Properties

Label 2695.1.g.c.1814.1
Level 26952695
Weight 11
Character 2695.1814
Self dual yes
Analytic conductor 1.3451.345
Analytic rank 00
Dimension 11
Projective image D2D_{2}
CM/RM discs -11, -55, 5
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2695,1,Mod(1814,2695)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2695, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2695.1814");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2695=57211 2695 = 5 \cdot 7^{2} \cdot 11
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2695.g (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.344980209051.34498020905
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 55)
Projective image: D2D_{2}
Projective field: Galois closure of Q(5,11)\Q(\sqrt{5}, \sqrt{-11})
Artin image: D4D_4
Artin field: Galois closure of 4.2.13475.1
Stark unit: Root of x46339x3799x26339x+1x^{4} - 6339x^{3} - 799x^{2} - 6339x + 1

Embedding invariants

Embedding label 1814.1
Character χ\chi == 2695.1814

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000q4+1.00000q5+1.00000q91.00000q11+1.00000q161.00000q20+1.00000q25+2.00000q311.00000q36+1.00000q44+1.00000q451.00000q552.00000q591.00000q64+2.00000q71+1.00000q80+1.00000q81+2.00000q891.00000q99+O(q100)q-1.00000 q^{4} +1.00000 q^{5} +1.00000 q^{9} -1.00000 q^{11} +1.00000 q^{16} -1.00000 q^{20} +1.00000 q^{25} +2.00000 q^{31} -1.00000 q^{36} +1.00000 q^{44} +1.00000 q^{45} -1.00000 q^{55} -2.00000 q^{59} -1.00000 q^{64} +2.00000 q^{71} +1.00000 q^{80} +1.00000 q^{81} +2.00000 q^{89} -1.00000 q^{99} +O(q^{100})

Character values

We give the values of χ\chi on generators for (Z/2695Z)×\left(\mathbb{Z}/2695\mathbb{Z}\right)^\times.

nn 981981 18161816 21572157
χ(n)\chi(n) 1-1 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
33 0 0 1.00000 00
−1.00000 π\pi
44 −1.00000 −1.00000
55 1.00000 1.00000
66 0 0
77 0 0
88 0 0
99 1.00000 1.00000
1010 0 0
1111 −1.00000 −1.00000
1212 0 0
1313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1414 0 0
1515 0 0
1616 1.00000 1.00000
1717 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1818 0 0
1919 0 0 1.00000 00
−1.00000 π\pi
2020 −1.00000 −1.00000
2121 0 0
2222 0 0
2323 0 0 1.00000 00
−1.00000 π\pi
2424 0 0
2525 1.00000 1.00000
2626 0 0
2727 0 0
2828 0 0
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 2.00000 2.00000 1.00000 00
1.00000 00
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 −1.00000 −1.00000
3737 0 0 1.00000 00
−1.00000 π\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000 00
−1.00000 π\pi
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 1.00000 1.00000
4545 1.00000 1.00000
4646 0 0
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 0 0
5050 0 0
5151 0 0
5252 0 0
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 −1.00000 −1.00000
5656 0 0
5757 0 0
5858 0 0
5959 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 0 0
6464 −1.00000 −1.00000
6565 0 0
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 0 0
6969 0 0
7070 0 0
7171 2.00000 2.00000 1.00000 00
1.00000 00
7272 0 0
7373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 1.00000 1.00000
8181 1.00000 1.00000
8282 0 0
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 2.00000 2.00000 1.00000 00
1.00000 00
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 1.00000 00
−1.00000 π\pi
9898 0 0
9999 −1.00000 −1.00000
100100 −1.00000 −1.00000
101101 0 0 1.00000 00
−1.00000 π\pi
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
