Properties

Label 2695.1.ck.b.1374.1
Level $2695$
Weight $1$
Character 2695.1374
Analytic conductor $1.345$
Analytic rank $0$
Dimension $12$
Projective image $D_{21}$
CM discriminant -55
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2695,1,Mod(109,2695)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2695, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 40, 21]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2695.109");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2695 = 5 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2695.ck (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34498020905\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{21})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + x^{9} - x^{8} + x^{6} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{21}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{21} - \cdots)\)

Embedding invariants

Embedding label 1374.1
Root \(0.0747301 + 0.997204i\) of defining polynomial
Character \(\chi\) \(=\) 2695.1374
Dual form 2695.1.ck.b.2034.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.57906 - 0.487076i) q^{2} +(1.42996 + 0.974928i) q^{4} +(-0.988831 + 0.149042i) q^{5} +(0.222521 - 0.974928i) q^{7} +(-0.752824 - 0.944011i) q^{8} +(-0.733052 - 0.680173i) q^{9} +(1.63402 + 0.246289i) q^{10} +(-0.733052 + 0.680173i) q^{11} +(-0.326239 - 1.42935i) q^{13} +(-0.826239 + 1.43109i) q^{14} +(0.0966613 + 0.246289i) q^{16} +(-0.0931869 - 1.24349i) q^{17} +(0.826239 + 1.43109i) q^{18} +(-1.55929 - 0.750915i) q^{20} +(1.48883 - 0.716983i) q^{22} +(0.955573 - 0.294755i) q^{25} +(-0.181049 + 2.41593i) q^{26} +(1.26868 - 1.17716i) q^{28} +(0.500000 + 0.866025i) q^{31} +(0.0575591 + 0.768072i) q^{32} +(-0.458528 + 2.00894i) q^{34} +(-0.0747301 + 0.997204i) q^{35} +(-0.385113 - 1.68729i) q^{36} +(0.885113 + 0.821265i) q^{40} +(-1.19158 + 1.49419i) q^{43} +(-1.71135 + 0.257945i) q^{44} +(0.826239 + 0.563320i) q^{45} +(-0.900969 - 0.433884i) q^{49} -1.65248 q^{50} +(0.927001 - 2.36196i) q^{52} +(0.623490 - 0.781831i) q^{55} +(-1.08786 + 0.523887i) q^{56} +(1.44973 + 0.218511i) q^{59} +(-0.367711 - 1.61105i) q^{62} +(-0.826239 + 0.563320i) q^{63} +(0.342095 - 1.49881i) q^{64} +(0.535628 + 1.36476i) q^{65} +(1.07906 - 1.86899i) q^{68} +(0.603718 - 1.53825i) q^{70} +(-1.48883 + 0.716983i) q^{71} +(-0.0902318 + 1.20406i) q^{72} +(-0.698220 + 0.215372i) q^{73} +(0.500000 + 0.866025i) q^{77} +(-0.132289 - 0.229132i) q^{80} +(0.0747301 + 0.997204i) q^{81} +(-0.222521 + 0.974928i) q^{83} +(0.277479 + 1.21572i) q^{85} +(2.60937 - 1.77904i) q^{86} +(1.19395 + 0.179959i) q^{88} +(-1.40097 - 1.29991i) q^{89} +(-1.03030 - 1.29196i) q^{90} -1.46610 q^{91} +(1.21135 + 1.12397i) q^{98} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{2} + q^{5} + 2 q^{7} + 2 q^{8} + q^{9} + q^{10} + q^{11} + 5 q^{13} - q^{14} + 13 q^{16} - 2 q^{17} + q^{18} + 5 q^{22} + q^{25} + q^{26} + 6 q^{31} + 7 q^{32} - 3 q^{34} - q^{35} + 6 q^{40}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2695\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1816\) \(2157\)
\(\chi(n)\) \(-1\) \(e\left(\frac{13}{21}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.57906 0.487076i −1.57906 0.487076i −0.623490 0.781831i \(-0.714286\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(3\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(4\) 1.42996 + 0.974928i 1.42996 + 0.974928i
\(5\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(6\) 0 0
\(7\) 0.222521 0.974928i 0.222521 0.974928i
\(8\) −0.752824 0.944011i −0.752824 0.944011i
\(9\) −0.733052 0.680173i −0.733052 0.680173i
\(10\) 1.63402 + 0.246289i 1.63402 + 0.246289i
\(11\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(12\) 0 0
\(13\) −0.326239 1.42935i −0.326239 1.42935i −0.826239 0.563320i \(-0.809524\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(14\) −0.826239 + 1.43109i −0.826239 + 1.43109i
\(15\) 0 0
\(16\) 0.0966613 + 0.246289i 0.0966613 + 0.246289i
\(17\) −0.0931869 1.24349i −0.0931869 1.24349i −0.826239 0.563320i \(-0.809524\pi\)
0.733052 0.680173i \(-0.238095\pi\)
\(18\) 0.826239 + 1.43109i 0.826239 + 1.43109i
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) −1.55929 0.750915i −1.55929 0.750915i
\(21\) 0 0
\(22\) 1.48883 0.716983i 1.48883 0.716983i
\(23\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(24\) 0 0
\(25\) 0.955573 0.294755i 0.955573 0.294755i
\(26\) −0.181049 + 2.41593i −0.181049 + 2.41593i
\(27\) 0 0
\(28\) 1.26868 1.17716i 1.26868 1.17716i
\(29\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(30\) 0 0
\(31\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(32\) 0.0575591 + 0.768072i 0.0575591 + 0.768072i
\(33\) 0 0
