Properties

Label 270.3.b.c.269.1
Level $270$
Weight $3$
Character 270.269
Analytic conductor $7.357$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,3,Mod(269,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.269");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 270.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.35696713773\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 269.1
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 270.269
Dual form 270.3.b.c.269.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421 q^{2} +2.00000 q^{4} +(-3.53553 - 3.53553i) q^{5} +5.00000i q^{7} -2.82843 q^{8} +(5.00000 + 5.00000i) q^{10} +1.41421i q^{11} +9.00000i q^{13} -7.07107i q^{14} +4.00000 q^{16} +11.3137 q^{17} +21.0000 q^{19} +(-7.07107 - 7.07107i) q^{20} -2.00000i q^{22} +1.41421 q^{23} +25.0000i q^{25} -12.7279i q^{26} +10.0000i q^{28} +38.1838i q^{29} +40.0000 q^{31} -5.65685 q^{32} -16.0000 q^{34} +(17.6777 - 17.6777i) q^{35} -25.0000i q^{37} -29.6985 q^{38} +(10.0000 + 10.0000i) q^{40} +52.3259i q^{41} +64.0000i q^{43} +2.82843i q^{44} -2.00000 q^{46} +22.6274 q^{47} +24.0000 q^{49} -35.3553i q^{50} +18.0000i q^{52} +72.1249 q^{53} +(5.00000 - 5.00000i) q^{55} -14.1421i q^{56} -54.0000i q^{58} +90.5097i q^{59} -97.0000 q^{61} -56.5685 q^{62} +8.00000 q^{64} +(31.8198 - 31.8198i) q^{65} -131.000i q^{67} +22.6274 q^{68} +(-25.0000 + 25.0000i) q^{70} -89.0955i q^{71} -17.0000i q^{73} +35.3553i q^{74} +42.0000 q^{76} -7.07107 q^{77} -117.000 q^{79} +(-14.1421 - 14.1421i) q^{80} -74.0000i q^{82} -57.9828 q^{83} +(-40.0000 - 40.0000i) q^{85} -90.5097i q^{86} -4.00000i q^{88} +147.078i q^{89} -45.0000 q^{91} +2.82843 q^{92} -32.0000 q^{94} +(-74.2462 - 74.2462i) q^{95} -41.0000i q^{97} -33.9411 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{4} + 20 q^{10} + 16 q^{16} + 84 q^{19} + 160 q^{31} - 64 q^{34} + 40 q^{40} - 8 q^{46} + 96 q^{49} + 20 q^{55} - 388 q^{61} + 32 q^{64} - 100 q^{70} + 168 q^{76} - 468 q^{79} - 160 q^{85} - 180 q^{91}+ \cdots - 128 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/270\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(217\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 −0.707107
\(3\) 0 0
\(4\) 2.00000 0.500000
\(5\) −3.53553 3.53553i −0.707107 0.707107i
\(6\) 0 0
\(7\) 5.00000i 0.714286i 0.934050 + 0.357143i \(0.116249\pi\)
−0.934050 + 0.357143i \(0.883751\pi\)
\(8\) −2.82843 −0.353553
\(9\) 0 0
\(10\) 5.00000 + 5.00000i 0.500000 + 0.500000i
\(11\) 1.41421i 0.128565i 0.997932 + 0.0642824i \(0.0204759\pi\)
−0.997932 + 0.0642824i \(0.979524\pi\)
\(12\) 0 0
\(13\) 9.00000i 0.692308i 0.938178 + 0.346154i \(0.112512\pi\)
−0.938178 + 0.346154i \(0.887488\pi\)
\(14\) 7.07107i 0.505076i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) 11.3137 0.665512 0.332756 0.943013i \(-0.392021\pi\)
0.332756 + 0.943013i \(0.392021\pi\)
\(18\) 0 0
\(19\) 21.0000 1.10526 0.552632 0.833426i \(-0.313624\pi\)
0.552632 + 0.833426i \(0.313624\pi\)