108108 0 0
109109 0 0 1.00000 00
−1.00000 π\pi
110110 0 0
111111 0 0
112112 0 0
113113 0 0 1.00000 00
−1.00000 π\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 1.00000 1.00000
122122 0 0
123123 0 0
124124 −2.00000 −2.00000
125125 1.00000 1.00000
126126 0 0
127127 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 0 0 1.00000 00
−1.00000 π\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 1.00000 1.00000
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 0 0 1.00000 00
−1.00000 π\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 0 0
154154 0 0
155155 2.00000 2.00000
156156 0 0
157157 0 0 1.00000 00
−1.00000 π\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
168168 0 0
169169 −1.00000 −1.00000
170170 0 0
171171 0 0
172172 0 0
173173 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
174174 0 0
175175 0 0
176176 −1.00000 −1.00000
177177 0 0
178178 0 0
179179 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
180180 −1.00000 −1.00000
181181 2.00000 2.00000 1.00000 00
1.00000 00
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
192192 0 0
193193 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
194194 0 0
195195 0 0
196196 0 0
197197 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
198198 0 0
199199 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 1.00000 1.00000
221221 0 0
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 0 0
225225 1.00000 1.00000
226226 0 0
227227 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
228228 0 0
229229 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
234234 0 0
235235 0 0
236236 2.00000 2.00000
237237 0 0
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 0 0 1.00000 00
−1.00000 π\pi
242242 0 0
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 1.00000 1.00000
257257 0 0 1.00000 00
−1.00000 π\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 0 0
273273 0 0
274274 0 0
275275 −1.00000 −1.00000
276276 0 0
277277 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
278278 0 0
279279 2.00000 2.00000
280280 0 0
281281 0 0 1.00000 00
−1.00000 π\pi
282282 0 0
283283 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
284284 −2.00000 −2.00000
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −1.00000 −1.00000
290290 0 0
291291 0 0
292292 0 0
293293 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
294294 0 0
295295 −2.00000 −2.00000
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 0 0
309309 0 0
310310 0 0
311311 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 0 0
320320 −1.00000 −1.00000
321321 0 0
322322 0 0
323323 0 0
324324 −1.00000 −1.00000
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
338338 0 0
339339 0 0
340340 0 0
341341 −2.00000 −2.00000
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 1.00000 00
−1.00000 π\pi
354354 0 0
355355 2.00000 2.00000
356356 −2.00000 −2.00000
357357 0 0
358358 0 0
359359 0 0 1.00000 00
−1.00000 π\pi
360360 0 0
361361 1.00000 1.00000
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 2.00000 2.00000 1.00000 00
1.00000 00
380380 0 0
381381 0 0
382382 0 0
383383 0 0 1.00000 00
−1.00000 π\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 2.00000 2.00000 1.00000 00
1.00000 00
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 1.00000 1.00000
397397 0 0 1.00000 00
−1.00000 π\pi
398398 0 0
399399 0 0
400400 1.00000 1.00000
401401 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
402402 0 0
403403 0 0
404404 0 0
405405 1.00000 1.00000
406406 0 0