\(34\) −0.458528 + 2.00894i −0.458528 + 2.00894i
\(35\) −0.0747301 + 0.997204i −0.0747301 + 0.997204i
\(36\) −0.385113 1.68729i −0.385113 1.68729i
\(37\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0.885113 + 0.821265i 0.885113 + 0.821265i
\(41\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(42\) 0 0
\(43\) −1.19158 + 1.49419i −1.19158 + 1.49419i −0.365341 + 0.930874i \(0.619048\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(44\) −1.71135 + 0.257945i −1.71135 + 0.257945i
\(45\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(46\) 0 0
\(47\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(48\) 0 0
\(49\) −0.900969 0.433884i −0.900969 0.433884i
\(50\) −1.65248 −1.65248
\(51\) 0 0
\(52\) 0.927001 2.36196i 0.927001 2.36196i
\(53\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(54\) 0 0
\(55\) 0.623490 0.781831i 0.623490 0.781831i
\(56\) −1.08786 + 0.523887i −1.08786 + 0.523887i
\(57\) 0 0
\(58\) 0 0
\(59\) 1.44973 + 0.218511i 1.44973 + 0.218511i 0.826239 0.563320i \(-0.190476\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(60\) 0 0
\(61\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(62\) −0.367711 1.61105i −0.367711 1.61105i
\(63\) −0.826239 + 0.563320i −0.826239 + 0.563320i
\(64\) 0.342095 1.49881i 0.342095 1.49881i
\(65\) 0.535628 + 1.36476i 0.535628 + 1.36476i
\(66\) 0 0
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) 1.07906 1.86899i 1.07906 1.86899i
\(69\) 0 0
\(70\) 0.603718 1.53825i 0.603718 1.53825i
\(71\) −1.48883 + 0.716983i −1.48883 + 0.716983i −0.988831 0.149042i \(-0.952381\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(72\) −0.0902318 + 1.20406i −0.0902318 + 1.20406i
\(73\) −0.698220 + 0.215372i −0.698220 + 0.215372i −0.623490 0.781831i \(-0.714286\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(78\) 0 0
\(79\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(80\) −0.132289 0.229132i −0.132289 0.229132i
\(81\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(82\) 0 0
\(83\) −0.222521 + 0.974928i −0.222521 + 0.974928i 0.733052 + 0.680173i \(0.238095\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(84\) 0 0
\(85\) 0.277479 + 1.21572i 0.277479 + 1.21572i
\(86\) 2.60937 1.77904i 2.60937 1.77904i
\(87\) 0 0
\(88\) 1.19395 + 0.179959i 1.19395 + 0.179959i
\(89\) −1.40097 1.29991i −1.40097 1.29991i −0.900969 0.433884i \(-0.857143\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(90\) −1.03030 1.29196i −1.03030 1.29196i
\(91\) −1.46610 −1.46610
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 1.21135 + 1.12397i 1.21135 + 1.12397i
\(99\) 1.00000 1.00000
\(100\) 1.65379 + 0.510127i 1.65379 + 0.510127i
\(101\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(102\) 0 0
\(103\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(104\) −1.10372 + 1.38402i −1.10372 + 1.38402i
\(105\) 0 0
\(106\) 0 0
\(107\) −1.32091 1.22563i −1.32091 1.22563i −0.955573 0.294755i \(-0.904762\pi\)
−0.365341 0.930874i \(-0.619048\pi\)
\(108\) 0 0
\(109\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(110\) −1.36534 + 0.930874i −1.36534 + 0.930874i
\(111\) 0 0
\(112\) 0.261623 0.0394334i 0.261623 0.0394334i
\(113\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.733052 + 1.26968i −0.733052 + 1.26968i
\(118\) −2.18278 1.05117i −2.18278 1.05117i
\(119\) −1.23305 0.185853i −1.23305 0.185853i
\(120\) 0 0
\(121\) 0.0747301 0.997204i 0.0747301 0.997204i
\(122\) 0 0
\(123\) 0 0
\(124\) −0.129334 + 1.72584i −0.129334 + 1.72584i
\(125\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(126\) 1.57906 0.487076i 1.57906 0.487076i
\(127\) −1.62349 0.781831i −1.62349 0.781831i −0.623490 0.781831i \(-0.714286\pi\)
−1.00000 \(\pi\)
\(128\) −0.885113 + 1.53306i −0.885113 + 1.53306i
\(129\) 0 0
\(130\) −0.181049 2.41593i −0.181049 2.41593i
\(131\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −1.10372 + 1.02410i −1.10372 + 1.02410i
\(137\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(138\) 0 0
\(139\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(140\) −1.07906 + 1.35310i −1.07906 + 1.35310i
\(141\) 0 0
\(142\) 2.70018 0.406987i 2.70018 0.406987i
\(143\) 1.21135 + 0.825886i 1.21135 + 0.825886i
\(144\) 0.0966613 0.246289i 0.0966613 0.246289i
\(145\) 0 0
\(146\) 1.20744 1.20744
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(150\) 0 0
\(151\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(152\) 0 0
\(153\) −0.777479 + 0.974928i −0.777479 + 0.974928i
\(154\) −0.367711 1.61105i −0.367711 1.61105i
\(155\) −0.623490 0.781831i −0.623490 0.781831i
\(156\) 0 0
\(157\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −0.171391 0.750915i −0.171391 0.750915i
\(161\) 0 0
\(162\) 0.367711 1.61105i 0.367711 1.61105i
