Properties

Label 270.2.f.b.53.3
Level $270$
Weight $2$
Character 270.53
Analytic conductor $2.156$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,2,Mod(53,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.53");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 270.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.15596085457\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 53.3
Root \(-0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 270.53
Dual form 270.2.f.b.107.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(-1.48356 + 1.67303i) q^{5} +(-0.366025 + 0.366025i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(-2.23205 + 0.133975i) q^{10} +4.76028i q^{11} +(3.46410 + 3.46410i) q^{13} -0.517638 q^{14} -1.00000 q^{16} +(-1.03528 - 1.03528i) q^{17} -7.46410i q^{19} +(-1.67303 - 1.48356i) q^{20} +(-3.36603 + 3.36603i) q^{22} +(-1.41421 + 1.41421i) q^{23} +(-0.598076 - 4.96410i) q^{25} +4.89898i q^{26} +(-0.366025 - 0.366025i) q^{28} +6.31319 q^{29} +6.66025 q^{31} +(-0.707107 - 0.707107i) q^{32} -1.46410i q^{34} +(-0.0693504 - 1.15539i) q^{35} +(-2.19615 + 2.19615i) q^{37} +(5.27792 - 5.27792i) q^{38} +(-0.133975 - 2.23205i) q^{40} -4.62158i q^{41} +(-1.26795 - 1.26795i) q^{43} -4.76028 q^{44} -2.00000 q^{46} +(-4.24264 - 4.24264i) q^{47} +6.73205i q^{49} +(3.08725 - 3.93305i) q^{50} +(-3.46410 + 3.46410i) q^{52} +(5.08845 - 5.08845i) q^{53} +(-7.96410 - 7.06218i) q^{55} -0.517638i q^{56} +(4.46410 + 4.46410i) q^{58} +4.52004 q^{59} +9.46410 q^{61} +(4.70951 + 4.70951i) q^{62} -1.00000i q^{64} +(-10.9348 + 0.656339i) q^{65} +(-6.19615 + 6.19615i) q^{67} +(1.03528 - 1.03528i) q^{68} +(0.767949 - 0.866025i) q^{70} -15.4548i q^{71} +(9.36603 + 9.36603i) q^{73} -3.10583 q^{74} +7.46410 q^{76} +(-1.74238 - 1.74238i) q^{77} -3.46410i q^{79} +(1.48356 - 1.67303i) q^{80} +(3.26795 - 3.26795i) q^{82} +(1.46498 - 1.46498i) q^{83} +(3.26795 - 0.196152i) q^{85} -1.79315i q^{86} +(-3.36603 - 3.36603i) q^{88} +5.93426 q^{89} -2.53590 q^{91} +(-1.41421 - 1.41421i) q^{92} -6.00000i q^{94} +(12.4877 + 11.0735i) q^{95} +(-13.5622 + 13.5622i) q^{97} +(-4.76028 + 4.76028i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{7} - 4 q^{10} - 8 q^{16} - 20 q^{22} + 16 q^{25} + 4 q^{28} - 16 q^{31} + 24 q^{37} - 8 q^{40} - 24 q^{43} - 16 q^{46} - 36 q^{55} + 8 q^{58} + 48 q^{61} - 8 q^{67} + 20 q^{70} + 68 q^{73} + 32 q^{76}+ \cdots - 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/270\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(217\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −1.48356 + 1.67303i −0.663470 + 0.748203i
\(6\) 0 0
\(7\) −0.366025 + 0.366025i −0.138345 + 0.138345i −0.772888 0.634543i \(-0.781188\pi\)
0.634543 + 0.772888i \(0.281188\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) −2.23205 + 0.133975i −0.705836 + 0.0423665i
\(11\) 4.76028i 1.43528i 0.696415 + 0.717639i \(0.254777\pi\)
−0.696415 + 0.717639i \(0.745223\pi\)
\(12\) 0 0
\(13\) 3.46410 + 3.46410i 0.960769 + 0.960769i 0.999259 0.0384901i \(-0.0122548\pi\)
−0.0384901 + 0.999259i \(0.512255\pi\)
\(14\) −0.517638 −0.138345
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −1.03528 1.03528i −0.251091 0.251091i 0.570327 0.821418i \(-0.306817\pi\)
−0.821418 + 0.570327i \(0.806817\pi\)
\(18\) 0 0
\(19\) 7.46410i 1.71238i −0.516659 0.856191i \(-0.672825\pi\)
0.516659 0.856191i \(-0.327175\pi\)
\(20\) −1.67303 1.48356i −0.374101 0.331735i
\(21\) 0 0
\(22\) −3.36603 + 3.36603i −0.717639 + 0.717639i
\(23\) −1.41421 + 1.41421i −0.294884 + 0.294884i −0.839006 0.544122i \(-0.816863\pi\)
0.544122 + 0.839006i \(0.316863\pi\)
\(24\) 0 0
\(25\) −0.598076 4.96410i −0.119615 0.992820i
\(26\) 4.89898i 0.960769i
\(27\) 0 0
\(28\) −0.366025 0.366025i −0.0691723 0.0691723i
\(29\) 6.31319 1.17233 0.586165 0.810192i \(-0.300637\pi\)
0.586165 + 0.810192i \(0.300637\pi\)
\(30\) 0 0
\(31\) 6.66025 1.19622 0.598108 0.801415i \(-0.295919\pi\)
0.598108 + 0.801415i \(0.295919\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) 0 0
\(34\) 1.46410i 0.251091i
\(35\) −0.0693504 1.15539i −0.0117223 0.195297i
\(36\) 0 0
\(37\) −2.19615 + 2.19615i −0.361045 + 0.361045i −0.864198 0.503152i \(-0.832173\pi\)
0.503152 + 0.864198i \(0.332173\pi\)
\(38\) 5.27792 5.27792i 0.856191 0.856191i
\(39\) 0 0
\(40\) −0.133975 2.23205i −0.0211832 0.352918i
\(41\) 4.62158i 0.721769i −0.932610 0.360885i \(-0.882475\pi\)
0.932610 0.360885i \(-0.117525\pi\)
\(42\) 0 0
\(43\) −1.26795 1.26795i −0.193360 0.193360i 0.603786 0.797146i \(-0.293658\pi\)
−0.797146 + 0.603786i \(0.793658\pi\)
\(44\) −4.76028 −0.717639
\(45\) 0 0
\(46\) −2.00000 −0.294884
\(47\) −4.24264 4.24264i −0.618853 0.618853i 0.326384 0.945237i \(-0.394170\pi\)
−0.945237 + 0.326384i \(0.894170\pi\)
\(48\) 0 0
\(49\) 6.73205i 0.961722i
\(50\) 3.08725 3.93305i 0.436603 0.556218i
\(51\) 0 0
\(52\) −3.46410 + 3.46410i −0.480384 + 0.480384i
\(53\) 5.08845 5.08845i 0.698952 0.698952i −0.265232 0.964185i \(-0.585449\pi\)
0.964185 + 0.265232i \(0.0854487\pi\)
\(54\) 0 0
\(55\) −7.96410 7.06218i −1.07388 0.952264i
\(56\) 0.517638i 0.0691723i
\(57\) 0 0
\(58\) 4.46410 + 4.46410i 0.586165 + 0.586165i
\(59\) 4.52004 0.588459 0.294230 0.955735i \(-0.404937\pi\)
0.294230 + 0.955735i \(0.404937\pi\)
\(60\) 0 0
\(61\) 9.46410 1.21175 0.605877 0.795558i \(-0.292822\pi\)
0.605877 + 0.795558i \(0.292822\pi\)
\(62\) 4.70951 + 4.70951i 0.598108 + 0.598108i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −10.9348 + 0.656339i −1.35629 + 0.0814088i
\(66\) 0 0
\(67\) −6.19615 + 6.19615i −0.756980 + 0.756980i −0.975772 0.218791i \(-0.929789\pi\)
0.218791 + 0.975772i \(0.429789\pi\)
\(68\) 1.03528 1.03528i 0.125546 0.125546i
\(69\) 0 0
\(70\) 0.767949 0.866025i 0.0917875 0.103510i
\(71\) 15.4548i 1.83415i −0.398716 0.917074i \(-0.630544\pi\)