407407 0 0
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 2.00000 2.00000 1.00000 00
1.00000 00
420420 0 0
421421 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 0 0
442442 0 0
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0 0
445445 2.00000 2.00000
446446 0 0
447447 0 0
448448 0 0
449449 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000 00
−1.00000 π\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 −1.00000 −1.00000
485485 0 0
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 1.00000 00
−1.00000 π\pi
492492 0 0
493493 0 0
494494 0 0
495495 −1.00000 −1.00000
496496 2.00000 2.00000
497497 0 0
498498 0 0
499499 2.00000 2.00000 1.00000 00
1.00000 00
500500 −1.00000 −1.00000
501501 0 0
502502 0 0
503503 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 2.00000 2.00000 1.00000 00
1.00000 00
522522 0 0
523523 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 1.00000 1.00000
530530 0 0
531531 −2.00000 −2.00000
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 0 0 1.00000 00
−1.00000 π\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 0 0 1.00000 00
−1.00000 π\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 −1.00000 −1.00000
577577 0 0 1.00000 00
−1.00000 π\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000 00
−1.00000 π\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 0 0
604604 0 0
605605 1.00000 1.00000
606606 0 0
607607 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 1.00000 00
−1.00000 π\pi
618618 0 0
619619 2.00000 2.00000 1.00000 00
1.00000 00
620620 −2.00000 −2.00000
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 1.00000 1.00000
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 2.00000 2.00000 1.00000 00
1.00000 00
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 2.00000 2.00000
640640 0 0
641641 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 0 0
649649 2.00000 2.00000
650650 0 0
651651 0 0
652652 0 0
653653 0 0 1.00000 00
−1.00000 π\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
674674 0 0
675675 0 0
676676 1.00000 1.00000
677677 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000 00
−1.00000 π\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 1.00000 1.00000
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 2.00000 2.00000
717717 0 0
718718 0 0
719719 2.00000 2.00000 1.00000 00
1.00000 00
720720 1.00000 1.00000
721721 0 0
722722 0 0
723723 0 0
724724 −2.00000 −2.00000
725725 0 0
726726 0 0
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 1.00000 1.00000
730730 0 0
731731 0 0
732732 0 0
733733 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 1.00000 00
−1.00000 π\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 2.00000 2.00000 1.00000 00
1.00000 00
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 0 0
764764 2.00000 2.00000
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 1.00000 00
−1.00000 π\pi
774774 0 0
775775 2.00000 2.00000
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 −2.00000 −2.00000
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 2.00000 2.00000
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 0 0
800800 0 0
801801 2.00000 2.00000
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 0 0
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 1.00000 00
−1.00000 π\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
828828 0 0
829829 2.00000 2.00000 1.00000 00
1.00000 00
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
840840 0 0