\(163\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0.826239 1.43109i 0.826239 1.43109i
\(167\) 1.80194 + 0.867767i 1.80194 + 0.867767i 0.900969 + 0.433884i \(0.142857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(168\) 0 0
\(169\) −1.03563 + 0.498732i −1.03563 + 0.498732i
\(170\) 0.153989 2.05484i 0.153989 2.05484i
\(171\) 0 0
\(172\) −3.16064 + 0.974928i −3.16064 + 0.974928i
\(173\) −0.0111692 + 0.149042i −0.0111692 + 0.149042i 0.988831 + 0.149042i \(0.0476190\pi\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) −0.0747301 0.997204i −0.0747301 0.997204i
\(176\) −0.238377 0.114796i −0.238377 0.114796i
\(177\) 0 0
\(178\) 1.57906 + 2.73502i 1.57906 + 2.73502i
\(179\) 0.123490 + 1.64786i 0.123490 + 1.64786i 0.623490 + 0.781831i \(0.285714\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) 0.632289 + 1.61105i 0.632289 + 1.61105i
\(181\) −0.162592 + 0.712362i −0.162592 + 0.712362i 0.826239 + 0.563320i \(0.190476\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(182\) 2.31507 + 0.714104i 2.31507 + 0.714104i
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0.914101 + 0.848162i 0.914101 + 0.848162i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0.988831 0.149042i 0.988831 0.149042i 0.365341 0.930874i \(-0.380952\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(192\) 0 0
\(193\) −0.455573 + 1.16078i −0.455573 + 1.16078i 0.500000 + 0.866025i \(0.333333\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.865341 1.49881i −0.865341 1.49881i
\(197\) −0.149460 −0.149460 −0.0747301 0.997204i \(-0.523810\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(198\) −1.57906 0.487076i −1.57906 0.487076i
\(199\) 0.0546039 0.139129i 0.0546039 0.139129i −0.900969 0.433884i \(-0.857143\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(200\) −0.997630 0.680173i −0.997630 0.680173i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0.320497 0.218511i 0.320497 0.218511i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 1.48883 + 2.57873i 1.48883 + 2.57873i
\(215\) 0.955573 1.65510i 0.955573 1.65510i
\(216\) 0 0
\(217\) 0.955573 0.294755i 0.955573 0.294755i
\(218\) 0 0
\(219\) 0 0
\(220\) 1.65379 0.510127i 1.65379 0.510127i
\(221\) −1.74698 + 0.538872i −1.74698 + 0.538872i
\(222\) 0 0
\(223\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(224\) 0.761623 + 0.114796i 0.761623 + 0.114796i
\(225\) −0.900969 0.433884i −0.900969 0.433884i
\(226\) 0 0
\(227\) −0.988831 1.71271i −0.988831 1.71271i −0.623490 0.781831i \(-0.714286\pi\)
−0.365341 0.930874i \(-0.619048\pi\)
\(228\) 0 0
\(229\) 0.603718 + 1.53825i 0.603718 + 1.53825i 0.826239 + 0.563320i \(0.190476\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.65248 + 1.12664i −1.65248 + 1.12664i −0.826239 + 0.563320i \(0.809524\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(234\) 1.77597 1.64786i 1.77597 1.64786i
\(235\) 0 0
\(236\) 1.86002 + 1.72584i 1.86002 + 1.72584i
\(237\) 0 0
\(238\) 1.85654 + 0.894063i 1.85654 + 0.894063i
\(239\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(240\) 0 0
\(241\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(242\) −0.603718 + 1.53825i −0.603718 + 1.53825i
\(243\) 0 0
\(244\) 0 0
\(245\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(246\) 0 0
\(247\) 0 0
\(248\) 0.441126 1.12397i 0.441126 1.12397i
\(249\) 0 0
\(250\) 1.63402 0.246289i 1.63402 0.246289i
\(251\) −1.12349 + 1.40881i −1.12349 + 1.40881i −0.222521 + 0.974928i \(0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(252\) −1.73068 −1.73068
\(253\) 0 0
\(254\) 2.18278 + 2.02532i 2.18278 + 2.02532i
\(255\) 0 0
\(256\) 1.01740 0.944011i 1.01740 0.944011i
\(257\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −0.564616 + 2.47374i −0.564616 + 2.47374i
\(261\) 0 0
\(262\) 0 0
\(263\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.19158 0.367554i 1.19158 0.367554i 0.365341 0.930874i \(-0.380952\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(270\) 0 0
\(271\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(272\) 0.297251 0.143149i 0.297251 0.143149i
\(273\) 0 0
\(274\) 0 0
\(275\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(276\) 0 0
\(277\) −0.0546039 0.728639i −0.0546039 0.728639i −0.955573 0.294755i \(-0.904762\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(278\) 0 0
\(279\) 0.222521 0.974928i 0.222521 0.974928i
\(280\) 0.997630 0.680173i 0.997630 0.680173i
\(281\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(282\) 0 0
\(283\) −0.326239 + 0.302705i −0.326239 + 0.302705i −0.826239 0.563320i \(-0.809524\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(284\) −2.82797 0.426248i −2.82797 0.426248i
\(285\) 0 0
\(286\) −1.51053 1.89415i −1.51053 1.89415i
\(287\) 0 0
