Properties

Label 2695.1.bi.c.2584.2
Level $2695$
Weight $1$
Character 2695.2584
Analytic conductor $1.345$
Analytic rank $0$
Dimension $12$
Projective image $D_{14}$
CM discriminant -55
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2695,1,Mod(274,2695)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2695, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 6, 7]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2695.274");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2695 = 5 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2695.bi (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34498020905\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{14})\)
Coefficient field: \(\Q(\zeta_{28})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{14}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{14} - \cdots)\)

Embedding invariants

Embedding label 2584.2
Root \(-0.781831 - 0.623490i\) of defining polynomial
Character \(\chi\) \(=\) 2695.2584
Dual form 2695.1.bi.c.1044.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.193096 + 0.846011i) q^{2} +(0.222521 - 0.107160i) q^{4} +(-0.623490 - 0.781831i) q^{5} +(0.974928 + 0.222521i) q^{7} +(0.674671 + 0.846011i) q^{8} +(-0.222521 + 0.974928i) q^{9} +O(q^{10})\) \(q+(0.193096 + 0.846011i) q^{2} +(0.222521 - 0.107160i) q^{4} +(-0.623490 - 0.781831i) q^{5} +(0.974928 + 0.222521i) q^{7} +(0.674671 + 0.846011i) q^{8} +(-0.222521 + 0.974928i) q^{9} +(0.541044 - 0.678448i) q^{10} +(0.222521 + 0.974928i) q^{11} +(-0.433884 - 1.90097i) q^{13} +0.867767i q^{14} +(-0.431468 + 0.541044i) q^{16} +(1.40881 + 0.678448i) q^{17} -0.867767 q^{18} +(-0.222521 - 0.107160i) q^{20} +(-0.781831 + 0.376510i) q^{22} +(-0.222521 + 0.974928i) q^{25} +(1.52446 - 0.734141i) q^{26} +(0.240787 - 0.0549581i) q^{28} -2.00000 q^{31} +(0.433884 + 0.208947i) q^{32} +(-0.301938 + 1.32288i) q^{34} +(-0.433884 - 0.900969i) q^{35} +(0.0549581 + 0.240787i) q^{36} +(0.240787 - 1.05496i) q^{40} +(1.21572 - 1.52446i) q^{43} +(0.153989 + 0.193096i) q^{44} +(0.900969 - 0.433884i) q^{45} +(0.900969 + 0.433884i) q^{49} -0.867767 q^{50} +(-0.300257 - 0.376510i) q^{52} +(0.623490 - 0.781831i) q^{55} +(0.469501 + 0.974928i) q^{56} +(-0.277479 + 0.347948i) q^{59} +(-0.386193 - 1.69202i) q^{62} +(-0.433884 + 0.900969i) q^{63} +(-0.246980 + 1.08209i) q^{64} +(-1.21572 + 1.52446i) q^{65} +0.386193 q^{68} +(0.678448 - 0.541044i) q^{70} +(1.62349 - 0.781831i) q^{71} +(-0.974928 + 0.469501i) q^{72} +(-0.347948 + 1.52446i) q^{73} +1.00000i q^{77} +0.692021 q^{80} +(-0.900969 - 0.433884i) q^{81} +(-0.347948 - 1.52446i) q^{85} +(1.52446 + 0.734141i) q^{86} +(-0.674671 + 0.846011i) q^{88} +(-0.0990311 + 0.433884i) q^{89} +(0.541044 + 0.678448i) q^{90} -1.94986i q^{91} +(-0.193096 + 0.846011i) q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{4} + 2 q^{5} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 2 q^{4} + 2 q^{5} - 2 q^{9} + 2 q^{11} - 16 q^{16} - 2 q^{20} - 2 q^{25} - 24 q^{31} + 14 q^{34} + 2 q^{36} + 12 q^{44} + 2 q^{45} + 2 q^{49} - 2 q^{55} - 14 q^{56} - 4 q^{59} + 16 q^{64} + 10 q^{71} - 12 q^{80} - 2 q^{81} - 10 q^{89} - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2695\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1816\) \(2157\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{7}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.193096 + 0.846011i 0.193096 + 0.846011i 0.974928 + 0.222521i \(0.0714286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(3\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(4\) 0.222521 0.107160i 0.222521 0.107160i
\(5\) −0.623490 0.781831i −0.623490 0.781831i
\(6\) 0 0
\(7\) 0.974928 + 0.222521i 0.974928 + 0.222521i
\(8\) 0.674671 + 0.846011i 0.674671 + 0.846011i
\(9\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(10\) 0.541044 0.678448i 0.541044 0.678448i
\(11\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(12\) 0 0
\(13\) −0.433884 1.90097i −0.433884 1.90097i −0.433884 0.900969i \(-0.642857\pi\)
1.00000i \(-0.5\pi\)
\(14\) 0.867767i 0.867767i
\(15\) 0 0
\(16\) −0.431468 + 0.541044i −0.431468 + 0.541044i
\(17\) 1.40881 + 0.678448i 1.40881 + 0.678448i 0.974928 0.222521i \(-0.0714286\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(18\) −0.867767 −0.867767
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) −0.222521 0.107160i −0.222521 0.107160i