841841 1.00000 1.00000
842842 0 0
843843 0 0
844844 0 0
845845 −1.00000 −1.00000
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
858858 0 0
859859 2.00000 2.00000 1.00000 00
1.00000 00
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000 00
−1.00000 π\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
878878 0 0
879879 0 0
880880 −1.00000 −1.00000
881881 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
882882 0 0
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 0 0
890890 0 0
891891 −1.00000 −1.00000
892892 0 0
893893 0 0
894894 0 0
895895 −2.00000 −2.00000
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 −1.00000 −1.00000
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 2.00000 2.00000
906906 0 0
907907 0 0 1.00000 00
−1.00000 π\pi
908908 0 0
909909 0 0
910910 0 0
911911 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 2.00000 2.00000
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 0 0
944944 −2.00000 −2.00000
945945 0 0
946946 0 0
947947 0 0 1.00000 00
−1.00000 π\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
954954 0 0
955955 −2.00000 −2.00000
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 3.00000 3.00000
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
968968 0 0
969969 0 0
970970 0 0
971971 2.00000 2.00000 1.00000 00
1.00000 00
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 0 0 1.00000 00
−1.00000 π\pi
978978 0 0
979979 −2.00000 −2.00000
980980 0 0
981981 0 0
982982 0 0
983983 0 0 1.00000 00
−1.00000 π\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0 0
995995 −2.00000 −2.00000
996996 0 0
997997 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2695.1.g.c.1814.1 1
5.4 even 2 RM 2695.1.g.c.1814.1 1
7.2 even 3 2695.1.q.b.2419.1 2
7.3 odd 6 2695.1.q.c.2529.1 2
7.4 even 3 2695.1.q.b.2529.1 2
7.5 odd 6 2695.1.q.c.2419.1 2
7.6 odd 2 55.1.d.a.54.1 1
11.10 odd 2 CM 2695.1.g.c.1814.1 1
21.20 even 2 495.1.h.a.109.1 1
28.27 even 2 880.1.i.a.769.1 1
35.4 even 6 2695.1.q.b.2529.1 2
35.9 even 6 2695.1.q.b.2419.1 2
35.13 even 4 275.1.c.a.76.1 1
35.19 odd 6 2695.1.q.c.2419.1 2
35.24 odd 6 2695.1.q.c.2529.1 2
35.27 even 4 275.1.c.a.76.1 1
35.34 odd 2 55.1.d.a.54.1 1
55.54 odd 2 CM 2695.1.g.c.1814.1 1
56.13 odd 2 3520.1.i.b.769.1 1
56.27 even 2 3520.1.i.a.769.1 1
77.6 even 10 605.1.h.a.239.1 4
77.10 even 6 2695.1.q.c.2529.1 2
77.13 even 10 605.1.h.a.524.1 4
77.20 odd 10 605.1.h.a.524.1 4
77.27 odd 10 605.1.h.a.239.1 4
77.32 odd 6 2695.1.q.b.2529.1 2
77.41 even 10 605.1.h.a.354.1 4
77.48 odd 10 605.1.h.a.94.1 4
77.54 even 6 2695.1.q.c.2419.1 2
77.62 even 10 605.1.h.a.94.1 4
77.65 odd 6 2695.1.q.b.2419.1 2
77.69 odd 10 605.1.h.a.354.1 4
77.76 even 2 55.1.d.a.54.1 1
105.62 odd 4 2475.1.b.a.901.1 1
105.83 odd 4 2475.1.b.a.901.1 1
105.104 even 2 495.1.h.a.109.1 1
140.139 even 2 880.1.i.a.769.1 1
231.230 odd 2 495.1.h.a.109.1 1
280.69 odd 2 3520.1.i.b.769.1 1
280.139 even 2 3520.1.i.a.769.1 1
308.307 odd 2 880.1.i.a.769.1 1
385.13 odd 20 3025.1.x.a.1976.1 4
385.27 even 20 3025.1.x.a.2901.1 4
385.48 even 20 3025.1.x.a.2151.1 4
385.54 even 6 2695.1.q.c.2419.1 2
385.62 odd 20 3025.1.x.a.2151.1 4
385.69 odd 10 605.1.h.a.354.1 4
385.83 odd 20 3025.1.x.a.2901.1 4
385.97 even 20 3025.1.x.a.1976.1 4
385.104 odd 10 605.1.h.a.239.1 4
385.109 odd 6 2695.1.q.b.2529.1 2
385.118 odd 20 3025.1.x.a.1201.1 4
385.139 even 10 605.1.h.a.94.1 4
385.153 odd 4 275.1.c.a.76.1 1
385.164 even 6 2695.1.q.c.2529.1 2
385.167 odd 20 3025.1.x.a.1976.1 4
385.174 odd 10 605.1.h.a.524.1 4