\(288\) 0.480228 0.602187i 0.480228 0.602187i
\(289\) −0.548760 + 0.0827122i −0.548760 + 0.0827122i
\(290\) 0 0
\(291\) 0 0
\(292\) −1.20840 0.372741i −1.20840 0.372741i
\(293\) 1.97766 1.97766 0.988831 0.149042i \(-0.0476190\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(294\) 0 0
\(295\) −1.46610 −1.46610
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 1.19158 + 1.49419i 1.19158 + 1.49419i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 1.70255 1.16078i 1.70255 1.16078i
\(307\) 0.367711 + 1.61105i 0.367711 + 1.61105i 0.733052 + 0.680173i \(0.238095\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(308\) −0.129334 + 1.72584i −0.129334 + 1.72584i
\(309\) 0 0
\(310\) 0.603718 + 1.53825i 0.603718 + 1.53825i
\(311\) −0.147791 1.97213i −0.147791 1.97213i −0.222521 0.974928i \(-0.571429\pi\)
0.0747301 0.997204i \(-0.476190\pi\)
\(312\) 0 0
\(313\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 0 0
\(315\) 0.733052 0.680173i 0.733052 0.680173i
\(316\) 0 0
\(317\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.114887 + 1.53306i −0.114887 + 1.53306i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.865341 + 1.49881i −0.865341 + 1.49881i
\(325\) −0.733052 1.26968i −0.733052 1.26968i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.57906 1.07659i 1.57906 1.07659i 0.623490 0.781831i \(-0.285714\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(332\) −1.26868 + 1.17716i −1.26868 + 1.17716i
\(333\) 0 0
\(334\) −2.42270 2.24794i −2.42270 2.24794i
\(335\) 0 0
\(336\) 0 0
\(337\) 0.914101 1.14625i 0.914101 1.14625i −0.0747301 0.997204i \(-0.523810\pi\)
0.988831 0.149042i \(-0.0476190\pi\)
\(338\) 1.87824 0.283099i 1.87824 0.283099i
\(339\) 0 0
\(340\) −0.788452 + 2.00894i −0.788452 + 2.00894i
\(341\) −0.955573 0.294755i −0.955573 0.294755i
\(342\) 0 0
\(343\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(344\) 2.30759 2.30759
\(345\) 0 0
\(346\) 0.0902318 0.229907i 0.0902318 0.229907i
\(347\) −0.123490 0.0841939i −0.123490 0.0841939i 0.500000 0.866025i \(-0.333333\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(348\) 0 0
\(349\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(350\) −0.367711 + 1.61105i −0.367711 + 1.61105i
\(351\) 0 0
\(352\) −0.564616 0.523887i −0.564616 0.523887i
\(353\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(354\) 0 0
\(355\) 1.36534 0.930874i 1.36534 0.930874i
\(356\) −0.736007 3.22466i −0.736007 3.22466i
\(357\) 0 0
\(358\) 0.607634 2.66222i 0.607634 2.66222i
\(359\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(360\) −0.0902318 1.20406i −0.0902318 1.20406i
\(361\) −0.500000 0.866025i −0.500000 0.866025i
\(362\) 0.603718 1.04567i 0.603718 1.04567i
\(363\) 0 0
\(364\) −2.09646 1.42935i −2.09646 1.42935i
\(365\) 0.658322 0.317031i 0.658322 0.317031i
\(366\) 0 0
\(367\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −0.988831 + 1.71271i −0.988831 + 1.71271i −0.365341 + 0.930874i \(0.619048\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(374\) −1.03030 1.78454i −1.03030 1.78454i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0.440071 + 1.92808i 0.440071 + 1.92808i 0.365341 + 0.930874i \(0.380952\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −1.63402 0.246289i −1.63402 0.246289i
\(383\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(384\) 0 0
\(385\) −0.623490 0.781831i −0.623490 0.781831i
\(386\) 1.28477 1.61105i 1.28477 1.61105i
\(387\) 1.88980 0.284841i 1.88980 0.284841i
\(388\) 0 0
\(389\) −0.722521 + 1.84095i −0.722521 + 1.84095i −0.222521 + 0.974928i \(0.571429\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.268680 + 1.17716i 0.268680 + 1.17716i
\(393\) 0 0
\(394\) 0.236007 + 0.0727985i 0.236007 + 0.0727985i
\(395\) 0 0
\(396\) 1.42996 + 0.974928i 1.42996 + 0.974928i
\(397\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(398\) −0.153989 + 0.193096i −0.153989 + 0.193096i
\(399\) 0 0
\(400\) 0.164962 + 0.206856i 0.164962 + 0.206856i
\(401\) −1.40097 1.29991i −1.40097 1.29991i −0.900969 0.433884i \(-0.857143\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(402\) 0 0
\(403\) 1.07473 0.997204i 1.07473 0.997204i
\(404\) 0 0
\(405\) −0.222521 0.974928i −0.222521 0.974928i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.535628 1.36476i 0.535628 1.36476i
\(414\) 0 0
\(415\) 0.0747301 0.997204i 0.0747301 0.997204i
\(416\) 1.07906 0.332847i 1.07906 0.332847i
\(417\) 0 0
\(418\) 0 0
\(419\) 1.32091 0.636119i 1.32091 0.636119i 0.365341 0.930874i \(-0.380952\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(420\) 0 0
\(421\) −1.12349 0.541044i −1.12349 0.541044i −0.222521 0.974928i \(-0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.455573 1.16078i −0.455573 1.16078i