\(21\) 0 0
\(22\) −0.781831 + 0.376510i −0.781831 + 0.376510i
\(23\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(24\) 0 0
\(25\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(26\) 1.52446 0.734141i 1.52446 0.734141i
\(27\) 0 0
\(28\) 0.240787 0.0549581i 0.240787 0.0549581i
\(29\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(30\) 0 0
\(31\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(32\) 0.433884 + 0.208947i 0.433884 + 0.208947i
\(33\) 0 0
\(34\) −0.301938 + 1.32288i −0.301938 + 1.32288i
\(35\) −0.433884 0.900969i −0.433884 0.900969i
\(36\) 0.0549581 + 0.240787i 0.0549581 + 0.240787i
\(37\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0.240787 1.05496i 0.240787 1.05496i
\(41\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(42\) 0 0
\(43\) 1.21572 1.52446i 1.21572 1.52446i 0.433884 0.900969i \(-0.357143\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(44\) 0.153989 + 0.193096i 0.153989 + 0.193096i
\(45\) 0.900969 0.433884i 0.900969 0.433884i
\(46\) 0 0
\(47\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(48\) 0 0
\(49\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(50\) −0.867767 −0.867767
\(51\) 0 0
\(52\) −0.300257 0.376510i −0.300257 0.376510i
\(53\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(54\) 0 0
\(55\) 0.623490 0.781831i 0.623490 0.781831i
\(56\) 0.469501 + 0.974928i 0.469501 + 0.974928i
\(57\) 0 0
\(58\) 0 0
\(59\) −0.277479 + 0.347948i −0.277479 + 0.347948i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(60\) 0 0
\(61\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(62\) −0.386193 1.69202i −0.386193 1.69202i
\(63\) −0.433884 + 0.900969i −0.433884 + 0.900969i
\(64\) −0.246980 + 1.08209i −0.246980 + 1.08209i
\(65\) −1.21572 + 1.52446i −1.21572 + 1.52446i
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0.386193 0.386193
\(69\) 0 0
\(70\) 0.678448 0.541044i 0.678448 0.541044i
\(71\) 1.62349 0.781831i 1.62349 0.781831i 0.623490 0.781831i \(-0.285714\pi\)
1.00000 \(0\)
\(72\) −0.974928 + 0.469501i −0.974928 + 0.469501i
\(73\) −0.347948 + 1.52446i −0.347948 + 1.52446i 0.433884 + 0.900969i \(0.357143\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.00000i 1.00000i
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0.692021 0.692021
\(81\) −0.900969 0.433884i −0.900969 0.433884i
\(82\) 0 0
\(83\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(84\) 0 0
\(85\) −0.347948 1.52446i −0.347948 1.52446i
\(86\) 1.52446 + 0.734141i 1.52446 + 0.734141i
\(87\) 0 0
\(88\) −0.674671 + 0.846011i −0.674671 + 0.846011i
\(89\) −0.0990311 + 0.433884i −0.0990311 + 0.433884i 0.900969 + 0.433884i \(0.142857\pi\)
−1.00000 \(\pi\)
\(90\) 0.541044 + 0.678448i 0.541044 + 0.678448i
\(91\) 1.94986i 1.94986i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −0.193096 + 0.846011i −0.193096 + 0.846011i
\(99\) −1.00000 −1.00000
\(100\) 0.0549581 + 0.240787i 0.0549581 + 0.240787i
\(101\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(102\) 0 0
\(103\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(104\) 1.31551 1.64960i 1.31551 1.64960i
\(105\) 0 0
\(106\) 0 0
\(107\) 0.193096 0.846011i 0.193096 0.846011i −0.781831 0.623490i \(-0.785714\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(108\) 0 0
\(109\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(110\) 0.781831 + 0.376510i 0.781831 + 0.376510i
\(111\) 0 0
\(112\) −0.541044 + 0.431468i −0.541044 + 0.431468i
\(113\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.94986 1.94986
\(118\) −0.347948 0.167563i −0.347948 0.167563i
\(119\) 1.22252 + 0.974928i 1.22252 + 0.974928i
\(120\) 0 0
\(121\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(122\) 0 0
\(123\) 0 0
\(124\) −0.445042 + 0.214321i −0.445042 + 0.214321i
\(125\) 0.900969 0.433884i 0.900969 0.433884i
\(126\) −0.846011 0.193096i −0.846011 0.193096i
\(127\) −0.781831 0.376510i −0.781831 0.376510i 1.00000i \(-0.5\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(128\) −0.481575 −0.481575
\(129\) 0 0
\(130\) −1.52446 0.734141i −1.52446 0.734141i
\(131\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.376510 + 1.64960i 0.376510 + 1.64960i
\(137\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(138\) 0 0
\(139\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(140\) −0.193096 0.153989i −0.193096 0.153989i
\(141\) 0 0
\(142\) 0.974928 + 1.22252i 0.974928 + 1.22252i