0.398716 0.917074i \(-0.369456\pi\)
\(72\) 0 0
\(73\) 9.36603 + 9.36603i 1.09621 + 1.09621i 0.994850 + 0.101361i \(0.0323196\pi\)
0.101361 + 0.994850i \(0.467680\pi\)
\(74\) −3.10583 −0.361045
\(75\) 0 0
\(76\) 7.46410 0.856191
\(77\) −1.74238 1.74238i −0.198563 0.198563i
\(78\) 0 0
\(79\) 3.46410i 0.389742i −0.980829 0.194871i \(-0.937571\pi\)
0.980829 0.194871i \(-0.0624288\pi\)
\(80\) 1.48356 1.67303i 0.165867 0.187051i
\(81\) 0 0
\(82\) 3.26795 3.26795i 0.360885 0.360885i
\(83\) 1.46498 1.46498i 0.160803 0.160803i −0.622120 0.782922i \(-0.713728\pi\)
0.782922 + 0.622120i \(0.213728\pi\)
\(84\) 0 0
\(85\) 3.26795 0.196152i 0.354459 0.0212757i
\(86\) 1.79315i 0.193360i
\(87\) 0 0
\(88\) −3.36603 3.36603i −0.358820 0.358820i
\(89\) 5.93426 0.629030 0.314515 0.949253i \(-0.398158\pi\)
0.314515 + 0.949253i \(0.398158\pi\)
\(90\) 0 0
\(91\) −2.53590 −0.265834
\(92\) −1.41421 1.41421i −0.147442 0.147442i
\(93\) 0 0
\(94\) 6.00000i 0.618853i
\(95\) 12.4877 + 11.0735i 1.28121 + 1.13611i
\(96\) 0 0
\(97\) −13.5622 + 13.5622i −1.37703 + 1.37703i −0.527435 + 0.849595i \(0.676846\pi\)
−0.849595 + 0.527435i \(0.823154\pi\)
\(98\) −4.76028 + 4.76028i −0.480861 + 0.480861i
\(99\) 0 0
\(100\) 4.96410 0.598076i 0.496410 0.0598076i
\(101\) 14.6598i 1.45870i 0.684140 + 0.729351i \(0.260178\pi\)
−0.684140 + 0.729351i \(0.739822\pi\)
\(102\) 0 0
\(103\) −9.73205 9.73205i −0.958927 0.958927i 0.0402617 0.999189i \(-0.487181\pi\)
−0.999189 + 0.0402617i \(0.987181\pi\)
\(104\) −4.89898 −0.480384
\(105\) 0 0
\(106\) 7.19615 0.698952
\(107\) −1.36345 1.36345i −0.131809 0.131809i 0.638124 0.769933i \(-0.279711\pi\)
−0.769933 + 0.638124i \(0.779711\pi\)
\(108\) 0 0
\(109\) 2.00000i 0.191565i −0.995402 0.0957826i \(-0.969465\pi\)
0.995402 0.0957826i \(-0.0305354\pi\)
\(110\) −0.637756 10.6252i −0.0608077 1.01307i
\(111\) 0 0
\(112\) 0.366025 0.366025i 0.0345861 0.0345861i
\(113\) −11.9700 + 11.9700i −1.12605 + 1.12605i −0.135234 + 0.990814i \(0.543178\pi\)
−0.990814 + 0.135234i \(0.956822\pi\)
\(114\) 0 0
\(115\) −0.267949 4.46410i −0.0249864 0.416280i
\(116\) 6.31319i 0.586165i
\(117\) 0 0
\(118\) 3.19615 + 3.19615i 0.294230 + 0.294230i
\(119\) 0.757875 0.0694743
\(120\) 0 0
\(121\) −11.6603 −1.06002
\(122\) 6.69213 + 6.69213i 0.605877 + 0.605877i
\(123\) 0 0
\(124\) 6.66025i 0.598108i
\(125\) 9.19239 + 6.36396i 0.822192 + 0.569210i
\(126\) 0 0
\(127\) −1.16987 + 1.16987i −0.103809 + 0.103809i −0.757104 0.653294i \(-0.773386\pi\)
0.653294 + 0.757104i \(0.273386\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) 0 0
\(130\) −8.19615 7.26795i −0.718850 0.637441i
\(131\) 14.1793i 1.23885i −0.785055 0.619426i \(-0.787366\pi\)
0.785055 0.619426i \(-0.212634\pi\)
\(132\) 0 0
\(133\) 2.73205 + 2.73205i 0.236899 + 0.236899i
\(134\) −8.76268 −0.756980
\(135\) 0 0
\(136\) 1.46410 0.125546
\(137\) −2.44949 2.44949i −0.209274 0.209274i 0.594685 0.803959i \(-0.297277\pi\)
−0.803959 + 0.594685i \(0.797277\pi\)
\(138\) 0 0
\(139\) 9.85641i 0.836009i −0.908445 0.418005i \(-0.862730\pi\)
0.908445 0.418005i \(-0.137270\pi\)
\(140\) 1.15539 0.0693504i 0.0976487 0.00586117i
\(141\) 0 0
\(142\) 10.9282 10.9282i 0.917074 0.917074i
\(143\) −16.4901 + 16.4901i −1.37897 + 1.37897i
\(144\) 0 0
\(145\) −9.36603 + 10.5622i −0.777806 + 0.877141i
\(146\) 13.2456i 1.09621i
\(147\) 0 0
\(148\) −2.19615 2.19615i −0.180523 0.180523i
\(149\) −12.4877 −1.02303 −0.511516 0.859274i \(-0.670916\pi\)
−0.511516 + 0.859274i \(0.670916\pi\)
\(150\) 0 0
\(151\) −8.46410 −0.688799 −0.344399 0.938823i \(-0.611917\pi\)
−0.344399 + 0.938823i \(0.611917\pi\)
\(152\) 5.27792 + 5.27792i 0.428096 + 0.428096i
\(153\) 0 0
\(154\) 2.46410i 0.198563i
\(155\) −9.88091 + 11.1428i −0.793654 + 0.895013i
\(156\) 0 0
\(157\) 12.0000 12.0000i 0.957704 0.957704i −0.0414369 0.999141i \(-0.513194\pi\)
0.999141 + 0.0414369i \(0.0131935\pi\)
\(158\) 2.44949 2.44949i 0.194871 0.194871i
\(159\) 0 0
\(160\) 2.23205 0.133975i 0.176459 0.0105916i
\(161\) 1.03528i 0.0815912i
\(162\) 0 0
\(163\) 5.46410 + 5.46410i 0.427981 + 0.427981i 0.887940 0.459959i \(-0.152136\pi\)
−0.459959 + 0.887940i \(0.652136\pi\)
\(164\) 4.62158 0.360885
\(165\) 0 0
\(166\) 2.07180 0.160803
\(167\) 11.9700 + 11.9700i 0.926270 + 0.926270i 0.997463 0.0711925i \(-0.0226805\pi\)
−0.0711925 + 0.997463i \(0.522680\pi\)
\(168\) 0 0
\(169\) 11.0000i 0.846154i
\(170\) 2.44949 + 2.17209i 0.187867 + 0.166592i
\(171\) 0 0
\(172\) 1.26795 1.26795i 0.0966802 0.0966802i
\(173\) 7.39924 7.39924i 0.562554 0.562554i −0.367478 0.930032i \(-0.619779\pi\)
0.930032 + 0.367478i \(0.119779\pi\)
\(174\) 0 0
\(175\) 2.03590 + 1.59808i 0.153899 + 0.120803i
\(176\) 4.76028i 0.358820i
\(177\) 0 0
\(178\) 4.19615 + 4.19615i 0.314515 + 0.314515i
\(179\) −5.41662 −0.404857 −0.202429 0.979297i \(-0.564883\pi\)
−0.202429 + 0.979297i \(0.564883\pi\)
\(180\) 0 0
\(181\) 14.9282 1.10960 0.554802 0.831982i \(-0.312794\pi\)
0.554802 + 0.831982i \(0.312794\pi\)
\(182\) −1.79315 1.79315i −0.132917 0.132917i
\(183\) 0 0
\(184\) 2.00000i 0.147442i
\(185\) −0.416102 6.93237i −0.0305924 0.509678i
\(186\) 0 0
\(187\) 4.92820 4.92820i 0.360386 0.360386i
\(188\) 4.24264 4.24264i 0.309426 0.309426i
\(189\) 0 0
\(190\) 1.00000 + 16.6603i 0.0725476 + 1.20866i
\(191\) 3.38323i 0.244802i −0.992481 0.122401i \(-0.960941\pi\)
0.992481 0.122401i \(-0.0390594\pi\)
\(192\) 0 0
\(193\) −8.02628 8.02628i −0.577744 0.577744i 0.356537 0.934281i \(-0.383957\pi\)
−0.934281 + 0.356537i \(0.883957\pi\)
\(194\) −19.1798 −1.37703
\(195\) 0 0
\(196\) −6.73205 −0.480861
\(197\) −3.01790 3.01790i −0.215016 0.215016i 0.591378 0.806394i \(-0.298584\pi\)
−0.806394 + 0.591378i \(0.798584\pi\)
\(198\) 0 0
\(199\) 14.3205i 1.01515i 0.861606 + 0.507577i \(0.169459\pi\)
−0.861606 + 0.507577i \(0.830541\pi\)