\(426\) 0 0
\(427\) 0 0
\(428\) −0.693950 3.04039i −0.693950 3.04039i
\(429\) 0 0
\(430\) −2.31507 + 2.14807i −2.31507 + 2.14807i
\(431\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(432\) 0 0
\(433\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(434\) −1.65248 −1.65248
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(440\) −1.20744 −1.20744
\(441\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(442\) 3.02106 3.02106
\(443\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(444\) 0 0
\(445\) 1.57906 + 1.07659i 1.57906 + 1.07659i
\(446\) 0 0
\(447\) 0 0
\(448\) −1.38511 0.667035i −1.38511 0.667035i
\(449\) −0.914101 1.14625i −0.914101 1.14625i −0.988831 0.149042i \(-0.952381\pi\)
0.0747301 0.997204i \(-0.476190\pi\)
\(450\) 1.21135 + 1.12397i 1.21135 + 1.12397i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0.727208 + 3.18610i 0.727208 + 3.18610i
\(455\) 1.44973 0.218511i 1.44973 0.218511i
\(456\) 0 0
\(457\) 0.365341 + 0.930874i 0.365341 + 0.930874i 0.988831 + 0.149042i \(0.0476190\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(458\) −0.204064 2.72305i −0.204064 2.72305i
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(462\) 0 0
\(463\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 3.15813 0.974153i 3.15813 0.974153i
\(467\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(468\) −2.28608 + 1.10092i −2.28608 + 1.10092i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −0.885113 1.53306i −0.885113 1.53306i
\(473\) −0.142820 1.90580i −0.142820 1.90580i
\(474\) 0 0
\(475\) 0 0
\(476\) −1.58202 1.46790i −1.58202 1.46790i
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 1.07906 1.35310i 1.07906 1.35310i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −1.36534 0.930874i −1.36534 0.930874i
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(496\) −0.164962 + 0.206856i −0.164962 + 0.206856i
\(497\) 0.367711 + 1.61105i 0.367711 + 1.61105i
\(498\) 0 0
\(499\) −1.40097 1.29991i −1.40097 1.29991i −0.900969 0.433884i \(-0.857143\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(500\) −1.71135 0.257945i −1.71135 0.257945i
\(501\) 0 0
\(502\) 2.46026 1.67738i 2.46026 1.67738i
\(503\) −0.222521 0.974928i −0.222521 0.974928i −0.955573 0.294755i \(-0.904762\pi\)
0.733052 0.680173i \(-0.238095\pi\)
\(504\) 1.15379 + 0.355898i 1.15379 + 0.355898i
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −1.55929 2.70077i −1.55929 2.70077i
\(509\) 0.988831 1.71271i 0.988831 1.71271i 0.365341 0.930874i \(-0.380952\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(510\) 0 0
\(511\) 0.0546039 + 0.728639i 0.0546039 + 0.728639i
\(512\) −0.471429 + 0.227028i −0.471429 + 0.227028i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0.885113 1.53306i 0.885113 1.53306i
\(521\) −0.826239 1.43109i −0.826239 1.43109i −0.900969 0.433884i \(-0.857143\pi\)
0.0747301 0.997204i \(-0.476190\pi\)
\(522\) 0 0
\(523\) −0.698220 1.77904i −0.698220 1.77904i −0.623490 0.781831i \(-0.714286\pi\)
−0.0747301 0.997204i \(-0.523810\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0.367711 + 1.61105i 0.367711 + 1.61105i
\(527\) 1.03030 0.702449i 1.03030 0.702449i
\(528\) 0 0
\(529\) −0.988831 0.149042i −0.988831 0.149042i
\(530\) 0 0
\(531\) −0.914101 1.14625i −0.914101 1.14625i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1.48883 + 1.01507i 1.48883 + 1.01507i
\(536\) 0 0
\(537\) 0 0
\(538\) −2.06061 −2.06061
\(539\) 0.955573 0.294755i 0.955573 0.294755i
\(540\) 0 0
\(541\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0.949729 0.143149i 0.949729 0.143149i
\(545\) 0 0
\(546\) 0 0
\(547\) −0.455573 0.571270i −0.455573 0.571270i 0.500000 0.866025i \(-0.333333\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 1.21135 1.12397i 1.21135 1.12397i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −0.268680 + 1.17716i −0.268680 + 1.17716i
\(555\) 0 0
\(556\) 0 0
\(557\) −0.222521 0.385418i −0.222521 0.385418i 0.733052 0.680173i \(-0.238095\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(558\) −0.826239 + 1.43109i −0.826239 + 1.43109i
\(559\) 2.52446 + 1.21572i 2.52446 + 1.21572i
\(560\) −0.252824 + 0.0779858i −0.252824 + 0.0779858i
\(561\) 0 0
\(562\) 0 0
\(563\) −0.142820 + 0.0440542i −0.142820 + 0.0440542i −0.365341 0.930874i \(-0.619048\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0.662592 0.319088i 0.662592 0.319088i
\(567\) 0.988831 + 0.149042i 0.988831 + 0.149042i
\(568\) 1.79767 + 0.865711i 1.79767 + 0.865711i
\(569\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0 0
\(571\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(572\) 0.927001 + 2.36196i 0.927001 + 2.36196i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −1.27023 + 0.866025i −1.27023 + 0.866025i