\(143\) 1.75676 0.846011i 1.75676 0.846011i
\(144\) −0.431468 0.541044i −0.431468 0.541044i
\(145\) 0 0
\(146\) −1.35690 −1.35690
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(150\) 0 0
\(151\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(152\) 0 0
\(153\) −0.974928 + 1.22252i −0.974928 + 1.22252i
\(154\) −0.846011 + 0.193096i −0.846011 + 0.193096i
\(155\) 1.24698 + 1.56366i 1.24698 + 1.56366i
\(156\) 0 0
\(157\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −0.107160 0.469501i −0.107160 0.469501i
\(161\) 0 0
\(162\) 0.193096 0.846011i 0.193096 0.846011i
\(163\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(168\) 0 0
\(169\) −2.52446 + 1.21572i −2.52446 + 1.21572i
\(170\) 1.22252 0.588735i 1.22252 0.588735i
\(171\) 0 0
\(172\) 0.107160 0.469501i 0.107160 0.469501i
\(173\) 0.781831 0.376510i 0.781831 0.376510i 1.00000i \(-0.5\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(174\) 0 0
\(175\) −0.433884 + 0.900969i −0.433884 + 0.900969i
\(176\) −0.623490 0.300257i −0.623490 0.300257i
\(177\) 0 0
\(178\) −0.386193 −0.386193
\(179\) −1.62349 0.781831i −1.62349 0.781831i −0.623490 0.781831i \(-0.714286\pi\)
−1.00000 \(\pi\)
\(180\) 0.153989 0.193096i 0.153989 0.193096i
\(181\) 0.277479 1.21572i 0.277479 1.21572i −0.623490 0.781831i \(-0.714286\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(182\) 1.64960 0.376510i 1.64960 0.376510i
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.347948 + 1.52446i −0.347948 + 1.52446i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.24698 1.56366i −1.24698 1.56366i −0.623490 0.781831i \(-0.714286\pi\)
−0.623490 0.781831i \(-0.714286\pi\)
\(192\) 0 0
\(193\) −0.974928 1.22252i −0.974928 1.22252i −0.974928 0.222521i \(-0.928571\pi\)
1.00000i \(-0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.246980 0.246980
\(197\) −0.867767 −0.867767 −0.433884 0.900969i \(-0.642857\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(198\) −0.193096 0.846011i −0.193096 0.846011i
\(199\) −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(200\) −0.974928 + 0.469501i −0.974928 + 0.469501i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 1.21572 + 0.585458i 1.21572 + 0.585458i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0.753020 0.753020
\(215\) −1.94986 −1.94986
\(216\) 0 0
\(217\) −1.94986 0.445042i −1.94986 0.445042i
\(218\) 0 0
\(219\) 0 0
\(220\) 0.0549581 0.240787i 0.0549581 0.240787i
\(221\) 0.678448 2.97247i 0.678448 2.97247i
\(222\) 0 0
\(223\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(224\) 0.376510 + 0.300257i 0.376510 + 0.300257i
\(225\) −0.900969 0.433884i −0.900969 0.433884i
\(226\) 0 0
\(227\) 1.56366 1.56366 0.781831 0.623490i \(-0.214286\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(228\) 0 0
\(229\) −1.12349 + 1.40881i −1.12349 + 1.40881i −0.222521 + 0.974928i \(0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(234\) 0.376510 + 1.64960i 0.376510 + 1.64960i
\(235\) 0 0
\(236\) −0.0244587 + 0.107160i −0.0244587 + 0.107160i
\(237\) 0 0
\(238\) −0.588735 + 1.22252i −0.588735 + 1.22252i
\(239\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(240\) 0 0
\(241\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(242\) −0.541044 0.678448i −0.541044 0.678448i
\(243\) 0 0
\(244\) 0 0
\(245\) −0.222521 0.974928i −0.222521 0.974928i
\(246\) 0 0
\(247\) 0 0
\(248\) −1.34934 1.69202i −1.34934 1.69202i
\(249\) 0 0
\(250\) 0.541044 + 0.678448i 0.541044 + 0.678448i
\(251\) −1.12349 + 1.40881i −1.12349 + 1.40881i −0.222521 + 0.974928i \(0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(252\) 0.246980i 0.246980i
\(253\) 0 0
\(254\) 0.167563 0.734141i 0.167563 0.734141i
\(255\) 0 0
\(256\) 0.153989 + 0.674671i 0.153989 + 0.674671i
\(257\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −0.107160 + 0.469501i −0.107160 + 0.469501i
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.277479 + 1.21572i −0.277479 + 1.21572i 0.623490 + 0.781831i \(0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(270\) 0 0
\(271\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(272\) −0.974928 + 0.469501i −0.974928 + 0.469501i
\(273\) 0 0
\(274\) 0 0
\(275\) −1.00000 −1.00000
\(276\) 0 0
\(277\) −1.40881 0.678448i −1.40881 0.678448i −0.433884 0.900969i \(-0.642857\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(278\) 0 0
\(279\) 0.445042 1.94986i 0.445042 1.94986i