\(200\) 3.93305 + 3.08725i 0.278109 + 0.218301i
\(201\) 0 0
\(202\) −10.3660 + 10.3660i −0.729351 + 0.729351i
\(203\) −2.31079 + 2.31079i −0.162186 + 0.162186i
\(204\) 0 0
\(205\) 7.73205 + 6.85641i 0.540030 + 0.478872i
\(206\) 13.7632i 0.958927i
\(207\) 0 0
\(208\) −3.46410 3.46410i −0.240192 0.240192i
\(209\) 35.5312 2.45774
\(210\) 0 0
\(211\) −21.3205 −1.46776 −0.733882 0.679277i \(-0.762294\pi\)
−0.733882 + 0.679277i \(0.762294\pi\)
\(212\) 5.08845 + 5.08845i 0.349476 + 0.349476i
\(213\) 0 0
\(214\) 1.92820i 0.131809i
\(215\) 4.00240 0.240237i 0.272962 0.0163840i
\(216\) 0 0
\(217\) −2.43782 + 2.43782i −0.165490 + 0.165490i
\(218\) 1.41421 1.41421i 0.0957826 0.0957826i
\(219\) 0 0
\(220\) 7.06218 7.96410i 0.476132 0.536940i
\(221\) 7.17260i 0.482482i
\(222\) 0 0
\(223\) 4.26795 + 4.26795i 0.285803 + 0.285803i 0.835418 0.549615i \(-0.185226\pi\)
−0.549615 + 0.835418i \(0.685226\pi\)
\(224\) 0.517638 0.0345861
\(225\) 0 0
\(226\) −16.9282 −1.12605
\(227\) −3.20736 3.20736i −0.212880 0.212880i 0.592610 0.805490i \(-0.298098\pi\)
−0.805490 + 0.592610i \(0.798098\pi\)
\(228\) 0 0
\(229\) 1.60770i 0.106239i −0.998588 0.0531197i \(-0.983083\pi\)
0.998588 0.0531197i \(-0.0169165\pi\)
\(230\) 2.96713 3.34607i 0.195647 0.220633i
\(231\) 0 0
\(232\) −4.46410 + 4.46410i −0.293083 + 0.293083i
\(233\) 5.55532 5.55532i 0.363941 0.363941i −0.501321 0.865262i \(-0.667152\pi\)
0.865262 + 0.501321i \(0.167152\pi\)
\(234\) 0 0
\(235\) 13.3923 0.803848i 0.873618 0.0524372i
\(236\) 4.52004i 0.294230i
\(237\) 0 0
\(238\) 0.535898 + 0.535898i 0.0347371 + 0.0347371i
\(239\) −5.37945 −0.347968 −0.173984 0.984748i \(-0.555664\pi\)
−0.173984 + 0.984748i \(0.555664\pi\)
\(240\) 0 0
\(241\) 4.00000 0.257663 0.128831 0.991667i \(-0.458877\pi\)
0.128831 + 0.991667i \(0.458877\pi\)
\(242\) −8.24504 8.24504i −0.530012 0.530012i
\(243\) 0 0
\(244\) 9.46410i 0.605877i
\(245\) −11.2629 9.98743i −0.719563 0.638073i
\(246\) 0 0
\(247\) 25.8564 25.8564i 1.64520 1.64520i
\(248\) −4.70951 + 4.70951i −0.299054 + 0.299054i
\(249\) 0 0
\(250\) 2.00000 + 11.0000i 0.126491 + 0.695701i
\(251\) 14.5211i 0.916562i −0.888807 0.458281i \(-0.848465\pi\)
0.888807 0.458281i \(-0.151535\pi\)
\(252\) 0 0
\(253\) −6.73205 6.73205i −0.423240 0.423240i
\(254\) −1.65445 −0.103809
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −20.3538 20.3538i −1.26963 1.26963i −0.946277 0.323358i \(-0.895188\pi\)
−0.323358 0.946277i \(-0.604812\pi\)
\(258\) 0 0
\(259\) 1.60770i 0.0998973i
\(260\) −0.656339 10.9348i −0.0407044 0.678146i
\(261\) 0 0
\(262\) 10.0263 10.0263i 0.619426 0.619426i
\(263\) 9.89949 9.89949i 0.610429 0.610429i −0.332629 0.943058i \(-0.607936\pi\)
0.943058 + 0.332629i \(0.107936\pi\)
\(264\) 0 0
\(265\) 0.964102 + 16.0622i 0.0592243 + 0.986692i
\(266\) 3.86370i 0.236899i
\(267\) 0 0
\(268\) −6.19615 6.19615i −0.378490 0.378490i
\(269\) 7.62587 0.464958 0.232479 0.972601i \(-0.425316\pi\)
0.232479 + 0.972601i \(0.425316\pi\)
\(270\) 0 0
\(271\) 4.60770 0.279898 0.139949 0.990159i \(-0.455306\pi\)
0.139949 + 0.990159i \(0.455306\pi\)
\(272\) 1.03528 + 1.03528i 0.0627728 + 0.0627728i
\(273\) 0 0
\(274\) 3.46410i 0.209274i
\(275\) 23.6305 2.84701i 1.42497 0.171681i
\(276\) 0 0
\(277\) 19.8564 19.8564i 1.19306 1.19306i 0.216851 0.976205i \(-0.430421\pi\)
0.976205 0.216851i \(-0.0695786\pi\)
\(278\) 6.96953 6.96953i 0.418005 0.418005i
\(279\) 0 0
\(280\) 0.866025 + 0.767949i 0.0517549 + 0.0458937i
\(281\) 13.3843i 0.798438i 0.916856 + 0.399219i \(0.130719\pi\)
−0.916856 + 0.399219i \(0.869281\pi\)
\(282\) 0 0
\(283\) −8.73205 8.73205i −0.519067 0.519067i 0.398222 0.917289i \(-0.369627\pi\)
−0.917289 + 0.398222i \(0.869627\pi\)
\(284\) 15.4548 0.917074
\(285\) 0 0
\(286\) −23.3205 −1.37897
\(287\) 1.69161 + 1.69161i 0.0998529 + 0.0998529i
\(288\) 0 0
\(289\) 14.8564i 0.873906i
\(290\) −14.0914 + 0.845807i −0.827474 + 0.0496675i
\(291\) 0 0
\(292\) −9.36603 + 9.36603i −0.548105 + 0.548105i
\(293\) 8.48528 8.48528i 0.495715 0.495715i −0.414386 0.910101i \(-0.636004\pi\)
0.910101 + 0.414386i \(0.136004\pi\)
\(294\) 0 0
\(295\) −6.70577 + 7.56218i −0.390425 + 0.440287i
\(296\) 3.10583i 0.180523i
\(297\) 0 0
\(298\) −8.83013 8.83013i −0.511516 0.511516i
\(299\) −9.79796 −0.566631
\(300\) 0 0
\(301\) 0.928203 0.0535007
\(302\) −5.98502 5.98502i −0.344399 0.344399i
\(303\) 0 0
\(304\) 7.46410i 0.428096i
\(305\) −14.0406 + 15.8338i −0.803962 + 0.906638i
\(306\) 0 0
\(307\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(308\) 1.74238 1.74238i 0.0992815 0.0992815i
\(309\) 0 0
\(310\) −14.8660 + 0.892305i −0.844334 + 0.0506795i
\(311\) 3.86370i 0.219091i −0.993982 0.109545i \(-0.965061\pi\)
0.993982 0.109545i \(-0.0349395\pi\)
\(312\) 0 0
\(313\) −20.0263 20.0263i −1.13195 1.13195i −0.989852 0.142100i \(-0.954615\pi\)
−0.142100 0.989852i \(-0.545385\pi\)
\(314\) 16.9706 0.957704
\(315\) 0 0
\(316\) 3.46410 0.194871
\(317\) −8.81345 8.81345i −0.495013 0.495013i 0.414869 0.909881i \(-0.363828\pi\)
−0.909881 + 0.414869i \(0.863828\pi\)
\(318\) 0 0
\(319\) 30.0526i 1.68262i
\(320\) 1.67303 + 1.48356i 0.0935254 + 0.0829337i
\(321\) 0 0
\(322\) 0.732051 0.732051i 0.0407956 0.0407956i
\(323\) −7.72741 + 7.72741i −0.429964 + 0.429964i
\(324\) 0 0
\(325\) 15.1244 19.2679i 0.838948 1.06879i
\(326\) 7.72741i 0.427981i
\(327\) 0 0
\(328\) 3.26795 + 3.26795i 0.180442 + 0.180442i
\(329\) 3.10583 0.171230
\(330\) 0 0
\(331\) 7.46410 0.410264 0.205132 0.978734i \(-0.434238\pi\)
0.205132 + 0.978734i \(0.434238\pi\)
\(332\) 1.46498 + 1.46498i 0.0804013 + 0.0804013i
\(333\) 0 0
\(334\) 16.9282i 0.926270i
\(335\) −1.17398 19.5588i −0.0641412 1.06861i
\(336\) 0 0
\(337\) 0.464102 0.464102i 0.0252812 0.0252812i −0.694353 0.719634i \(-0.744309\pi\)
0.719634 + 0.694353i \(0.244309\pi\)