385.202 even 20 3025.1.x.a.2151.1 4
385.219 odd 6 2695.1.q.b.2419.1 2
385.223 even 20 3025.1.x.a.1201.1 4
385.237 odd 20 3025.1.x.a.2901.1 4
385.244 even 10 605.1.h.a.524.1 4
385.258 even 20 3025.1.x.a.2901.1 4
385.272 odd 20 3025.1.x.a.1201.1 4
385.279 odd 10 605.1.h.a.94.1 4
385.293 odd 20 3025.1.x.a.2151.1 4
385.307 odd 4 275.1.c.a.76.1 1
385.314 even 10 605.1.h.a.239.1 4
385.328 even 20 3025.1.x.a.1976.1 4
385.349 even 10 605.1.h.a.354.1 4
385.377 even 20 3025.1.x.a.1201.1 4
385.384 even 2 55.1.d.a.54.1 1
616.307 odd 2 3520.1.i.a.769.1 1
616.461 even 2 3520.1.i.b.769.1 1
1155.692 even 4 2475.1.b.a.901.1 1
1155.923 even 4 2475.1.b.a.901.1 1
1155.1154 odd 2 495.1.h.a.109.1 1
1540.1539 odd 2 880.1.i.a.769.1 1
3080.1539 odd 2 3520.1.i.a.769.1 1
3080.2309 even 2 3520.1.i.b.769.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.1.d.a.54.1 1 7.6 odd 2
55.1.d.a.54.1 1 35.34 odd 2
55.1.d.a.54.1 1 77.76 even 2
55.1.d.a.54.1 1 385.384 even 2
275.1.c.a.76.1 1 35.13 even 4
275.1.c.a.76.1 1 35.27 even 4
275.1.c.a.76.1 1 385.153 odd 4
275.1.c.a.76.1 1 385.307 odd 4
495.1.h.a.109.1 1 21.20 even 2
495.1.h.a.109.1 1 105.104 even 2
495.1.h.a.109.1 1 231.230 odd 2
495.1.h.a.109.1 1 1155.1154 odd 2
605.1.h.a.94.1 4 77.48 odd 10
605.1.h.a.94.1 4 77.62 even 10
605.1.h.a.94.1 4 385.139 even 10
605.1.h.a.94.1 4 385.279 odd 10
605.1.h.a.239.1 4 77.6 even 10
605.1.h.a.239.1 4 77.27 odd 10
605.1.h.a.239.1 4 385.104 odd 10
605.1.h.a.239.1 4 385.314 even 10
605.1.h.a.354.1 4 77.41 even 10
605.1.h.a.354.1 4 77.69 odd 10
605.1.h.a.354.1 4 385.69 odd 10
605.1.h.a.354.1 4 385.349 even 10
605.1.h.a.524.1 4 77.13 even 10
605.1.h.a.524.1 4 77.20 odd 10
605.1.h.a.524.1 4 385.174 odd 10
605.1.h.a.524.1 4 385.244 even 10
880.1.i.a.769.1 1 28.27 even 2
880.1.i.a.769.1 1 140.139 even 2
880.1.i.a.769.1 1 308.307 odd 2
880.1.i.a.769.1 1 1540.1539 odd 2
2475.1.b.a.901.1 1 105.62 odd 4
2475.1.b.a.901.1 1 105.83 odd 4
2475.1.b.a.901.1 1 1155.692 even 4
2475.1.b.a.901.1 1 1155.923 even 4
2695.1.g.c.1814.1 1 1.1 even 1 trivial
2695.1.g.c.1814.1 1 5.4 even 2 RM
2695.1.g.c.1814.1 1 11.10 odd 2 CM
2695.1.g.c.1814.1 1 55.54 odd 2 CM
2695.1.q.b.2419.1 2 7.2 even 3
2695.1.q.b.2419.1 2 35.9 even 6
2695.1.q.b.2419.1 2 77.65 odd 6
2695.1.q.b.2419.1 2 385.219 odd 6
2695.1.q.b.2529.1 2 7.4 even 3
2695.1.q.b.2529.1 2 35.4 even 6
2695.1.q.b.2529.1 2 77.32 odd 6
2695.1.q.b.2529.1 2 385.109 odd 6
2695.1.q.c.2419.1 2 7.5 odd 6
2695.1.q.c.2419.1 2 35.19 odd 6
2695.1.q.c.2419.1 2 77.54 even 6
2695.1.q.c.2419.1 2 385.54 even 6
2695.1.q.c.2529.1 2 7.3 odd 6
2695.1.q.c.2529.1 2 35.24 odd 6
2695.1.q.c.2529.1 2 77.10 even 6
2695.1.q.c.2529.1 2 385.164 even 6
3025.1.x.a.1201.1 4 385.118 odd 20
3025.1.x.a.1201.1 4 385.223 even 20
3025.1.x.a.1201.1 4 385.272 odd 20
3025.1.x.a.1201.1 4 385.377 even 20
3025.1.x.a.1976.1 4 385.13 odd 20
3025.1.x.a.1976.1 4 385.97 even 20
3025.1.x.a.1976.1 4 385.167 odd 20
3025.1.x.a.1976.1 4 385.328 even 20
3025.1.x.a.2151.1 4 385.48 even 20
3025.1.x.a.2151.1 4 385.62 odd 20
3025.1.x.a.2151.1 4 385.202 even 20
3025.1.x.a.2151.1 4 385.293 odd 20
3025.1.x.a.2901.1 4 385.27 even 20
3025.1.x.a.2901.1 4 385.83 odd 20
3025.1.x.a.2901.1 4 385.237 odd 20
3025.1.x.a.2901.1 4 385.258 even 20
3520.1.i.a.769.1 1 56.27 even 2
3520.1.i.a.769.1 1 280.139 even 2
3520.1.i.a.769.1 1 616.307 odd 2
3520.1.i.a.769.1 1 3080.1539 odd 2
3520.1.i.b.769.1 1 56.13 odd 2
3520.1.i.b.769.1 1 280.69 odd 2
3520.1.i.b.769.1 1 616.461 even 2
3520.1.i.b.769.1 1 3080.2309 even 2