\(280\) 0.469501 0.974928i 0.469501 0.974928i
\(281\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(282\) 0 0
\(283\) −0.433884 1.90097i −0.433884 1.90097i −0.433884 0.900969i \(-0.642857\pi\)
1.00000i \(-0.5\pi\)
\(284\) 0.277479 0.347948i 0.277479 0.347948i
\(285\) 0 0
\(286\) 1.05496 + 1.32288i 1.05496 + 1.32288i
\(287\) 0 0
\(288\) −0.300257 + 0.376510i −0.300257 + 0.376510i
\(289\) 0.900969 + 1.12978i 0.900969 + 1.12978i
\(290\) 0 0
\(291\) 0 0
\(292\) 0.0859360 + 0.376510i 0.0859360 + 0.376510i
\(293\) −1.56366 −1.56366 −0.781831 0.623490i \(-0.785714\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(294\) 0 0
\(295\) 0.445042 0.445042
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 1.52446 1.21572i 1.52446 1.21572i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) −1.22252 0.588735i −1.22252 0.588735i
\(307\) 0.193096 + 0.846011i 0.193096 + 0.846011i 0.974928 + 0.222521i \(0.0714286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(308\) 0.107160 + 0.222521i 0.107160 + 0.222521i
\(309\) 0 0
\(310\) −1.08209 + 1.35690i −1.08209 + 1.35690i
\(311\) −1.12349 0.541044i −1.12349 0.541044i −0.222521 0.974928i \(-0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0.974928 0.222521i 0.974928 0.222521i
\(316\) 0 0
\(317\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.00000 0.481575i 1.00000 0.481575i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.246980 −0.246980
\(325\) 1.94986 1.94986
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −0.400969 0.193096i −0.400969 0.193096i 0.222521 0.974928i \(-0.428571\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.21572 1.52446i 1.21572 1.52446i 0.433884 0.900969i \(-0.357143\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(338\) −1.51597 1.90097i −1.51597 1.90097i
\(339\) 0 0
\(340\) −0.240787 0.301938i −0.240787 0.301938i
\(341\) −0.445042 1.94986i −0.445042 1.94986i
\(342\) 0 0
\(343\) 0.781831 + 0.623490i 0.781831 + 0.623490i
\(344\) 2.10992 2.10992
\(345\) 0 0
\(346\) 0.469501 + 0.588735i 0.469501 + 0.588735i
\(347\) −0.781831 + 0.376510i −0.781831 + 0.376510i −0.781831 0.623490i \(-0.785714\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(350\) −0.846011 0.193096i −0.846011 0.193096i
\(351\) 0 0
\(352\) −0.107160 + 0.469501i −0.107160 + 0.469501i
\(353\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(354\) 0 0
\(355\) −1.62349 0.781831i −1.62349 0.781831i
\(356\) 0.0244587 + 0.107160i 0.0244587 + 0.107160i
\(357\) 0 0
\(358\) 0.347948 1.52446i 0.347948 1.52446i
\(359\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(360\) 0.974928 + 0.469501i 0.974928 + 0.469501i
\(361\) 1.00000 1.00000
\(362\) 1.08209 1.08209
\(363\) 0 0
\(364\) −0.208947 0.433884i −0.208947 0.433884i
\(365\) 1.40881 0.678448i 1.40881 0.678448i
\(366\) 0 0
\(367\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 1.56366 1.56366 0.781831 0.623490i \(-0.214286\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(374\) −1.35690 −1.35690
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −0.277479 1.21572i −0.277479 1.21572i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1.08209 1.35690i 1.08209 1.35690i
\(383\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(384\) 0 0
\(385\) 0.781831 0.623490i 0.781831 0.623490i
\(386\) 0.846011 1.06086i 0.846011 1.06086i
\(387\) 1.21572 + 1.52446i 1.21572 + 1.52446i
\(388\) 0 0
\(389\) 0.777479 + 0.974928i 0.777479 + 0.974928i 1.00000 \(0\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.240787 + 1.05496i 0.240787 + 1.05496i
\(393\) 0 0
\(394\) −0.167563 0.734141i −0.167563 0.734141i
\(395\) 0 0
\(396\) −0.222521 + 0.107160i −0.222521 + 0.107160i
\(397\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(398\) 0.974928 1.22252i 0.974928 1.22252i
\(399\) 0 0
\(400\) −0.431468 0.541044i −0.431468 0.541044i
\(401\) −0.0990311 + 0.433884i −0.0990311 + 0.433884i 0.900969 + 0.433884i \(0.142857\pi\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0.867767 + 3.80194i 0.867767 + 3.80194i
\(404\) 0 0
\(405\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.347948 + 0.277479i −0.347948 + 0.277479i
\(414\) 0 0
\(415\) 0 0
\(416\) 0.208947 0.915458i 0.208947 0.915458i
\(417\) 0 0
\(418\) 0 0
\(419\) −0.400969 + 0.193096i −0.400969 + 0.193096i −0.623490 0.781831i \(-0.714286\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(420\) 0 0