\(338\) −7.77817 + 7.77817i −0.423077 + 0.423077i
\(339\) 0 0
\(340\) 0.196152 + 3.26795i 0.0106379 + 0.177229i
\(341\) 31.7047i 1.71690i
\(342\) 0 0
\(343\) −5.02628 5.02628i −0.271394 0.271394i
\(344\) 1.79315 0.0966802
\(345\) 0 0
\(346\) 10.4641 0.562554
\(347\) 20.2659 + 20.2659i 1.08793 + 1.08793i 0.995742 + 0.0921866i \(0.0293856\pi\)
0.0921866 + 0.995742i \(0.470614\pi\)
\(348\) 0 0
\(349\) 5.60770i 0.300173i −0.988673 0.150087i \(-0.952045\pi\)
0.988673 0.150087i \(-0.0479552\pi\)
\(350\) 0.309587 + 2.56961i 0.0165481 + 0.137351i
\(351\) 0 0
\(352\) 3.36603 3.36603i 0.179410 0.179410i
\(353\) 14.0406 14.0406i 0.747306 0.747306i −0.226667 0.973972i \(-0.572783\pi\)
0.973972 + 0.226667i \(0.0727828\pi\)
\(354\) 0 0
\(355\) 25.8564 + 22.9282i 1.37232 + 1.21690i
\(356\) 5.93426i 0.314515i
\(357\) 0 0
\(358\) −3.83013 3.83013i −0.202429 0.202429i
\(359\) −23.4596 −1.23815 −0.619076 0.785331i \(-0.712493\pi\)
−0.619076 + 0.785331i \(0.712493\pi\)
\(360\) 0 0
\(361\) −36.7128 −1.93225
\(362\) 10.5558 + 10.5558i 0.554802 + 0.554802i
\(363\) 0 0
\(364\) 2.53590i 0.132917i
\(365\) −29.5648 + 1.77457i −1.54749 + 0.0928852i
\(366\) 0 0
\(367\) −3.02628 + 3.02628i −0.157971 + 0.157971i −0.781667 0.623696i \(-0.785630\pi\)
0.623696 + 0.781667i \(0.285630\pi\)
\(368\) 1.41421 1.41421i 0.0737210 0.0737210i
\(369\) 0 0
\(370\) 4.60770 5.19615i 0.239543 0.270135i
\(371\) 3.72500i 0.193392i
\(372\) 0 0
\(373\) 8.39230 + 8.39230i 0.434537 + 0.434537i 0.890169 0.455631i \(-0.150586\pi\)
−0.455631 + 0.890169i \(0.650586\pi\)
\(374\) 6.96953 0.360386
\(375\) 0 0
\(376\) 6.00000 0.309426
\(377\) 21.8695 + 21.8695i 1.12634 + 1.12634i
\(378\) 0 0
\(379\) 8.00000i 0.410932i 0.978664 + 0.205466i \(0.0658711\pi\)
−0.978664 + 0.205466i \(0.934129\pi\)
\(380\) −11.0735 + 12.4877i −0.568057 + 0.640605i
\(381\) 0 0
\(382\) 2.39230 2.39230i 0.122401 0.122401i
\(383\) −0.480473 + 0.480473i −0.0245510 + 0.0245510i −0.719276 0.694725i \(-0.755526\pi\)
0.694725 + 0.719276i \(0.255526\pi\)
\(384\) 0 0
\(385\) 5.50000 0.330127i 0.280306 0.0168248i
\(386\) 11.3509i 0.577744i
\(387\) 0 0
\(388\) −13.5622 13.5622i −0.688515 0.688515i
\(389\) −13.1440 −0.666428 −0.333214 0.942851i \(-0.608133\pi\)
−0.333214 + 0.942851i \(0.608133\pi\)
\(390\) 0 0
\(391\) 2.92820 0.148086
\(392\) −4.76028 4.76028i −0.240430 0.240430i
\(393\) 0 0
\(394\) 4.26795i 0.215016i
\(395\) 5.79555 + 5.13922i 0.291606 + 0.258582i
\(396\) 0 0
\(397\) 4.92820 4.92820i 0.247339 0.247339i −0.572538 0.819878i \(-0.694041\pi\)
0.819878 + 0.572538i \(0.194041\pi\)
\(398\) −10.1261 + 10.1261i −0.507577 + 0.507577i
\(399\) 0 0
\(400\) 0.598076 + 4.96410i 0.0299038 + 0.248205i
\(401\) 18.2832i 0.913021i 0.889718 + 0.456511i \(0.150901\pi\)
−0.889718 + 0.456511i \(0.849099\pi\)
\(402\) 0 0
\(403\) 23.0718 + 23.0718i 1.14929 + 1.14929i
\(404\) −14.6598 −0.729351
\(405\) 0 0
\(406\) −3.26795 −0.162186
\(407\) −10.4543 10.4543i −0.518200 0.518200i
\(408\) 0 0
\(409\) 3.33975i 0.165140i 0.996585 + 0.0825699i \(0.0263128\pi\)
−0.996585 + 0.0825699i \(0.973687\pi\)
\(410\) 0.619174 + 10.3156i 0.0305788 + 0.509451i
\(411\) 0 0
\(412\) 9.73205 9.73205i 0.479464 0.479464i
\(413\) −1.65445 + 1.65445i −0.0814102 + 0.0814102i
\(414\) 0 0
\(415\) 0.277568 + 4.62436i 0.0136253 + 0.227001i
\(416\) 4.89898i 0.240192i
\(417\) 0 0
\(418\) 25.1244 + 25.1244i 1.22887 + 1.22887i
\(419\) 13.2084 0.645272 0.322636 0.946523i \(-0.395431\pi\)
0.322636 + 0.946523i \(0.395431\pi\)
\(420\) 0 0
\(421\) −17.8564 −0.870268 −0.435134 0.900366i \(-0.643299\pi\)
−0.435134 + 0.900366i \(0.643299\pi\)
\(422\) −15.0759 15.0759i −0.733882 0.733882i
\(423\) 0 0
\(424\) 7.19615i 0.349476i
\(425\) −4.52004 + 5.75839i −0.219254 + 0.279323i
\(426\) 0 0
\(427\) −3.46410 + 3.46410i −0.167640 + 0.167640i
\(428\) 1.36345 1.36345i 0.0659046 0.0659046i
\(429\) 0 0
\(430\) 3.00000 + 2.66025i 0.144673 + 0.128289i
\(431\) 25.7332i 1.23953i 0.784789 + 0.619763i \(0.212771\pi\)
−0.784789 + 0.619763i \(0.787229\pi\)
\(432\) 0 0
\(433\) −9.83013 9.83013i −0.472406 0.472406i 0.430287 0.902692i \(-0.358413\pi\)
−0.902692 + 0.430287i \(0.858413\pi\)
\(434\) −3.44760 −0.165490
\(435\) 0 0
\(436\) 2.00000 0.0957826
\(437\) 10.5558 + 10.5558i 0.504954 + 0.504954i
\(438\) 0 0
\(439\) 29.2487i 1.39596i −0.716115 0.697982i \(-0.754081\pi\)
0.716115 0.697982i \(-0.245919\pi\)
\(440\) 10.6252 0.637756i 0.506536 0.0304038i
\(441\) 0 0
\(442\) 5.07180 5.07180i 0.241241 0.241241i
\(443\) −25.6317 + 25.6317i −1.21780 + 1.21780i −0.249398 + 0.968401i \(0.580233\pi\)
−0.968401 + 0.249398i \(0.919767\pi\)
\(444\) 0 0
\(445\) −8.80385 + 9.92820i −0.417342 + 0.470642i
\(446\) 6.03579i 0.285803i
\(447\) 0 0
\(448\) 0.366025 + 0.366025i 0.0172931 + 0.0172931i
\(449\) 14.9743 0.706683 0.353341 0.935494i \(-0.385045\pi\)
0.353341 + 0.935494i \(0.385045\pi\)
\(450\) 0 0
\(451\) 22.0000 1.03594
\(452\) −11.9700 11.9700i −0.563024 0.563024i
\(453\) 0 0
\(454\) 4.53590i 0.212880i
\(455\) 3.76217 4.24264i 0.176373 0.198898i
\(456\) 0 0
\(457\) −8.70577 + 8.70577i −0.407239 + 0.407239i −0.880775 0.473536i \(-0.842977\pi\)
0.473536 + 0.880775i \(0.342977\pi\)
\(458\) 1.13681 1.13681i 0.0531197 0.0531197i
\(459\) 0 0
\(460\) 4.46410 0.267949i 0.208140 0.0124932i
\(461\) 20.7699i 0.967350i 0.875248 + 0.483675i \(0.160698\pi\)
−0.875248 + 0.483675i \(0.839302\pi\)
\(462\) 0 0
\(463\) 8.29423 + 8.29423i 0.385465 + 0.385465i 0.873067 0.487601i \(-0.162128\pi\)
−0.487601 + 0.873067i \(0.662128\pi\)
\(464\) −6.31319 −0.293083
\(465\) 0 0
\(466\) 7.85641 0.363941
\(467\) −9.19239 9.19239i −0.425373 0.425373i 0.461676 0.887049i \(-0.347248\pi\)
−0.887049 + 0.461676i \(0.847248\pi\)
\(468\) 0 0
\(469\) 4.53590i 0.209448i
\(470\) 10.0382 + 8.90138i 0.463027 + 0.410590i
\(471\) 0 0
\(472\) −3.19615 + 3.19615i −0.147115 + 0.147115i
