Properties

Label 270.10.a.a
Level 270270
Weight 1010
Character orbit 270.a
Self dual yes
Analytic conductor 139.060139.060
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [270,10,Mod(1,270)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(270, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("270.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: N N == 270=2335 270 = 2 \cdot 3^{3} \cdot 5
Weight: k k == 10 10
Character orbit: [χ][\chi] == 270.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-32,0,512,-1250,0,-6461] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 139.059675764139.059675764
Analytic rank: 11
Dimension: 22
Coefficient field: Q(9569)\Q(\sqrt{9569})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x2392 x^{2} - x - 2392 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 3 3
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=12(1+39569)\beta = \frac{1}{2}(-1 + 3\sqrt{9569}). We also show the integral qq-expansion of the trace form.

f(q)f(q) == q16q2+256q4625q5+(13β3237)q74096q8+10000q10+(203β14368)q11+(532β16389)q13+(208β+51792)q14+65536q16++(1343888β+419789888)q98+O(q100) q - 16 q^{2} + 256 q^{4} - 625 q^{5} + ( - 13 \beta - 3237) q^{7} - 4096 q^{8} + 10000 q^{10} + ( - 203 \beta - 14368) q^{11} + ( - 532 \beta - 16389) q^{13} + (208 \beta + 51792) q^{14} + 65536 q^{16}+ \cdots + ( - 1343888 \beta + 419789888) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q32q2+512q41250q56461q78192q8+20000q1028533q1132246q13+103376q14+131072q16+241107q17439823q19320000q20+456528q22++840923664q98+O(q100) 2 q - 32 q^{2} + 512 q^{4} - 1250 q^{5} - 6461 q^{7} - 8192 q^{8} + 20000 q^{10} - 28533 q^{11} - 32246 q^{13} + 103376 q^{14} + 131072 q^{16} + 241107 q^{17} - 439823 q^{19} - 320000 q^{20} + 456528 q^{22}+ \cdots + 840923664 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
49.4106
−48.4106
−16.0000 0 256.000 −625.000 0 −5138.01 −4096.00 0 10000.0
1.2 −16.0000 0 256.000 −625.000 0 −1322.99 −4096.00 0 10000.0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 +1 +1
55 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 270.10.a.a 2
3.b odd 2 1 270.10.a.b yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
270.10.a.a 2 1.a even 1 1 trivial
270.10.a.b yes 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S10new(Γ0(270))S_{10}^{\mathrm{new}}(\Gamma_0(270)):

T72+6461T7+6797518 T_{7}^{2} + 6461T_{7} + 6797518 Copy content Toggle raw display
T112+28533T11683707050 T_{11}^{2} + 28533T_{11} - 683707050 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T+16)2 (T + 16)^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T+625)2 (T + 625)^{2} Copy content Toggle raw display
77 T2+6461T+6797518 T^{2} + 6461 T + 6797518 Copy content Toggle raw display
1111 T2+28533T683707050 T^{2} + 28533 T - 683707050 Copy content Toggle raw display
1313 T2+5833626347 T^{2} + \cdots - 5833626347 Copy content Toggle raw display
1717 T2+28210449888 T^{2} + \cdots - 28210449888 Copy content Toggle raw display
1919 T2+723888544328 T^{2} + \cdots - 723888544328 Copy content Toggle raw display
2323 T2+31338087822 T^{2} + \cdots - 31338087822 Copy content Toggle raw display
2929 T2++11463639031674 T^{2} + \cdots + 11463639031674 Copy content Toggle raw display
3131 T2+24058563518240 T^{2} + \cdots - 24058563518240 Copy content Toggle raw display
3737 T2+73593367962134 T^{2} + \cdots - 73593367962134 Copy content Toggle raw display
4141 T2+130557815243784 T^{2} + \cdots - 130557815243784 Copy content Toggle raw display
4343 T2+8660758086452 T^{2} + \cdots - 8660758086452 Copy content Toggle raw display
4747 T2+22 ⁣ ⁣56 T^{2} + \cdots - 22\!\cdots\!56 Copy content Toggle raw display
5353 T2++669926813760360 T^{2} + \cdots + 669926813760360 Copy content Toggle raw display
5959 T2++14 ⁣ ⁣88 T^{2} + \cdots + 14\!\cdots\!88 Copy content Toggle raw display
6161 T2+32 ⁣ ⁣70 T^{2} + \cdots - 32\!\cdots\!70 Copy content Toggle raw display
6767 T2++67 ⁣ ⁣36 T^{2} + \cdots + 67\!\cdots\!36 Copy content Toggle raw display
7171 T2+54 ⁣ ⁣60 T^{2} + \cdots - 54\!\cdots\!60 Copy content Toggle raw display
7373 T2+10 ⁣ ⁣34 T^{2} + \cdots - 10\!\cdots\!34 Copy content Toggle raw display
7979 T2+97 ⁣ ⁣39 T^{2} + \cdots - 97\!\cdots\!39 Copy content Toggle raw display
8383 T2++22 ⁣ ⁣92 T^{2} + \cdots + 22\!\cdots\!92 Copy content Toggle raw display
8989 T2+33 ⁣ ⁣40 T^{2} + \cdots - 33\!\cdots\!40 Copy content Toggle raw display
9797 T2++12 ⁣ ⁣10 T^{2} + \cdots + 12\!\cdots\!10 Copy content Toggle raw display
show more
show less