1.56366i −0.356896 1.56366i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 1.60388 1.60388
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.24698 + 1.56366i −1.24698 + 1.56366i −0.623490 + 0.781831i \(0.714286\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(674\) 0.123490 0.541044i 0.123490 0.541044i
\(675\) 0 0
\(676\) 0.400969 0.193096i 0.400969 0.193096i
\(677\) −0.777479 0.974928i −0.777479 0.974928i 0.222521 0.974928i \(-0.428571\pi\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 1.30194 0.626980i 1.30194 0.626980i
\(681\) 0 0
\(682\) −0.198062 0.867767i −0.198062 0.867767i
\(683\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.0990311 0.433884i 0.0990311 0.433884i
\(687\) 0 0
\(688\) −0.346011 + 0.433884i −0.346011 + 0.433884i
\(689\) 0 0
\(690\) 0 0
\(691\) 1.62349 + 0.781831i 1.62349 + 0.781831i 1.00000 \(0\)
0.623490 + 0.781831i \(0.285714\pi\)
\(692\) 0.321552 0.154851i 0.321552 0.154851i
\(693\) −0.623490 0.781831i −0.623490 0.781831i
\(694\) −0.178448 0.0859360i −0.178448 0.0859360i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0.801938 0.801938
\(701\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.445042 1.94986i −0.445042 1.94986i −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(710\) −0.123490 0.154851i −0.123490 0.154851i
\(711\) 0 0
\(712\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(713\) 0 0
\(714\) 0 0
\(715\) 0.277479 1.21572i 0.277479 1.21572i
\(716\) 0.356896 0.356896
\(717\) 0 0
\(718\) 0 0
\(719\) 1.62349 0.781831i 1.62349 0.781831i 0.623490 0.781831i \(-0.285714\pi\)
1.00000 \(0\)
\(720\) 0.277479 + 0.347948i 0.277479 + 0.347948i
\(721\) 0 0
\(722\) 0.277479 0.347948i 0.277479 0.347948i
\(723\) 0 0
\(724\) 0.900969 1.12978i 0.900969 1.12978i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(728\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(729\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(730\) −0.722521 0.347948i −0.722521 0.347948i
\(731\) 0.500000 + 2.19064i 0.500000 + 2.19064i
\(732\) 0 0
\(733\) 0.277479 0.347948i 0.277479 0.347948i −0.623490 0.781831i \(-0.714286\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.12349 + 0.541044i 1.12349 + 0.541044i 0.900969 0.433884i \(-0.142857\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0.500000 0.626980i 0.500000 0.626980i
\(747\) 0.445042 1.94986i 0.445042 1.94986i
\(748\) −0.900969 + 1.12978i −0.900969 + 1.12978i
\(749\) 0.0990311 0.433884i 0.0990311 0.433884i
\(750\) 0 0
\(751\) 1.62349 0.781831i 1.62349 0.781831i 0.623490 0.781831i \(-0.285714\pi\)
1.00000 \(0\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(758\) 0.178448 + 0.781831i 0.178448 + 0.781831i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0.356896 1.56366i 0.356896 1.56366i
\(765\) 1.80194 1.80194
\(766\) 0 0
\(767\) 0.346011 1.51597i 0.346011 1.51597i
\(768\) 0 0
\(769\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(770\) 0.400969 0.193096i 0.400969 0.193096i
\(771\) 0 0
\(772\) 0.321552 1.40881i 0.321552 1.40881i
\(773\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(774\) 0.500000 0.240787i 0.500000 0.240787i
\(775\) 1.24698 + 1.56366i 1.24698 + 1.56366i
\(776\) 0 0
\(777\) 0 0
\(778\) 0.722521 0.347948i 0.722521 0.347948i
\(779\) 0 0
\(780\) 0 0
\(781\) 0.400969 + 0.193096i 0.400969 + 0.193096i
\(782\) 0 0
\(783\) 0 0
\(784\) −0.0990311 0.433884i −0.0990311 0.433884i
\(785\) 0 0
\(786\) 0 0