\(473\) 6.03579 6.03579i 0.277526 0.277526i
\(474\) 0 0
\(475\) −37.0526 + 4.46410i −1.70009 + 0.204827i
\(476\) 0.757875i 0.0347371i
\(477\) 0 0
\(478\) −3.80385 3.80385i −0.173984 0.173984i
\(479\) 11.0363 0.504262 0.252131 0.967693i \(-0.418869\pi\)
0.252131 + 0.967693i \(0.418869\pi\)
\(480\) 0 0
\(481\) −15.2154 −0.693762
\(482\) 2.82843 + 2.82843i 0.128831 + 0.128831i
\(483\) 0 0
\(484\) 11.6603i 0.530012i
\(485\) −2.56961 42.8103i −0.116680 1.94392i
\(486\) 0 0
\(487\) −23.1962 + 23.1962i −1.05112 + 1.05112i −0.0524969 + 0.998621i \(0.516718\pi\)
−0.998621 + 0.0524969i \(0.983282\pi\)
\(488\) −6.69213 + 6.69213i −0.302939 + 0.302939i
\(489\) 0 0
\(490\) −0.901924 15.0263i −0.0407448 0.678818i
\(491\) 22.5630i 1.01826i −0.860691 0.509128i \(-0.829968\pi\)
0.860691 0.509128i \(-0.170032\pi\)
\(492\) 0 0
\(493\) −6.53590 6.53590i −0.294362 0.294362i
\(494\) 36.5665 1.64520
\(495\) 0 0
\(496\) −6.66025 −0.299054
\(497\) 5.65685 + 5.65685i 0.253745 + 0.253745i
\(498\) 0 0
\(499\) 35.8564i 1.60515i 0.596549 + 0.802577i \(0.296538\pi\)
−0.596549 + 0.802577i \(0.703462\pi\)
\(500\) −6.36396 + 9.19239i −0.284605 + 0.411096i
\(501\) 0 0
\(502\) 10.2679 10.2679i 0.458281 0.458281i
\(503\) 1.13681 1.13681i 0.0506879 0.0506879i −0.681308 0.731996i \(-0.738589\pi\)
0.731996 + 0.681308i \(0.238589\pi\)
\(504\) 0 0
\(505\) −24.5263 21.7487i −1.09141 0.967805i
\(506\) 9.52056i 0.423240i
\(507\) 0 0
\(508\) −1.16987 1.16987i −0.0519047 0.0519047i
\(509\) −30.6694 −1.35940 −0.679698 0.733492i \(-0.737889\pi\)
−0.679698 + 0.733492i \(0.737889\pi\)
\(510\) 0 0
\(511\) −6.85641 −0.303310
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 28.7846i 1.26963i
\(515\) 30.7202 1.84392i 1.35369 0.0812528i
\(516\) 0 0
\(517\) 20.1962 20.1962i 0.888226 0.888226i
\(518\) 1.13681 1.13681i 0.0499487 0.0499487i
\(519\) 0 0
\(520\) 7.26795 8.19615i 0.318721 0.359425i
\(521\) 3.58630i 0.157119i −0.996909 0.0785594i \(-0.974968\pi\)
0.996909 0.0785594i \(-0.0250320\pi\)
\(522\) 0 0
\(523\) −21.4641 21.4641i −0.938560 0.938560i 0.0596592 0.998219i \(-0.480999\pi\)
−0.998219 + 0.0596592i \(0.980999\pi\)
\(524\) 14.1793 0.619426
\(525\) 0 0
\(526\) 14.0000 0.610429
\(527\) −6.89520 6.89520i −0.300360 0.300360i
\(528\) 0 0
\(529\) 19.0000i 0.826087i
\(530\) −10.6760 + 12.0394i −0.463734 + 0.522958i
\(531\) 0 0
\(532\) −2.73205 + 2.73205i −0.118449 + 0.118449i
\(533\) 16.0096 16.0096i 0.693453 0.693453i
\(534\) 0 0
\(535\) 4.30385 0.258330i 0.186072 0.0111686i
\(536\) 8.76268i 0.378490i
\(537\) 0 0
\(538\) 5.39230 + 5.39230i 0.232479 + 0.232479i
\(539\) −32.0464 −1.38034
\(540\) 0 0
\(541\) 27.3205 1.17460 0.587300 0.809369i \(-0.300191\pi\)
0.587300 + 0.809369i \(0.300191\pi\)
\(542\) 3.25813 + 3.25813i 0.139949 + 0.139949i
\(543\) 0 0
\(544\) 1.46410i 0.0627728i
\(545\) 3.34607 + 2.96713i 0.143330 + 0.127098i
\(546\) 0 0
\(547\) −0.928203 + 0.928203i −0.0396871 + 0.0396871i −0.726672 0.686985i \(-0.758934\pi\)
0.686985 + 0.726672i \(0.258934\pi\)
\(548\) 2.44949 2.44949i 0.104637 0.104637i
\(549\) 0 0
\(550\) 18.7224 + 14.6962i 0.798327 + 0.626646i
\(551\) 47.1223i 2.00748i
\(552\) 0 0
\(553\) 1.26795 + 1.26795i 0.0539187 + 0.0539187i
\(554\) 28.0812 1.19306
\(555\) 0 0
\(556\) 9.85641 0.418005
\(557\) 1.88108 + 1.88108i 0.0797041 + 0.0797041i 0.745835 0.666131i \(-0.232051\pi\)
−0.666131 + 0.745835i \(0.732051\pi\)
\(558\) 0 0
\(559\) 8.78461i 0.371549i
\(560\) 0.0693504 + 1.15539i 0.00293059 + 0.0488243i
\(561\) 0 0
\(562\) −9.46410 + 9.46410i −0.399219 + 0.399219i
\(563\) 4.81105 4.81105i 0.202761 0.202761i −0.598421 0.801182i \(-0.704205\pi\)
0.801182 + 0.598421i \(0.204205\pi\)
\(564\) 0 0
\(565\) −2.26795 37.7846i −0.0954133 1.58961i
\(566\) 12.3490i 0.519067i
\(567\) 0 0
\(568\) 10.9282 + 10.9282i 0.458537 + 0.458537i
\(569\) −26.2137 −1.09894 −0.549468 0.835515i \(-0.685170\pi\)
−0.549468 + 0.835515i \(0.685170\pi\)
\(570\) 0 0
\(571\) −1.46410 −0.0612707 −0.0306354 0.999531i \(-0.509753\pi\)
−0.0306354 + 0.999531i \(0.509753\pi\)
\(572\) −16.4901 16.4901i −0.689485 0.689485i
\(573\) 0 0
\(574\) 2.39230i 0.0998529i
\(575\) 7.86611 + 6.17449i 0.328039 + 0.257494i
\(576\) 0 0
\(577\) −15.3923 + 15.3923i −0.640790 + 0.640790i −0.950750 0.309960i \(-0.899684\pi\)
0.309960 + 0.950750i \(0.399684\pi\)
\(578\) 10.5051 10.5051i 0.436953 0.436953i
\(579\) 0 0
\(580\) −10.5622 9.36603i −0.438571 0.388903i
\(581\) 1.07244i 0.0444923i
\(582\) 0 0
\(583\) 24.2224 + 24.2224i 1.00319 + 1.00319i
\(584\) −13.2456 −0.548105
\(585\) 0 0
\(586\) 12.0000 0.495715
\(587\) 31.5152 + 31.5152i 1.30077 + 1.30077i 0.927872 + 0.372900i \(0.121636\pi\)
0.372900 + 0.927872i \(0.378364\pi\)
\(588\) 0 0
\(589\) 49.7128i 2.04838i
\(590\) −10.0890 + 0.605571i −0.415356 + 0.0249310i
\(591\) 0 0
\(592\) 2.19615 2.19615i 0.0902613 0.0902613i
\(593\) 8.86422 8.86422i 0.364010 0.364010i −0.501277 0.865287i \(-0.667136\pi\)
0.865287 + 0.501277i \(0.167136\pi\)
\(594\) 0 0
\(595\) −1.12436 + 1.26795i −0.0460941 + 0.0519808i
\(596\) 12.4877i 0.511516i
\(597\) 0 0
\(598\) −6.92820 6.92820i −0.283315 0.283315i
\(599\) 7.45001 0.304399 0.152199 0.988350i \(-0.451364\pi\)
0.152199 + 0.988350i \(0.451364\pi\)
\(600\) 0 0
\(601\) −13.0000 −0.530281 −0.265141 0.964210i \(-0.585418\pi\)
−0.265141 + 0.964210i \(0.585418\pi\)
\(602\) 0.656339 + 0.656339i 0.0267504 + 0.0267504i
\(603\) 0 0
\(604\) 8.46410i 0.344399i
\(605\) 17.2987 19.5080i 0.703293 0.793112i
\(606\) 0 0
\(607\) −21.5885 + 21.5885i −0.876248 + 0.876248i −0.993144 0.116896i \(-0.962706\pi\)
0.116896 + 0.993144i \(0.462706\pi\)
\(608\) −5.27792 + 5.27792i −0.214048 + 0.214048i
\(609\) 0 0
\(610\) −21.1244 + 1.26795i −0.855300 + 0.0513378i
\(611\) 29.3939i 1.18915i
\(612\) 0 0
\(613\) 17.6603 + 17.6603i 0.713291 + 0.713291i 0.967222 0.253931i \(-0.0817237\pi\)