\(577\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(578\) 0.906813 + 0.136680i 0.906813 + 0.136680i
\(579\) 0 0
\(580\) 0 0
\(581\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(582\) 0 0
\(583\) 0 0
\(584\) 0.728950 + 0.496990i 0.728950 + 0.496990i
\(585\) 0.535628 1.36476i 0.535628 1.36476i
\(586\) −3.12285 0.963272i −3.12285 0.963272i
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 2.31507 + 0.714104i 2.31507 + 0.714104i
\(591\) 0 0
\(592\) 0 0
\(593\) 1.88980 0.284841i 1.88980 0.284841i 0.900969 0.433884i \(-0.142857\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(594\) 0 0
\(595\) 1.24698 1.24698
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.44973 1.34515i 1.44973 1.34515i 0.623490 0.781831i \(-0.285714\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(600\) 0 0
\(601\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(602\) −1.15379 2.93982i −1.15379 2.93982i
\(603\) 0 0
\(604\) 0 0
\(605\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(606\) 0 0
\(607\) −0.988831 + 1.71271i −0.988831 + 1.71271i −0.365341 + 0.930874i \(0.619048\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −2.06225 + 0.636119i −2.06225 + 0.636119i
\(613\) −0.142820 + 0.0440542i −0.142820 + 0.0440542i −0.365341 0.930874i \(-0.619048\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(614\) 0.204064 2.72305i 0.204064 2.72305i
\(615\) 0 0
\(616\) 0.441126 1.12397i 0.441126 1.12397i
\(617\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(618\) 0 0
\(619\) 0.222521 + 0.385418i 0.222521 + 0.385418i 0.955573 0.294755i \(-0.0952381\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(620\) −0.129334 1.72584i −0.129334 1.72584i
\(621\) 0 0
\(622\) −0.727208 + 3.18610i −0.727208 + 3.18610i
\(623\) −1.57906 + 1.07659i −1.57906 + 1.07659i
\(624\) 0 0
\(625\) 0.826239 0.563320i 0.826239 0.563320i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) −1.48883 + 0.716983i −1.48883 + 0.716983i
\(631\) 0.0931869 0.116853i 0.0931869 0.116853i −0.733052 0.680173i \(-0.761905\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.72188 + 0.531130i 1.72188 + 0.531130i
\(636\) 0 0
\(637\) −0.326239 + 1.42935i −0.326239 + 1.42935i
\(638\) 0 0
\(639\) 1.57906 + 0.487076i 1.57906 + 0.487076i
\(640\) 0.646736 1.64786i 0.646736 1.64786i
\(641\) −1.48883 1.01507i −1.48883 1.01507i −0.988831 0.149042i \(-0.952381\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(642\) 0 0
\(643\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(648\) 0.885113 0.821265i 0.885113 0.821265i
\(649\) −1.21135 + 0.825886i −1.21135 + 0.825886i
\(650\) 0.539102 + 2.36196i 0.539102 + 2.36196i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0.658322 + 0.317031i 0.658322 + 0.317031i
\(658\) 0 0
\(659\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(660\) 0 0
\(661\) −1.72188 + 0.531130i −1.72188 + 0.531130i −0.988831 0.149042i \(-0.952381\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(662\) −3.01782 + 0.930874i −3.01782 + 0.930874i
\(663\) 0 0
\(664\) 1.08786 0.523887i 1.08786 0.523887i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 1.73068 + 2.99763i 1.73068 + 2.99763i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.222521 0.974928i −0.222521 0.974928i −0.955573 0.294755i \(-0.904762\pi\)
0.733052 0.680173i \(-0.238095\pi\)
\(674\) −2.00173 + 1.36476i −2.00173 + 1.36476i
\(675\) 0 0
\(676\) −1.96713 0.296497i −1.96713 0.296497i
\(677\) −0.326239 0.302705i −0.326239 0.302705i 0.500000 0.866025i \(-0.333333\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0.938756 1.17716i 0.938756 1.17716i
\(681\) 0 0
\(682\) 1.36534 + 0.930874i 1.36534 + 0.930874i
\(683\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.36534 0.930874i 1.36534 0.930874i
\(687\) 0 0
\(688\) −0.483183 0.149042i −0.483183 0.149042i
\(689\) 0 0
\(690\) 0 0
\(691\) −1.23305 + 0.185853i −1.23305 + 0.185853i −0.733052 0.680173i \(-0.761905\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) −0.161277 + 0.202235i −0.161277 + 0.202235i
\(693\) 0.222521 0.974928i 0.222521 0.974928i
\(694\) 0.153989 + 0.193096i 0.153989 + 0.193096i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0.865341 1.49881i 0.865341 1.49881i
\(701\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0.768680 + 1.33139i 0.768680 + 1.33139i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.0747301 + 0.997204i −0.0747301 + 0.997204i 0.826239 + 0.563320i \(0.190476\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(710\) −2.60937 + 0.804883i −2.60937 + 0.804883i
\(711\) 0 0
\(712\) −0.172446 + 2.30113i −0.172446 + 2.30113i
\(713\) 0 0
\(714\) 0 0
\(715\) −1.32091 0.636119i −1.32091 0.636119i