\(787\) −0.400969 0.193096i −0.400969 0.193096i 0.222521 0.974928i \(-0.428571\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(788\) 0.0794168 + 0.347948i 0.0794168 + 0.347948i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0.722521 + 0.347948i 0.722521 + 0.347948i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −0.0794168 + 0.347948i −0.0794168 + 0.347948i
\(797\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(801\) −0.277479 + 1.21572i −0.277479 + 1.21572i
\(802\) 0.554958 0.554958
\(803\) 1.80194 1.80194
\(804\) 0 0
\(805\) 0 0
\(806\) 0.246980 + 1.08209i 0.246980 + 1.08209i
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(810\) −0.0990311 0.433884i −0.0990311 0.433884i
\(811\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0.777479 + 0.974928i 0.777479 + 0.974928i
\(820\) 0 0
\(821\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(822\) 0 0
\(823\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0.500000 0.240787i 0.500000 0.240787i
\(827\) −1.62349 + 0.781831i −1.62349 + 0.781831i −0.623490 + 0.781831i \(0.714286\pi\)
−1.00000 \(1.00000\pi\)
\(828\) 0 0
\(829\) −0.277479 1.21572i −0.277479 1.21572i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(830\) 0.801938 + 0.386193i 0.801938 + 0.386193i
\(831\) 0 0
\(832\) 0 0
\(833\) −1.62349 0.781831i −1.62349 0.781831i
\(834\) 0 0
\(835\) −1.24698 + 1.56366i −1.24698 + 1.56366i
\(836\) 0 0
\(837\) 0 0
\(838\) −0.500000 0.240787i −0.500000 0.240787i
\(839\) 1.62349 0.781831i 1.62349 0.781831i 0.623490 0.781831i \(-0.285714\pi\)
1.00000 \(0\)
\(840\) 0 0
\(841\) −0.900969 0.433884i −0.900969 0.433884i
\(842\) −0.500000 0.626980i −0.500000 0.626980i
\(843\) 0 0
\(844\) 0 0
\(845\) −0.123490 + 0.541044i −0.123490 + 0.541044i
\(846\) 0 0
\(847\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(848\) 0 0
\(849\) 0 0
\(850\) −0.178448 + 0.781831i −0.178448 + 0.781831i
\(851\) 0 0
\(852\) 0 0
\(853\) −0.0990311 + 0.433884i −0.0990311 + 0.433884i 0.900969 + 0.433884i \(0.142857\pi\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0.0794168 + 0.347948i 0.0794168 + 0.347948i
\(857\) 0.277479 + 0.347948i 0.277479 + 0.347948i 0.900969 0.433884i \(-0.142857\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(858\) 0 0
\(859\) 0.400969 + 1.75676i 0.400969 + 1.75676i 0.623490 + 0.781831i \(0.285714\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(860\) −0.222521 0.974928i −0.222521 0.974928i
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) −0.0990311 + 0.433884i −0.0990311 + 0.433884i
\(866\) 0 0
\(867\) 0 0
\(868\) 1.00000 1.25396i 1.00000 1.25396i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(876\) 0 0
\(877\) 1.80194 + 0.867767i 1.80194 + 0.867767i 0.900969 + 0.433884i \(0.142857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0.277479 0.347948i 0.277479 0.347948i
\(881\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(882\) −0.0990311 + 0.433884i −0.0990311 + 0.433884i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 1.12349 1.40881i 1.12349 1.40881i
\(885\) 0 0
\(886\) 0 0
\(887\) −1.62349 0.781831i −1.62349 0.781831i −0.623490 0.781831i \(-0.714286\pi\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0.400969 0.193096i 0.400969 0.193096i
\(890\) −0.500000 0.240787i −0.500000 0.240787i
\(891\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −0.277479 + 0.347948i −0.277479 + 0.347948i
\(896\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(897\) 0 0
\(898\) −0.500000 + 0.240787i −0.500000 + 0.240787i
\(899\) 0 0