\(421\) 1.12349 + 0.541044i 1.12349 + 0.541044i 0.900969 0.433884i \(-0.142857\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.974928 + 1.22252i −0.974928 + 1.22252i
\(426\) 0 0
\(427\) 0 0
\(428\) −0.0476909 0.208947i −0.0476909 0.208947i
\(429\) 0 0
\(430\) −0.376510 1.64960i −0.376510 1.64960i
\(431\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(432\) 0 0
\(433\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(434\) 1.73553i 1.73553i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(440\) 1.08209 1.08209
\(441\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(442\) 2.64575 2.64575
\(443\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(444\) 0 0
\(445\) 0.400969 0.193096i 0.400969 0.193096i
\(446\) 0 0
\(447\) 0 0
\(448\) −0.481575 + 1.00000i −0.481575 + 1.00000i
\(449\) 0.277479 + 0.347948i 0.277479 + 0.347948i 0.900969 0.433884i \(-0.142857\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(450\) 0.193096 0.846011i 0.193096 0.846011i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0.301938 + 1.32288i 0.301938 + 1.32288i
\(455\) −1.52446 + 1.21572i −1.52446 + 1.21572i
\(456\) 0 0
\(457\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(458\) −1.40881 0.678448i −1.40881 0.678448i
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(462\) 0 0
\(463\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(468\) 0.433884 0.208947i 0.433884 0.208947i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −0.481575 −0.481575
\(473\) 1.75676 + 0.846011i 1.75676 + 0.846011i
\(474\) 0 0
\(475\) 0 0
\(476\) 0.376510 + 0.0859360i 0.376510 + 0.0859360i
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −0.153989 + 0.193096i −0.153989 + 0.193096i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0.781831 0.376510i 0.781831 0.376510i
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(496\) 0.862937 1.08209i 0.862937 1.08209i
\(497\) 1.75676 0.400969i 1.75676 0.400969i
\(498\) 0 0
\(499\) 0.0990311 0.433884i 0.0990311 0.433884i −0.900969 0.433884i \(-0.857143\pi\)
1.00000 \(0\)
\(500\) 0.153989 0.193096i 0.153989 0.193096i
\(501\) 0 0
\(502\) −1.40881 0.678448i −1.40881 0.678448i
\(503\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(504\) −1.05496 + 0.240787i −1.05496 + 0.240787i
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −0.214321 −0.214321
\(509\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(510\) 0 0
\(511\) −0.678448 + 1.40881i −0.678448 + 1.40881i
\(512\) −0.974928 + 0.469501i −0.974928 + 0.469501i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −2.10992 −2.10992
\(521\) 1.80194 1.80194 0.900969 0.433884i \(-0.142857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(522\) 0 0
\(523\) 1.21572 1.52446i 1.21572 1.52446i 0.433884 0.900969i \(-0.357143\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.81762 1.35690i −2.81762 1.35690i
\(528\) 0 0
\(529\) 0.623490 0.781831i 0.623490 0.781831i
\(530\) 0 0
\(531\) −0.277479 0.347948i −0.277479 0.347948i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −0.781831 + 0.376510i −0.781831 + 0.376510i
\(536\) 0 0
\(537\) 0 0
\(538\) −1.08209 −1.08209
\(539\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(540\) 0 0
\(541\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0.469501 + 0.588735i 0.469501 + 0.588735i
\(545\) 0 0
\(546\) 0 0
\(547\) −0.974928 1.22252i −0.974928 1.22252i −0.974928 0.222521i \(-0.928571\pi\)
1.00000i \(-0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) −0.193096 0.846011i −0.193096 0.846011i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0.301938 1.32288i 0.301938 1.32288i
\(555\) 0 0
\(556\) 0 0
\(557\) −1.94986 −1.94986 −0.974928 0.222521i \(-0.928571\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(558\) 1.73553 1.73553
\(559\) −3.42543 1.64960i −3.42543 1.64960i
\(560\) 0.674671 + 0.153989i 0.674671 + 0.153989i
\(561\) 0 0
\(562\) 0 0
\(563\) −0.193096 + 0.846011i −0.193096 + 0.846011i 0.781831 + 0.623490i \(0.214286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1.52446 0.734141i 1.52446 0.734141i
\(567\) −0.781831 0.623490i −0.781831 0.623490i
\(568\) 1.75676 + 0.846011i 1.75676 + 0.846011i
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(572\) 0.300257 0.376510i 0.300257 0.376510i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −1.00000 0.481575i −1.00000 0.481575i
