Properties

Label 270.10.a.a
Level $270$
Weight $10$
Character orbit 270.a
Self dual yes
Analytic conductor $139.060$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,10,Mod(1,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 270.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(139.059675764\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{9569}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 2392 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(-1 + 3\sqrt{9569})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 16 q^{2} + 256 q^{4} - 625 q^{5} + ( - 13 \beta - 3237) q^{7} - 4096 q^{8} + 10000 q^{10} + ( - 203 \beta - 14368) q^{11} + ( - 532 \beta - 16389) q^{13} + (208 \beta + 51792) q^{14} + 65536 q^{16}+ \cdots + ( - 1343888 \beta + 419789888) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{2} + 512 q^{4} - 1250 q^{5} - 6461 q^{7} - 8192 q^{8} + 20000 q^{10} - 28533 q^{11} - 32246 q^{13} + 103376 q^{14} + 131072 q^{16} + 241107 q^{17} - 439823 q^{19} - 320000 q^{20} + 456528 q^{22}+ \cdots + 840923664 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
49.4106
−48.4106
−16.0000 0 256.000 −625.000 0 −5138.01 −4096.00 0 10000.0
1.2 −16.0000 0 256.000 −625.000 0 −1322.99 −4096.00 0 10000.0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 270.10.a.a 2
3.b odd 2 1 270.10.a.b yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
270.10.a.a 2 1.a even 1 1 trivial
270.10.a.b yes 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(270))\):

\( T_{7}^{2} + 6461T_{7} + 6797518 \) Copy content Toggle raw display
\( T_{11}^{2} + 28533T_{11} - 683707050 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 625)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 6461 T + 6797518 \) Copy content Toggle raw display
$11$ \( T^{2} + 28533 T - 683707050 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 5833626347 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 28210449888 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 723888544328 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 31338087822 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 11463639031674 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 24058563518240 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 73593367962134 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 130557815243784 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 8660758086452 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 22\!\cdots\!56 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 669926813760360 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 14\!\cdots\!88 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 32\!\cdots\!70 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 67\!\cdots\!36 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 54\!\cdots\!60 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 10\!\cdots\!34 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 97\!\cdots\!39 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 22\!\cdots\!92 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 33\!\cdots\!40 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 12\!\cdots\!10 \) Copy content Toggle raw display
show more
show less