−0.253931 + 0.967222i \(0.581724\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 2.46410 0.0992815
\(617\) −29.2180 29.2180i −1.17627 1.17627i −0.980686 0.195586i \(-0.937339\pi\)
−0.195586 0.980686i \(-0.562661\pi\)
\(618\) 0 0
\(619\) 7.60770i 0.305779i −0.988243 0.152890i \(-0.951142\pi\)
0.988243 0.152890i \(-0.0488579\pi\)
\(620\) −11.1428 9.88091i −0.447507 0.396827i
\(621\) 0 0
\(622\) 2.73205 2.73205i 0.109545 0.109545i
\(623\) −2.17209 + 2.17209i −0.0870229 + 0.0870229i
\(624\) 0 0
\(625\) −24.2846 + 5.93782i −0.971384 + 0.237513i
\(626\) 28.3214i 1.13195i
\(627\) 0 0
\(628\) 12.0000 + 12.0000i 0.478852 + 0.478852i
\(629\) 4.54725 0.181311
\(630\) 0 0
\(631\) 30.9090 1.23047 0.615233 0.788345i \(-0.289062\pi\)
0.615233 + 0.788345i \(0.289062\pi\)
\(632\) 2.44949 + 2.44949i 0.0974355 + 0.0974355i
\(633\) 0 0
\(634\) 12.4641i 0.495013i
\(635\) −0.221654 3.69282i −0.00879608 0.146545i
\(636\) 0 0
\(637\) −23.3205 + 23.3205i −0.923992 + 0.923992i
\(638\) −21.2504 + 21.2504i −0.841310 + 0.841310i
\(639\) 0 0
\(640\) 0.133975 + 2.23205i 0.00529581 + 0.0882296i
\(641\) 25.7332i 1.01640i −0.861238 0.508201i \(-0.830311\pi\)
0.861238 0.508201i \(-0.169689\pi\)
\(642\) 0 0
\(643\) 3.46410 + 3.46410i 0.136611 + 0.136611i 0.772105 0.635495i \(-0.219204\pi\)
−0.635495 + 0.772105i \(0.719204\pi\)
\(644\) 1.03528 0.0407956
\(645\) 0 0
\(646\) −10.9282 −0.429964
\(647\) 15.7322 + 15.7322i 0.618497 + 0.618497i 0.945146 0.326649i \(-0.105919\pi\)
−0.326649 + 0.945146i \(0.605919\pi\)
\(648\) 0 0
\(649\) 21.5167i 0.844603i
\(650\) 24.3190 2.92996i 0.953871 0.114923i
\(651\) 0 0
\(652\) −5.46410 + 5.46410i −0.213991 + 0.213991i
\(653\) 10.1261 10.1261i 0.396266 0.396266i −0.480648 0.876914i \(-0.659598\pi\)
0.876914 + 0.480648i \(0.159598\pi\)
\(654\) 0 0
\(655\) 23.7224 + 21.0359i 0.926912 + 0.821941i
\(656\) 4.62158i 0.180442i
\(657\) 0 0
\(658\) 2.19615 + 2.19615i 0.0856149 + 0.0856149i
\(659\) −48.4994 −1.88927 −0.944633 0.328127i \(-0.893582\pi\)
−0.944633 + 0.328127i \(0.893582\pi\)
\(660\) 0 0
\(661\) −2.39230 −0.0930499 −0.0465249 0.998917i \(-0.514815\pi\)
−0.0465249 + 0.998917i \(0.514815\pi\)
\(662\) 5.27792 + 5.27792i 0.205132 + 0.205132i
\(663\) 0 0
\(664\) 2.07180i 0.0804013i
\(665\) −8.62398 + 0.517638i −0.334424 + 0.0200731i
\(666\) 0 0
\(667\) −8.92820 + 8.92820i −0.345701 + 0.345701i
\(668\) −11.9700 + 11.9700i −0.463135 + 0.463135i
\(669\) 0 0
\(670\) 13.0000 14.6603i 0.502234 0.566375i
\(671\) 45.0518i 1.73920i
\(672\) 0 0
\(673\) 3.02628 + 3.02628i 0.116654 + 0.116654i 0.763024 0.646370i \(-0.223714\pi\)
−0.646370 + 0.763024i \(0.723714\pi\)
\(674\) 0.656339 0.0252812
\(675\) 0 0
\(676\) −11.0000 −0.423077
\(677\) 29.4954 + 29.4954i 1.13360 + 1.13360i 0.989574 + 0.144027i \(0.0460052\pi\)
0.144027 + 0.989574i \(0.453995\pi\)
\(678\) 0 0
\(679\) 9.92820i 0.381009i
\(680\) −2.17209 + 2.44949i −0.0832958 + 0.0939336i
\(681\) 0 0
\(682\) −22.4186 + 22.4186i −0.858452 + 0.858452i
\(683\) 21.8695 21.8695i 0.836815 0.836815i −0.151624 0.988438i \(-0.548450\pi\)
0.988438 + 0.151624i \(0.0484501\pi\)
\(684\) 0 0
\(685\) 7.73205 0.464102i 0.295426 0.0177324i
\(686\) 7.10823i 0.271394i
\(687\) 0 0
\(688\) 1.26795 + 1.26795i 0.0483401 + 0.0483401i
\(689\) 35.2538 1.34306
\(690\) 0 0
\(691\) 34.6410 1.31781 0.658903 0.752228i \(-0.271021\pi\)
0.658903 + 0.752228i \(0.271021\pi\)
\(692\) 7.39924 + 7.39924i 0.281277 + 0.281277i
\(693\) 0 0
\(694\) 28.6603i 1.08793i
\(695\) 16.4901 + 14.6226i 0.625505 + 0.554667i
\(696\) 0 0
\(697\) −4.78461 + 4.78461i −0.181230 + 0.181230i
\(698\) 3.96524 3.96524i 0.150087 0.150087i
\(699\) 0 0
\(700\) −1.59808 + 2.03590i −0.0604016 + 0.0769497i
\(701\) 22.8677i 0.863699i 0.901946 + 0.431850i \(0.142139\pi\)
−0.901946 + 0.431850i \(0.857861\pi\)
\(702\) 0 0
\(703\) 16.3923 + 16.3923i 0.618247 + 0.618247i
\(704\) 4.76028 0.179410
\(705\) 0 0
\(706\) 19.8564 0.747306
\(707\) −5.36585 5.36585i −0.201804 0.201804i
\(708\) 0 0
\(709\) 12.7846i 0.480136i −0.970756 0.240068i \(-0.922830\pi\)
0.970756 0.240068i \(-0.0771698\pi\)
\(710\) 2.07055 + 34.4959i 0.0777064 + 1.29461i
\(711\) 0 0
\(712\) −4.19615 + 4.19615i −0.157257 + 0.157257i
\(713\) −9.41902 + 9.41902i −0.352745 + 0.352745i
\(714\) 0 0
\(715\) −3.12436 52.0526i −0.116844 1.94666i
\(716\) 5.41662i 0.202429i
\(717\) 0 0
\(718\) −16.5885 16.5885i −0.619076 0.619076i
\(719\) −9.04008 −0.337138 −0.168569 0.985690i \(-0.553915\pi\)
−0.168569 + 0.985690i \(0.553915\pi\)
\(720\) 0 0
\(721\) 7.12436 0.265325
\(722\) −25.9599 25.9599i −0.966127 0.966127i
\(723\) 0 0
\(724\) 14.9282i 0.554802i
\(725\) −3.77577 31.3393i −0.140229 1.16391i
\(726\) 0 0
\(727\) 0.973721 0.973721i 0.0361133 0.0361133i −0.688820 0.724933i \(-0.741871\pi\)
0.724933 + 0.688820i \(0.241871\pi\)
\(728\) 1.79315 1.79315i 0.0664586 0.0664586i
\(729\) 0 0
\(730\) −22.1603 19.6506i −0.820188 0.727303i
\(731\) 2.62536i 0.0971023i
\(732\) 0 0
\(733\) −11.1244 11.1244i −0.410887 0.410887i 0.471160 0.882048i \(-0.343835\pi\)
−0.882048 + 0.471160i \(0.843835\pi\)
\(734\) −4.27981 −0.157971
\(735\) 0 0
\(736\) 2.00000 0.0737210
\(737\) −29.4954 29.4954i −1.08648 1.08648i
\(738\) 0 0
\(739\) 9.07180i 0.333711i 0.985981 + 0.166856i \(0.0533614\pi\)
−0.985981 + 0.166856i \(0.946639\pi\)
\(740\) 6.93237 0.416102i 0.254839 0.0152962i
\(741\) 0 0
\(742\) −2.63397 + 2.63397i −0.0966962 + 0.0966962i
\(743\) −30.4292 + 30.4292i −1.11634 + 1.11634i −0.124063 + 0.992274i \(0.539592\pi\)
−0.992274 + 0.124063i \(0.960408\pi\)
\(744\) 0 0
\(745\) 18.5263 20.8923i 0.678750 0.765435i
\(746\) 11.8685i 0.434537i
\(747\) 0 0
\(748\) 4.92820 + 4.92820i 0.180193 + 0.180193i
\(749\) 0.998111 0.0364702
\(750\) 0 0
\(751\) 2.41154 0.0879984 0.0439992 0.999032i \(-0.485990\pi\)