\(577\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(578\) −0.781831 + 0.980386i −0.781831 + 0.980386i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −1.52446 + 0.734141i −1.52446 + 0.734141i
\(585\) −1.21572 1.52446i −1.21572 1.52446i
\(586\) −0.301938 1.32288i −0.301938 1.32288i
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0.0859360 + 0.376510i 0.0859360 + 0.376510i
\(591\) 0 0
\(592\) 0 0
\(593\) 1.21572 + 1.52446i 1.21572 + 1.52446i 0.781831 + 0.623490i \(0.214286\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(594\) 0 0
\(595\) 1.56366i 1.56366i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0.277479 + 1.21572i 0.277479 + 1.21572i 0.900969 + 0.433884i \(0.142857\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(600\) 0 0
\(601\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(602\) 1.32288 + 1.05496i 1.32288 + 1.05496i
\(603\) 0 0
\(604\) 0 0
\(605\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(606\) 0 0
\(607\) −1.56366 −1.56366 −0.781831 0.623490i \(-0.785714\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −0.0859360 + 0.376510i −0.0859360 + 0.376510i
\(613\) −0.193096 + 0.846011i −0.193096 + 0.846011i 0.781831 + 0.623490i \(0.214286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(614\) −0.678448 + 0.326723i −0.678448 + 0.326723i
\(615\) 0 0
\(616\) −0.846011 + 0.674671i −0.846011 + 0.674671i
\(617\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(618\) 0 0
\(619\) 0.445042 0.445042 0.222521 0.974928i \(-0.428571\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(620\) 0.445042 + 0.214321i 0.445042 + 0.214321i
\(621\) 0 0
\(622\) 0.240787 1.05496i 0.240787 1.05496i
\(623\) −0.193096 + 0.400969i −0.193096 + 0.400969i
\(624\) 0 0
\(625\) −0.900969 0.433884i −0.900969 0.433884i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0.376510 + 0.781831i 0.376510 + 0.781831i
\(631\) −1.12349 + 1.40881i −1.12349 + 1.40881i −0.222521 + 0.974928i \(0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.193096 + 0.846011i 0.193096 + 0.846011i
\(636\) 0 0
\(637\) 0.433884 1.90097i 0.433884 1.90097i
\(638\) 0 0
\(639\) 0.400969 + 1.75676i 0.400969 + 1.75676i
\(640\) 0.300257 + 0.376510i 0.300257 + 0.376510i
\(641\) −1.62349 + 0.781831i −1.62349 + 0.781831i −0.623490 + 0.781831i \(0.714286\pi\)
−1.00000 \(1.00000\pi\)
\(642\) 0 0
\(643\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(648\) −0.240787 1.05496i −0.240787 1.05496i
\(649\) −0.400969 0.193096i −0.400969 0.193096i
\(650\) 0.376510 + 1.64960i 0.376510 + 1.64960i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.40881 0.678448i −1.40881 0.678448i
\(658\) 0 0
\(659\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(660\) 0 0
\(661\) 0.400969 1.75676i 0.400969 1.75676i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(662\) 0.0859360 0.376510i 0.0859360 0.376510i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(674\) 1.52446 + 0.734141i 1.52446 + 0.734141i
\(675\) 0 0
\(676\) −0.431468 + 0.541044i −0.431468 + 0.541044i
\(677\) −0.433884 + 1.90097i −0.433884 + 1.90097i 1.00000i \(0.5\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 1.05496 1.32288i 1.05496 1.32288i
\(681\) 0 0
\(682\) 1.56366 0.753020i 1.56366 0.753020i
\(683\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.376510 + 0.781831i −0.376510 + 0.781831i
\(687\) 0 0
\(688\) 0.300257 + 1.31551i 0.300257 + 1.31551i
\(689\) 0 0
\(690\) 0 0
\(691\) 0.777479 + 0.974928i 0.777479 + 0.974928i 1.00000 \(0\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(692\) 0.133627 0.167563i 0.133627 0.167563i
\(693\) −0.974928 0.222521i −0.974928 0.222521i
\(694\) −0.469501 0.588735i −0.469501 0.588735i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0.246980i 0.246980i
\(701\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −1.10992 −1.10992
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.80194 0.867767i 1.80194 0.867767i 0.900969 0.433884i \(-0.142857\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(710\) 0.347948 1.52446i 0.347948 1.52446i
\(711\) 0 0
\(712\) −0.433884 + 0.208947i −0.433884 + 0.208947i
\(713\) 0 0
\(714\) 0 0
\(715\) −1.75676 0.846011i −1.75676 0.846011i
\(716\) −0.445042 −0.445042
\(717\) 0 0
\(718\) 0 0
\(719\) −0.777479 + 0.974928i −0.777479 + 0.974928i 0.222521 + 0.974928i \(0.428571\pi\)
−1.00000 \(\pi\)
\(720\) −0.153989 + 0.674671i −0.153989 + 0.674671i