\(716\) −1.42996 + 2.47676i −1.42996 + 2.47676i
\(717\) 0 0
\(718\) 0 0
\(719\) 0.455573 + 1.16078i 0.455573 + 1.16078i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(720\) −0.0588742 + 0.257945i −0.0588742 + 0.257945i
\(721\) 0 0
\(722\) 0.367711 + 1.61105i 0.367711 + 1.61105i
\(723\) 0 0
\(724\) −0.927001 + 0.860132i −0.927001 + 0.860132i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(728\) 1.10372 + 1.38402i 1.10372 + 1.38402i
\(729\) 0.623490 0.781831i 0.623490 0.781831i
\(730\) −1.19395 + 0.179959i −1.19395 + 0.179959i
\(731\) 1.96906 + 1.34248i 1.96906 + 1.34248i
\(732\) 0 0
\(733\) 1.72188 + 0.531130i 1.72188 + 0.531130i 0.988831 0.149042i \(-0.0476190\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.914101 + 1.14625i 0.914101 + 1.14625i 0.988831 + 0.149042i \(0.0476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 2.39564 2.22283i 2.39564 2.22283i
\(747\) 0.826239 0.563320i 0.826239 0.563320i
\(748\) 0.480228 + 2.10402i 0.480228 + 2.10402i
\(749\) −1.48883 + 1.01507i −1.48883 + 1.01507i
\(750\) 0 0
\(751\) 0.266948 + 0.680173i 0.266948 + 0.680173i 1.00000 \(0\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(758\) 0.244221 3.25890i 0.244221 3.25890i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 1.55929 + 0.750915i 1.55929 + 0.750915i
\(765\) 0.623490 1.07992i 0.623490 1.07992i
\(766\) 0 0
\(767\) −0.160629 2.14345i −0.160629 2.14345i
\(768\) 0 0
\(769\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(770\) 0.603718 + 1.53825i 0.603718 + 1.53825i
\(771\) 0 0
\(772\) −1.78313 + 1.21572i −1.78313 + 1.21572i
\(773\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(774\) −3.12285 0.470694i −3.12285 0.470694i
\(775\) 0.733052 + 0.680173i 0.733052 + 0.680173i
\(776\) 0 0
\(777\) 0 0
\(778\) 2.03759 2.55506i 2.03759 2.55506i
\(779\) 0 0
\(780\) 0 0
\(781\) 0.603718 1.53825i 0.603718 1.53825i
\(782\) 0 0
\(783\) 0 0
\(784\) 0.0197720 0.263838i 0.0197720 0.263838i
\(785\) 0 0
\(786\) 0 0
\(787\) −0.0546039 + 0.139129i −0.0546039 + 0.139129i −0.955573 0.294755i \(-0.904762\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(788\) −0.213722 0.145713i −0.213722 0.145713i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −0.752824 0.944011i −0.752824 0.944011i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0.213722 0.145713i 0.213722 0.145713i
\(797\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.281395 + 0.716983i 0.281395 + 0.716983i
\(801\) 0.142820 + 1.90580i 0.142820 + 1.90580i
\(802\) 1.57906 + 2.73502i 1.57906 + 2.73502i
\(803\) 0.365341 0.632789i 0.365341 0.632789i
\(804\) 0 0
\(805\) 0 0
\(806\) −2.18278 + 1.05117i −2.18278 + 1.05117i
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(810\) −0.123490 + 1.64786i −0.123490 + 1.64786i
\(811\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 1.07473 + 0.997204i 1.07473 + 0.997204i
\(820\) 0 0
\(821\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(822\) 0 0
\(823\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −1.51053 + 1.89415i −1.51053 + 1.89415i
\(827\) −0.777479 + 0.974928i −0.777479 + 0.974928i 0.222521 + 0.974928i \(0.428571\pi\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) −1.21135 0.825886i −1.21135 0.825886i −0.222521 0.974928i \(-0.571429\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(830\) −0.603718 + 1.53825i −0.603718 + 1.53825i
\(831\) 0 0
\(832\) −2.25393 −2.25393
\(833\) −0.455573 + 1.16078i −0.455573 + 1.16078i
\(834\) 0 0
\(835\) −1.91115 0.589510i −1.91115 0.589510i
\(836\) 0 0
\(837\) 0 0
\(838\) −2.39564 + 0.361085i −2.39564 + 0.361085i
\(839\) 0.777479 0.974928i 0.777479 0.974928i −0.222521 0.974928i \(-0.571429\pi\)
1.00000 \(0\)
\(840\) 0 0
\(841\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(842\) 1.51053 + 1.40157i 1.51053 + 1.40157i
\(843\) 0 0
\(844\) 0 0
\(845\) 0.949729 0.647514i 0.949729 0.647514i
\(846\) 0 0
\(847\) −0.955573 0.294755i −0.955573 0.294755i
\(848\) 0 0
\(849\) 0 0
\(850\) 0.153989 + 2.05484i 0.153989 + 2.05484i
\(851\) 0 0
\(852\) 0 0
\(853\) −1.62349 0.781831i −1.62349 0.781831i −0.623490 0.781831i \(-0.714286\pi\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −0.162592 + 2.16964i −0.162592 + 2.16964i
\(857\) −1.57906 + 0.487076i −1.57906 + 0.487076i −0.955573 0.294755i \(-0.904762\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(858\) 0 0
\(859\) 0.0931869 1.24349i 0.0931869 1.24349i −0.733052 0.680173i \(-0.761905\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(860\) 2.98003 1.43511i 2.98003 1.43511i
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(864\) 0 0
\(865\) −0.0111692 0.149042i −0.0111692 0.149042i
\(866\) 0 0
\(867\) 0 0
\(868\) 1.65379 + 0.510127i 1.65379 + 0.510127i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(876\) 0 0