0.0439992 + 0.999032i \(0.485990\pi\)
\(752\) 4.24264 + 4.24264i 0.154713 + 0.154713i
\(753\) 0 0
\(754\) 30.9282i 1.12634i
\(755\) 12.5570 14.1607i 0.456997 0.515361i
\(756\) 0 0
\(757\) −2.19615 + 2.19615i −0.0798205 + 0.0798205i −0.745890 0.666069i \(-0.767975\pi\)
0.666069 + 0.745890i \(0.267975\pi\)
\(758\) −5.65685 + 5.65685i −0.205466 + 0.205466i
\(759\) 0 0
\(760\) −16.6603 + 1.00000i −0.604331 + 0.0362738i
\(761\) 44.4970i 1.61301i 0.591225 + 0.806507i \(0.298645\pi\)
−0.591225 + 0.806507i \(0.701355\pi\)
\(762\) 0 0
\(763\) 0.732051 + 0.732051i 0.0265020 + 0.0265020i
\(764\) 3.38323 0.122401
\(765\) 0 0
\(766\) −0.679492 −0.0245510
\(767\) 15.6579 + 15.6579i 0.565373 + 0.565373i
\(768\) 0 0
\(769\) 31.7846i 1.14618i −0.819492 0.573091i \(-0.805744\pi\)
0.819492 0.573091i \(-0.194256\pi\)
\(770\) 4.12252 + 3.65565i 0.148565 + 0.131741i
\(771\) 0 0
\(772\) 8.02628 8.02628i 0.288872 0.288872i
\(773\) −11.4152 + 11.4152i −0.410578 + 0.410578i −0.881940 0.471362i \(-0.843763\pi\)
0.471362 + 0.881940i \(0.343763\pi\)
\(774\) 0 0
\(775\) −3.98334 33.0622i −0.143086 1.18763i
\(776\) 19.1798i 0.688515i
\(777\) 0 0
\(778\) −9.29423 9.29423i −0.333214 0.333214i
\(779\) −34.4959 −1.23594
\(780\) 0 0
\(781\) 73.5692 2.63251
\(782\) 2.07055 + 2.07055i 0.0740428 + 0.0740428i
\(783\) 0 0
\(784\) 6.73205i 0.240430i
\(785\) 2.27362 + 37.8792i 0.0811491 + 1.35197i
\(786\) 0 0
\(787\) 3.07180 3.07180i 0.109498 0.109498i −0.650235 0.759733i \(-0.725330\pi\)
0.759733 + 0.650235i \(0.225330\pi\)
\(788\) 3.01790 3.01790i 0.107508 0.107508i
\(789\) 0 0
\(790\) 0.464102 + 7.73205i 0.0165120 + 0.275094i
\(791\) 8.76268i 0.311565i
\(792\) 0 0
\(793\) 32.7846 + 32.7846i 1.16422 + 1.16422i
\(794\) 6.96953 0.247339
\(795\) 0 0
\(796\) −14.3205 −0.507577
\(797\) 23.5104 + 23.5104i 0.832781 + 0.832781i 0.987896 0.155116i \(-0.0495750\pi\)
−0.155116 + 0.987896i \(0.549575\pi\)
\(798\) 0 0
\(799\) 8.78461i 0.310777i
\(800\) −3.08725 + 3.93305i −0.109151 + 0.139054i
\(801\) 0 0
\(802\) −12.9282 + 12.9282i −0.456511 + 0.456511i
\(803\) −44.5849 + 44.5849i −1.57337 + 1.57337i
\(804\) 0 0
\(805\) 1.73205 + 1.53590i 0.0610468 + 0.0541333i
\(806\) 32.6284i 1.14929i
\(807\) 0 0
\(808\) −10.3660 10.3660i −0.364676 0.364676i
\(809\) 19.3185 0.679203 0.339601 0.940569i \(-0.389708\pi\)
0.339601 + 0.940569i \(0.389708\pi\)
\(810\) 0 0
\(811\) −28.9282 −1.01581 −0.507903 0.861414i \(-0.669579\pi\)
−0.507903 + 0.861414i \(0.669579\pi\)
\(812\) −2.31079 2.31079i −0.0810928 0.0810928i
\(813\) 0 0
\(814\) 14.7846i 0.518200i
\(815\) −17.2480 + 1.03528i −0.604170 + 0.0362641i
\(816\) 0 0
\(817\) −9.46410 + 9.46410i −0.331107 + 0.331107i
\(818\) −2.36156 + 2.36156i −0.0825699 + 0.0825699i
\(819\) 0 0
\(820\) −6.85641 + 7.73205i −0.239436 + 0.270015i
\(821\) 8.93855i 0.311957i 0.987760 + 0.155979i \(0.0498531\pi\)
−0.987760 + 0.155979i \(0.950147\pi\)
\(822\) 0 0
\(823\) −31.2942 31.2942i −1.09085 1.09085i −0.995438 0.0954102i \(-0.969584\pi\)
−0.0954102 0.995438i \(-0.530416\pi\)
\(824\) 13.7632 0.479464
\(825\) 0 0
\(826\) −2.33975 −0.0814102
\(827\) 4.72311 + 4.72311i 0.164239 + 0.164239i 0.784442 0.620203i \(-0.212950\pi\)
−0.620203 + 0.784442i \(0.712950\pi\)
\(828\) 0 0
\(829\) 2.67949i 0.0930626i −0.998917 0.0465313i \(-0.985183\pi\)
0.998917 0.0465313i \(-0.0148167\pi\)
\(830\) −3.07364 + 3.46618i −0.106688 + 0.120313i
\(831\) 0 0
\(832\) 3.46410 3.46410i 0.120096 0.120096i
\(833\) 6.96953 6.96953i 0.241480 0.241480i
\(834\) 0 0
\(835\) −37.7846 + 2.26795i −1.30759 + 0.0784856i
\(836\) 35.5312i 1.22887i
\(837\) 0 0
\(838\) 9.33975 + 9.33975i 0.322636 + 0.322636i
\(839\) −28.8391 −0.995635 −0.497818 0.867282i \(-0.665865\pi\)
−0.497818 + 0.867282i \(0.665865\pi\)
\(840\) 0 0
\(841\) 10.8564 0.374359
\(842\) −12.6264 12.6264i −0.435134 0.435134i
\(843\) 0 0
\(844\) 21.3205i 0.733882i
\(845\) −18.4034 16.3192i −0.633095 0.561398i
\(846\) 0 0
\(847\) 4.26795 4.26795i 0.146648 0.146648i
\(848\) −5.08845 + 5.08845i −0.174738 + 0.174738i
\(849\) 0 0
\(850\) −7.26795 + 0.875644i −0.249289 + 0.0300344i
\(851\) 6.21166i 0.212933i
\(852\) 0 0
\(853\) −10.8756 10.8756i −0.372375 0.372375i 0.495967 0.868342i \(-0.334814\pi\)
−0.868342 + 0.495967i \(0.834814\pi\)
\(854\) −4.89898 −0.167640
\(855\) 0 0
\(856\) 1.92820 0.0659046
\(857\) −32.9802 32.9802i −1.12658 1.12658i −0.990729 0.135852i \(-0.956623\pi\)
−0.135852 0.990729i \(-0.543377\pi\)
\(858\) 0 0
\(859\) 31.3205i 1.06864i −0.845282 0.534321i \(-0.820567\pi\)
0.845282 0.534321i \(-0.179433\pi\)
\(860\) 0.240237 + 4.00240i 0.00819200 + 0.136481i
\(861\) 0 0
\(862\) −18.1962 + 18.1962i −0.619763 + 0.619763i
\(863\) 19.3185 19.3185i 0.657610 0.657610i −0.297204 0.954814i \(-0.596054\pi\)
0.954814 + 0.297204i \(0.0960542\pi\)
\(864\) 0 0
\(865\) 1.40192 + 23.3564i 0.0476668 + 0.794142i
\(866\) 13.9019i 0.472406i
\(867\) 0 0
\(868\) −2.43782 2.43782i −0.0827451 0.0827451i
\(869\) 16.4901 0.559388
\(870\) 0 0
\(871\) −42.9282 −1.45457
\(872\) 1.41421 + 1.41421i 0.0478913 + 0.0478913i
\(873\) 0 0
\(874\) 14.9282i 0.504954i
\(875\) −5.69402 + 1.03528i −0.192493 + 0.0349987i
\(876\) 0 0
\(877\) −1.26795 + 1.26795i −0.0428156 + 0.0428156i −0.728190 0.685375i \(-0.759638\pi\)
0.685375 + 0.728190i \(0.259638\pi\)
\(878\) 20.6820 20.6820i 0.697982 0.697982i
\(879\) 0 0
\(880\) 7.96410 + 7.06218i 0.268470 + 0.238066i
\(881\) 6.41473i 0.216118i −0.994144 0.108059i \(-0.965537\pi\)
0.994144 0.108059i \(-0.0344635\pi\)
\(882\) 0 0
\(883\) 19.1244 + 19.1244i 0.643586 + 0.643586i 0.951435 0.307849i \(-0.0996093\pi\)
−0.307849 + 0.951435i \(0.599609\pi\)
\(884\) 7.17260 0.241241
\(885\) 0 0
\(886\) −36.2487 −1.21780
\(887\) 29.8744 + 29.8744i 1.00308 + 1.00308i 0.999995 + 0.00308728i \(0.000982712\pi\)
0.00308728 + 0.999995i \(0.499017\pi\)