\(721\) 0 0
\(722\) 0.193096 + 0.846011i 0.193096 + 0.846011i
\(723\) 0 0
\(724\) −0.0685317 0.300257i −0.0685317 0.300257i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(728\) 1.64960 1.31551i 1.64960 1.31551i
\(729\) 0.623490 0.781831i 0.623490 0.781831i
\(730\) 0.846011 + 1.06086i 0.846011 + 1.06086i
\(731\) 2.74698 1.32288i 2.74698 1.32288i
\(732\) 0 0
\(733\) −0.193096 0.846011i −0.193096 0.846011i −0.974928 0.222521i \(-0.928571\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.21572 + 1.52446i 1.21572 + 1.52446i 0.781831 + 0.623490i \(0.214286\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0.301938 + 1.32288i 0.301938 + 1.32288i
\(747\) 0 0
\(748\) 0.0859360 + 0.376510i 0.0859360 + 0.376510i
\(749\) 0.376510 0.781831i 0.376510 0.781831i
\(750\) 0 0
\(751\) 0.777479 0.974928i 0.777479 0.974928i −0.222521 0.974928i \(-0.571429\pi\)
1.00000 \(0\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(758\) 0.974928 0.469501i 0.974928 0.469501i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −0.445042 0.214321i −0.445042 0.214321i
\(765\) 1.56366 1.56366
\(766\) 0 0
\(767\) 0.781831 + 0.376510i 0.781831 + 0.376510i
\(768\) 0 0
\(769\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(770\) 0.678448 + 0.541044i 0.678448 + 0.541044i
\(771\) 0 0
\(772\) −0.347948 0.167563i −0.347948 0.167563i
\(773\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(774\) −1.05496 + 1.32288i −1.05496 + 1.32288i
\(775\) 0.445042 1.94986i 0.445042 1.94986i
\(776\) 0 0
\(777\) 0 0
\(778\) −0.674671 + 0.846011i −0.674671 + 0.846011i
\(779\) 0 0
\(780\) 0 0
\(781\) 1.12349 + 1.40881i 1.12349 + 1.40881i
\(782\) 0 0
\(783\) 0 0
\(784\) −0.623490 + 0.300257i −0.623490 + 0.300257i
\(785\) 0 0
\(786\) 0 0
\(787\) −0.541044 0.678448i −0.541044 0.678448i 0.433884 0.900969i \(-0.357143\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(788\) −0.193096 + 0.0929903i −0.193096 + 0.0929903i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −0.674671 0.846011i −0.674671 0.846011i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −0.400969 0.193096i −0.400969 0.193096i
\(797\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.300257 + 0.376510i −0.300257 + 0.376510i
\(801\) −0.400969 0.193096i −0.400969 0.193096i
\(802\) −0.386193 −0.386193
\(803\) −1.56366 −1.56366
\(804\) 0 0
\(805\) 0 0
\(806\) −3.04892 + 1.46828i −3.04892 + 1.46828i
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(810\) −0.781831 + 0.376510i −0.781831 + 0.376510i
\(811\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 1.90097 + 0.433884i 1.90097 + 0.433884i
\(820\) 0 0
\(821\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(822\) 0 0
\(823\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −0.301938 0.240787i −0.301938 0.240787i
\(827\) −0.974928 + 1.22252i −0.974928 + 1.22252i 1.00000i \(0.5\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(828\) 0 0
\(829\) −0.400969 + 0.193096i −0.400969 + 0.193096i −0.623490 0.781831i \(-0.714286\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 2.16418 2.16418
\(833\) 0.974928 + 1.22252i 0.974928 + 1.22252i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −0.240787 0.301938i −0.240787 0.301938i
\(839\) 0.777479 0.974928i 0.777479 0.974928i −0.222521 0.974928i \(-0.571429\pi\)
1.00000 \(0\)
\(840\) 0 0
\(841\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(842\) −0.240787 + 1.05496i −0.240787 + 1.05496i
\(843\) 0 0
\(844\) 0 0
\(845\) 2.52446 + 1.21572i 2.52446 + 1.21572i
\(846\) 0 0
\(847\) −0.974928 + 0.222521i −0.974928 + 0.222521i
\(848\) 0 0
\(849\) 0 0
\(850\) −1.22252 0.588735i −1.22252 0.588735i
\(851\) 0 0
\(852\) 0 0
\(853\) 0.781831 + 0.376510i 0.781831 + 0.376510i 0.781831 0.623490i \(-0.214286\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0.846011 0.407417i 0.846011 0.407417i
\(857\) 0.193096 0.846011i 0.193096 0.846011i −0.781831 0.623490i \(-0.785714\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(858\) 0 0
\(859\) 1.12349 0.541044i 1.12349 0.541044i 0.222521 0.974928i \(-0.428571\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(860\) −0.433884 + 0.208947i −0.433884 + 0.208947i
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) −0.781831 0.376510i −0.781831 0.376510i
\(866\) 0 0
\(867\) 0 0
\(868\) −0.481575 + 0.109916i −0.481575 + 0.109916i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.974928 0.222521i 0.974928 0.222521i