\(877\) −0.988831 + 0.149042i −0.988831 + 0.149042i −0.623490 0.781831i \(-0.714286\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0.252824 + 0.0779858i 0.252824 + 0.0779858i
\(881\) 0.149460 0.149460 0.0747301 0.997204i \(-0.476190\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(882\) −0.123490 1.64786i −0.123490 1.64786i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) −3.02347 0.932616i −3.02347 0.932616i
\(885\) 0 0
\(886\) 0 0
\(887\) 0.722521 0.108903i 0.722521 0.108903i 0.222521 0.974928i \(-0.428571\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(888\) 0 0
\(889\) −1.12349 + 1.40881i −1.12349 + 1.40881i
\(890\) −1.96906 2.46912i −1.96906 2.46912i
\(891\) −0.733052 0.680173i −0.733052 0.680173i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −0.367711 1.61105i −0.367711 1.61105i
\(896\) 1.29767 + 1.20406i 1.29767 + 1.20406i
\(897\) 0 0
\(898\) 0.885113 + 2.25523i 0.885113 + 2.25523i
\(899\) 0 0
\(900\) −0.865341 1.49881i −0.865341 1.49881i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.0546039 0.728639i 0.0546039 0.728639i
\(906\) 0 0
\(907\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(908\) 0.255779 3.41313i 0.255779 3.41313i
\(909\) 0 0
\(910\) −2.39564 0.361085i −2.39564 0.361085i
\(911\) −0.134659 0.0648483i −0.134659 0.0648483i 0.365341 0.930874i \(-0.380952\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(912\) 0 0
\(913\) −0.500000 0.866025i −0.500000 0.866025i
\(914\) −0.123490 1.64786i −0.123490 1.64786i
\(915\) 0 0
\(916\) −0.636391 + 2.78821i −0.636391 + 2.78821i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.51053 + 1.89415i 1.51053 + 1.89415i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.72188 0.531130i −1.72188 0.531130i −0.733052 0.680173i \(-0.761905\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −3.46136 −3.46136
\(933\) 0 0
\(934\) 0 0
\(935\) −1.03030 0.702449i −1.03030 0.702449i
\(936\) 1.75045 0.263838i 1.75045 0.263838i
\(937\) 0.914101 1.14625i 0.914101 1.14625i −0.0747301 0.997204i \(-0.523810\pi\)
0.988831 0.149042i \(-0.0476190\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0.0863157 + 0.378174i 0.0863157 + 0.378174i
\(945\) 0 0
\(946\) −0.702749 + 3.07894i −0.702749 + 3.07894i
\(947\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(948\) 0 0
\(949\) 0.535628 + 0.927735i 0.535628 + 0.927735i
\(950\) 0 0
\(951\) 0 0
\(952\) 0.752824 + 1.30393i 0.752824 + 1.30393i
\(953\) −0.400969 + 0.193096i −0.400969 + 0.193096i −0.623490 0.781831i \(-0.714286\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(954\) 0 0
\(955\) −0.955573 + 0.294755i −0.955573 + 0.294755i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0 0
\(962\) 0 0
\(963\) 0.134659 + 1.79690i 0.134659 + 1.79690i
\(964\) 0 0
\(965\) 0.277479 1.21572i 0.277479 1.21572i
\(966\) 0 0
\(967\) 0.162592 + 0.712362i 0.162592 + 0.712362i 0.988831 + 0.149042i \(0.0476190\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(968\) −0.997630 + 0.680173i −0.997630 + 0.680173i
\(969\) 0 0
\(970\) 0 0
\(971\) −0.109562 0.101659i −0.109562 0.101659i 0.623490 0.781831i \(-0.285714\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(978\) 0 0
\(979\) 1.91115 1.91115
\(980\) 1.07906 + 1.35310i 1.07906 + 1.35310i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(984\) 0 0
\(985\) 0.147791 0.0222759i 0.147791 0.0222759i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 1.63402 + 0.246289i 1.63402 + 0.246289i
\(991\) −0.914101 + 0.848162i −0.914101 + 0.848162i −0.988831 0.149042i \(-0.952381\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(992\) −0.636391 + 0.433884i −0.636391 + 0.433884i
\(993\) 0 0
\(994\) 0.204064 2.72305i 0.204064 2.72305i
\(995\) −0.0332580 + 0.145713i −0.0332580 + 0.145713i
\(996\) 0 0
\(997\) −0.142820 1.90580i −0.142820 1.90580i −0.365341 0.930874i \(-0.619048\pi\)
0.222521 0.974928i \(-0.428571\pi\)
\(998\) 1.57906 + 2.73502i 1.57906 + 2.73502i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2695.1.ck.b.1374.1 yes 12
5.4 even 2 2695.1.ck.a.1374.1 12
11.10 odd 2 2695.1.ck.a.1374.1 12
49.25 even 21 inner 2695.1.ck.b.2034.1 yes 12
55.54 odd 2 CM 2695.1.ck.b.1374.1 yes 12
245.74 even 42 2695.1.ck.a.2034.1 yes 12
539.417 odd 42 2695.1.ck.a.2034.1 yes 12
2695.2034 odd 42 inner 2695.1.ck.b.2034.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2695.1.ck.a.1374.1 12 5.4 even 2
2695.1.ck.a.1374.1 12 11.10 odd 2
2695.1.ck.a.2034.1 yes 12 245.74 even 42
2695.1.ck.a.2034.1 yes 12 539.417 odd 42
2695.1.ck.b.1374.1 yes 12 1.1 even 1 trivial
2695.1.ck.b.1374.1 yes 12 55.54 odd 2 CM
2695.1.ck.b.2034.1 yes 12 49.25 even 21 inner
2695.1.ck.b.2034.1 yes 12 2695.2034 odd 42 inner