\(888\) 0 0
\(889\) 0.856406i 0.0287230i
\(890\) −13.2456 + 0.795040i −0.443992 + 0.0266498i
\(891\) 0 0
\(892\) −4.26795 + 4.26795i −0.142902 + 0.142902i
\(893\) −31.6675 + 31.6675i −1.05971 + 1.05971i
\(894\) 0 0
\(895\) 8.03590 9.06218i 0.268610 0.302915i
\(896\) 0.517638i 0.0172931i
\(897\) 0 0
\(898\) 10.5885 + 10.5885i 0.353341 + 0.353341i
\(899\) 42.0475 1.40236
\(900\) 0 0
\(901\) −10.5359 −0.351002
\(902\) 15.5563 + 15.5563i 0.517970 + 0.517970i
\(903\) 0 0
\(904\) 16.9282i 0.563024i
\(905\) −22.1469 + 24.9754i −0.736189 + 0.830209i
\(906\) 0 0
\(907\) 26.9808 26.9808i 0.895882 0.895882i −0.0991873 0.995069i \(-0.531624\pi\)
0.995069 + 0.0991873i \(0.0316243\pi\)
\(908\) 3.20736 3.20736i 0.106440 0.106440i
\(909\) 0 0
\(910\) 5.66025 0.339746i 0.187636 0.0112625i
\(911\) 51.1891i 1.69597i −0.530020 0.847985i \(-0.677816\pi\)
0.530020 0.847985i \(-0.322184\pi\)
\(912\) 0 0
\(913\) 6.97372 + 6.97372i 0.230796 + 0.230796i
\(914\) −12.3118 −0.407239
\(915\) 0 0
\(916\) 1.60770 0.0531197
\(917\) 5.18998 + 5.18998i 0.171388 + 0.171388i
\(918\) 0 0
\(919\) 41.5885i 1.37188i −0.727660 0.685938i \(-0.759392\pi\)
0.727660 0.685938i \(-0.240608\pi\)
\(920\) 3.34607 + 2.96713i 0.110317 + 0.0978233i
\(921\) 0 0
\(922\) −14.6865 + 14.6865i −0.483675 + 0.483675i
\(923\) 53.5370 53.5370i 1.76219 1.76219i
\(924\) 0 0
\(925\) 12.2154 + 9.58846i 0.401640 + 0.315267i
\(926\) 11.7298i 0.385465i
\(927\) 0 0
\(928\) −4.46410 4.46410i −0.146541 0.146541i
\(929\) −17.1736 −0.563449 −0.281724 0.959495i \(-0.590906\pi\)
−0.281724 + 0.959495i \(0.590906\pi\)
\(930\) 0 0
\(931\) 50.2487 1.64683
\(932\) 5.55532 + 5.55532i 0.181971 + 0.181971i
\(933\) 0 0
\(934\) 13.0000i 0.425373i
\(935\) 0.933740 + 15.5563i 0.0305366 + 0.508747i
\(936\) 0 0
\(937\) 18.8301 18.8301i 0.615153 0.615153i −0.329131 0.944284i \(-0.606756\pi\)
0.944284 + 0.329131i \(0.106756\pi\)
\(938\) 3.20736 3.20736i 0.104724 0.104724i
\(939\) 0 0
\(940\) 0.803848 + 13.3923i 0.0262186 + 0.436809i
\(941\) 43.4988i 1.41802i 0.705197 + 0.709011i \(0.250858\pi\)
−0.705197 + 0.709011i \(0.749142\pi\)
\(942\) 0 0
\(943\) 6.53590 + 6.53590i 0.212838 + 0.212838i
\(944\) −4.52004 −0.147115
\(945\) 0 0
\(946\) 8.53590 0.277526
\(947\) 11.5775 + 11.5775i 0.376218 + 0.376218i 0.869736 0.493517i \(-0.164289\pi\)
−0.493517 + 0.869736i \(0.664289\pi\)
\(948\) 0 0
\(949\) 64.8897i 2.10641i
\(950\) −29.3567 23.0435i −0.952458 0.747630i
\(951\) 0 0
\(952\) −0.535898 + 0.535898i −0.0173686 + 0.0173686i
\(953\) 10.2784 10.2784i 0.332951 0.332951i −0.520755 0.853706i \(-0.674350\pi\)
0.853706 + 0.520755i \(0.174350\pi\)
\(954\) 0 0
\(955\) 5.66025 + 5.01924i 0.183162 + 0.162419i
\(956\) 5.37945i 0.173984i
\(957\) 0 0
\(958\) 7.80385 + 7.80385i 0.252131 + 0.252131i
\(959\) 1.79315 0.0579039
\(960\) 0 0
\(961\) 13.3590 0.430935
\(962\) −10.7589 10.7589i −0.346881 0.346881i
\(963\) 0 0
\(964\) 4.00000i 0.128831i
\(965\) 25.3357 1.52073i 0.815586 0.0489540i
\(966\) 0 0
\(967\) −2.50962 + 2.50962i −0.0807039 + 0.0807039i −0.746306 0.665603i \(-0.768175\pi\)
0.665603 + 0.746306i \(0.268175\pi\)
\(968\) 8.24504 8.24504i 0.265006 0.265006i
\(969\) 0 0
\(970\) 28.4545 32.0885i 0.913618 1.03030i
\(971\) 31.6303i 1.01507i 0.861632 + 0.507533i \(0.169442\pi\)
−0.861632 + 0.507533i \(0.830558\pi\)
\(972\) 0 0
\(973\) 3.60770 + 3.60770i 0.115657 + 0.115657i
\(974\) −32.8043 −1.05112
\(975\) 0 0
\(976\) −9.46410 −0.302939
\(977\) −2.92996 2.92996i −0.0937378 0.0937378i 0.658683 0.752421i \(-0.271114\pi\)
−0.752421 + 0.658683i \(0.771114\pi\)
\(978\) 0 0
\(979\) 28.2487i 0.902833i
\(980\) 9.98743 11.2629i 0.319037 0.359781i
\(981\) 0 0
\(982\) 15.9545 15.9545i 0.509128 0.509128i
\(983\) 31.2886 31.2886i 0.997950 0.997950i −0.00204770 0.999998i \(-0.500652\pi\)
0.999998 + 0.00204770i \(0.000651804\pi\)
\(984\) 0 0
\(985\) 9.52628 0.571797i 0.303533 0.0182190i
\(986\) 9.24316i 0.294362i
\(987\) 0 0
\(988\) 25.8564 + 25.8564i 0.822602 + 0.822602i
\(989\) 3.58630 0.114038
\(990\) 0 0
\(991\) 2.60770 0.0828362 0.0414181 0.999142i \(-0.486812\pi\)
0.0414181 + 0.999142i \(0.486812\pi\)
\(992\) −4.70951 4.70951i −0.149527 0.149527i
\(993\) 0 0
\(994\) 8.00000i 0.253745i
\(995\) −23.9587 21.2454i −0.759541 0.673524i
\(996\) 0 0
\(997\) −33.8564 + 33.8564i −1.07224 + 1.07224i −0.0750645 + 0.997179i \(0.523916\pi\)
−0.997179 + 0.0750645i \(0.976084\pi\)
\(998\) −25.3543 + 25.3543i −0.802577 + 0.802577i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 270.2.f.b.53.3 yes 8
3.2 odd 2 inner 270.2.f.b.53.2 8
4.3 odd 2 2160.2.w.b.593.2 8
5.2 odd 4 inner 270.2.f.b.107.2 yes 8
5.3 odd 4 1350.2.f.a.107.4 8
5.4 even 2 1350.2.f.a.593.2 8
9.2 odd 6 810.2.m.e.53.1 8
9.4 even 3 810.2.m.d.593.1 8
9.5 odd 6 810.2.m.d.593.2 8
9.7 even 3 810.2.m.e.53.2 8
12.11 even 2 2160.2.w.b.593.3 8
15.2 even 4 inner 270.2.f.b.107.3 yes 8
15.8 even 4 1350.2.f.a.107.2 8
15.14 odd 2 1350.2.f.a.593.4 8
20.7 even 4 2160.2.w.b.1457.3 8
45.2 even 12 810.2.m.d.377.1 8
45.7 odd 12 810.2.m.d.377.2 8
45.22 odd 12 810.2.m.e.107.1 8
45.32 even 12 810.2.m.e.107.2 8
60.47 odd 4 2160.2.w.b.1457.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
270.2.f.b.53.2 8 3.2 odd 2 inner
270.2.f.b.53.3 yes 8 1.1 even 1 trivial
270.2.f.b.107.2 yes 8 5.2 odd 4 inner
270.2.f.b.107.3 yes 8 15.2 even 4 inner
810.2.m.d.377.1 8 45.2 even 12
810.2.m.d.377.2 8 45.7 odd 12
810.2.m.d.593.1 8 9.4 even 3
810.2.m.d.593.2 8 9.5 odd 6
810.2.m.e.53.1 8 9.2 odd 6
810.2.m.e.53.2 8 9.7 even 3
810.2.m.e.107.1 8 45.22 odd 12
810.2.m.e.107.2 8 45.32 even 12
1350.2.f.a.107.2 8 15.8 even 4
1350.2.f.a.107.4 8 5.3 odd 4
1350.2.f.a.593.2 8 5.4 even 2
1350.2.f.a.593.4 8 15.14 odd 2
2160.2.w.b.593.2 8 4.3 odd 2
2160.2.w.b.593.3 8 12.11 even 2
2160.2.w.b.1457.2 8 60.47 odd 4
2160.2.w.b.1457.3 8 20.7 even 4