\(876\) 0 0
\(877\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0.153989 + 0.674671i 0.153989 + 0.674671i
\(881\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(882\) −0.781831 0.376510i −0.781831 0.376510i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) −0.167563 0.734141i −0.167563 0.734141i
\(885\) 0 0
\(886\) 0 0
\(887\) −0.974928 1.22252i −0.974928 1.22252i −0.974928 0.222521i \(-0.928571\pi\)
1.00000i \(-0.5\pi\)
\(888\) 0 0
\(889\) −0.678448 0.541044i −0.678448 0.541044i
\(890\) 0.240787 + 0.301938i 0.240787 + 0.301938i
\(891\) 0.222521 0.974928i 0.222521 0.974928i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0.400969 + 1.75676i 0.400969 + 1.75676i
\(896\) −0.469501 0.107160i −0.469501 0.107160i
\(897\) 0 0
\(898\) −0.240787 + 0.301938i −0.240787 + 0.301938i
\(899\) 0 0
\(900\) −0.246980 −0.246980
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.12349 + 0.541044i −1.12349 + 0.541044i
\(906\) 0 0
\(907\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(908\) 0.347948 0.167563i 0.347948 0.167563i
\(909\) 0 0
\(910\) −1.32288 1.05496i −1.32288 1.05496i
\(911\) −1.62349 0.781831i −1.62349 0.781831i −0.623490 0.781831i \(-0.714286\pi\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −0.0990311 + 0.433884i −0.0990311 + 0.433884i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −2.19064 2.74698i −2.19064 2.74698i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0.400969 + 1.75676i 0.400969 + 1.75676i 0.623490 + 0.781831i \(0.285714\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.40881 0.678448i 1.40881 0.678448i
\(936\) 1.31551 + 1.64960i 1.31551 + 1.64960i
\(937\) −1.21572 + 1.52446i −1.21572 + 1.52446i −0.433884 + 0.900969i \(0.642857\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −0.0685317 0.300257i −0.0685317 0.300257i
\(945\) 0 0
\(946\) −0.376510 + 1.64960i −0.376510 + 1.64960i
\(947\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(948\) 0 0
\(949\) 3.04892 3.04892
\(950\) 0 0
\(951\) 0 0
\(952\) 1.69202i 1.69202i
\(953\) 1.75676 0.846011i 1.75676 0.846011i 0.781831 0.623490i \(-0.214286\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(954\) 0 0
\(955\) −0.445042 + 1.94986i −0.445042 + 1.94986i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 3.00000 3.00000
\(962\) 0 0
\(963\) 0.781831 + 0.376510i 0.781831 + 0.376510i
\(964\) 0 0
\(965\) −0.347948 + 1.52446i −0.347948 + 1.52446i
\(966\) 0 0
\(967\) 0.347948 + 1.52446i 0.347948 + 1.52446i 0.781831 + 0.623490i \(0.214286\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(968\) −0.974928 0.469501i −0.974928 0.469501i
\(969\) 0 0
\(970\) 0 0
\(971\) −0.400969 + 1.75676i −0.400969 + 1.75676i 0.222521 + 0.974928i \(0.428571\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(978\) 0 0
\(979\) −0.445042 −0.445042
\(980\) −0.153989 0.193096i −0.153989 0.193096i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(984\) 0 0
\(985\) 0.541044 + 0.678448i 0.541044 + 0.678448i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −0.541044 + 0.678448i −0.541044 + 0.678448i
\(991\) 0.277479 + 1.21572i 0.277479 + 1.21572i 0.900969 + 0.433884i \(0.142857\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(992\) −0.867767 0.417895i −0.867767 0.417895i
\(993\) 0 0
\(994\) 0.678448 + 1.40881i 0.678448 + 1.40881i
\(995\) −0.400969 + 1.75676i −0.400969 + 1.75676i
\(996\) 0 0
\(997\) −1.75676 0.846011i −1.75676 0.846011i −0.974928 0.222521i \(-0.928571\pi\)
−0.781831 0.623490i \(-0.785714\pi\)
\(998\) 0.386193 0.386193
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2695.1.bi.c.2584.2 yes 12
5.4 even 2 inner 2695.1.bi.c.2584.1 yes 12
11.10 odd 2 inner 2695.1.bi.c.2584.1 yes 12
49.15 even 7 inner 2695.1.bi.c.1044.2 yes 12
55.54 odd 2 CM 2695.1.bi.c.2584.2 yes 12
245.64 even 14 inner 2695.1.bi.c.1044.1 12
539.505 odd 14 inner 2695.1.bi.c.1044.1 12
2695.1044 odd 14 inner 2695.1.bi.c.1044.2 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2695.1.bi.c.1044.1 12 245.64 even 14 inner
2695.1.bi.c.1044.1 12 539.505 odd 14 inner
2695.1.bi.c.1044.2 yes 12 49.15 even 7 inner
2695.1.bi.c.1044.2 yes 12 2695.1044 odd 14 inner
2695.1.bi.c.2584.1 yes 12 5.4 even 2 inner
2695.1.bi.c.2584.1 yes 12 11.10 odd 2 inner
2695.1.bi.c.2584.2 yes 12 1.1 even 1 trivial
2695.1.bi.c.2584.2 yes 12 55.54 odd 2 CM