\(900\) −0.801938 −0.801938
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.400969 + 1.75676i 0.400969 + 1.75676i
\(906\) 0 0
\(907\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(908\) 0.321552 + 1.40881i 0.321552 + 1.40881i
\(909\) 0 0
\(910\) −0.500000 + 0.240787i −0.500000 + 0.240787i
\(911\) 0.0990311 0.433884i 0.0990311 0.433884i −0.900969 0.433884i \(-0.857143\pi\)
1.00000 \(0\)
\(912\) 0 0
\(913\) −2.00000 −2.00000
\(914\) 0.198062 0.867767i 0.198062 0.867767i
\(915\) 0 0
\(916\) 0.222521 + 0.279032i 0.222521 + 0.279032i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −0.500000 0.240787i −0.500000 0.240787i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −0.277479 + 0.347948i −0.277479 + 0.347948i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 1.60388 1.60388
\(933\) 0 0
\(934\) 0 0
\(935\) −0.400969 1.75676i −0.400969 1.75676i
\(936\) −0.900969 0.433884i −0.900969 0.433884i
\(937\) 1.12349 0.541044i 1.12349 0.541044i 0.222521 0.974928i \(-0.428571\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0.346011 0.433884i 0.346011 0.433884i
\(945\) 0 0
\(946\) −0.346011 0.433884i −0.346011 0.433884i
\(947\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(948\) 0 0
\(949\) −2.24698 −2.24698
\(950\) 0 0
\(951\) 0 0
\(952\) 1.44504 1.44504
\(953\) 0.277479 + 1.21572i 0.277479 + 1.21572i 0.900969 + 0.433884i \(0.142857\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(954\) 0 0
\(955\) 1.24698 + 1.56366i 1.24698 + 1.56366i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 3.00000 3.00000
\(962\) 0 0
\(963\) −0.0990311 + 0.433884i −0.0990311 + 0.433884i
\(964\) 0 0
\(965\) 1.12349 + 1.40881i 1.12349 + 1.40881i
\(966\) 0 0
\(967\) 1.12349 1.40881i 1.12349 1.40881i 0.222521 0.974928i \(-0.428571\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(968\) 0.178448 0.781831i 0.178448 0.781831i
\(969\) 0 0
\(970\) 0 0
\(971\) −0.277479 0.347948i −0.277479 0.347948i 0.623490 0.781831i \(-0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(978\) 0 0
\(979\) 1.24698 1.24698
\(980\) 0.722521 + 0.347948i 0.722521 + 0.347948i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(984\) 0 0
\(985\) −0.400969 0.193096i −0.400969 0.193096i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −0.400969 + 0.193096i −0.400969 + 0.193096i
\(991\) −1.12349 + 1.40881i −1.12349 + 1.40881i −0.222521 + 0.974928i \(0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(992\) −0.445042 + 1.94986i −0.445042 + 1.94986i
\(993\) 0 0
\(994\) −0.0440730 0.193096i −0.0440730 0.193096i
\(995\) −0.277479 0.347948i −0.277479 0.347948i
\(996\) 0 0
\(997\) 0.277479 1.21572i 0.277479 1.21572i −0.623490 0.781831i \(-0.714286\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(998\) 0.554958 0.554958
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2695.1.bi.b.2199.1 yes 6
5.4 even 2 2695.1.bi.a.2199.1 yes 6
11.10 odd 2 2695.1.bi.a.2199.1 yes 6
49.8 even 7 inner 2695.1.bi.b.1429.1 yes 6
55.54 odd 2 CM 2695.1.bi.b.2199.1 yes 6
245.204 even 14 2695.1.bi.a.1429.1 6
539.351 odd 14 2695.1.bi.a.1429.1 6
2695.1429 odd 14 inner 2695.1.bi.b.1429.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2695.1.bi.a.1429.1 6 245.204 even 14
2695.1.bi.a.1429.1 6 539.351 odd 14
2695.1.bi.a.2199.1 yes 6 5.4 even 2
2695.1.bi.a.2199.1 yes 6 11.10 odd 2
2695.1.bi.b.1429.1 yes 6 49.8 even 7 inner
2695.1.bi.b.1429.1 yes 6 2695.1429 odd 14 inner
2695.1.bi.b.2199.1 yes 6 1.1 even 1 trivial
2695.1.bi.b.2199.1 yes 6 55.54 odd 2 CM