\(20\) −7.07107 7.07107i −0.353553 0.353553i
\(21\) 0 0
\(22\) 2.00000i 0.0909091i
\(23\) 1.41421 0.0614875 0.0307438 0.999527i \(-0.490212\pi\)
0.0307438 + 0.999527i \(0.490212\pi\)
\(24\) 0 0
\(25\) 25.0000i 1.00000i
\(26\) 12.7279i 0.489535i
\(27\) 0 0
\(28\) 10.0000i 0.357143i
\(29\) 38.1838i 1.31668i 0.752720 + 0.658341i \(0.228741\pi\)
−0.752720 + 0.658341i \(0.771259\pi\)
\(30\) 0 0
\(31\) 40.0000 1.29032 0.645161 0.764046i \(-0.276790\pi\)
0.645161 + 0.764046i \(0.276790\pi\)
\(32\) −5.65685 −0.176777
\(33\) 0 0
\(34\) −16.0000 −0.470588
\(35\) 17.6777 17.6777i 0.505076 0.505076i
\(36\) 0 0
\(37\) 25.0000i 0.675676i −0.941204 0.337838i \(-0.890304\pi\)
0.941204 0.337838i \(-0.109696\pi\)
\(38\) −29.6985 −0.781539
\(39\) 0 0
\(40\) 10.0000 + 10.0000i 0.250000 + 0.250000i
\(41\) 52.3259i 1.27624i 0.769936 + 0.638121i \(0.220288\pi\)
−0.769936 + 0.638121i \(0.779712\pi\)
\(42\) 0 0
\(43\) 64.0000i 1.48837i 0.667972 + 0.744186i \(0.267162\pi\)
−0.667972 + 0.744186i \(0.732838\pi\)
\(44\) 2.82843i 0.0642824i
\(45\) 0 0
\(46\) −2.00000 −0.0434783
\(47\) 22.6274 0.481434 0.240717 0.970595i \(-0.422617\pi\)
0.240717 + 0.970595i \(0.422617\pi\)
\(48\) 0 0
\(49\) 24.0000 0.489796
\(50\) 35.3553i 0.707107i
\(51\) 0 0
\(52\) 18.0000i 0.346154i
\(53\) 72.1249 1.36085 0.680424 0.732819i \(-0.261796\pi\)
0.680424 + 0.732819i \(0.261796\pi\)
\(54\) 0 0
\(55\) 5.00000 5.00000i 0.0909091 0.0909091i
\(56\) 14.1421i 0.252538i
\(57\) 0 0
\(58\) 54.0000i 0.931034i
\(59\) 90.5097i 1.53406i 0.641610 + 0.767031i \(0.278267\pi\)
−0.641610 + 0.767031i \(0.721733\pi\)
\(60\) 0 0
\(61\) −97.0000 −1.59016 −0.795082 0.606502i \(-0.792572\pi\)
−0.795082 + 0.606502i \(0.792572\pi\)
\(62\) −56.5685 −0.912396
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) 31.8198 31.8198i 0.489535 0.489535i
\(66\) 0 0
\(67\) 131.000i 1.95522i −0.210416 0.977612i \(-0.567482\pi\)
0.210416 0.977612i \(-0.432518\pi\)
\(68\) 22.6274 0.332756
\(69\) 0 0
\(70\) −25.0000 + 25.0000i −0.357143 + 0.357143i
\(71\) 89.0955i 1.25487i −0.778671 0.627433i \(-0.784106\pi\)
0.778671 0.627433i \(-0.215894\pi\)
\(72\) 0 0
\(73\) 17.0000i 0.232877i −0.993198 0.116438i \(-0.962852\pi\)
0.993198 0.116438i \(-0.0371477\pi\)
\(74\) 35.3553i 0.477775i
\(75\) 0 0
\(76\) 42.0000 0.552632
\(77\) −7.07107 −0.0918320
\(78\) 0 0
\(79\) −117.000 −1.48101 −0.740506 0.672049i \(-0.765414\pi\)
−0.740506 + 0.672049i \(0.765414\pi\)
\(80\) −14.1421 14.1421i −0.176777 0.176777i
\(81\) 0 0
\(82\) 74.0000i 0.902439i
\(83\) −57.9828 −0.698587 −0.349294 0.937013i \(-0.613578\pi\)
−0.349294 + 0.937013i \(0.613578\pi\)
\(84\) 0 0
\(85\) −40.0000 40.0000i −0.470588 0.470588i
\(86\) 90.5097i 1.05244i
\(87\) 0 0
\(88\) 4.00000i 0.0454545i
\(89\) 147.078i 1.65256i 0.563257 + 0.826282i \(0.309548\pi\)
−0.563257 + 0.826282i \(0.690452\pi\)
\(90\) 0 0
\(91\) −45.0000 −0.494505
\(92\) 2.82843 0.0307438
\(93\) 0 0
\(94\) −32.0000 −0.340426
\(95\) −74.2462 74.2462i −0.781539 0.781539i
\(96\) 0 0
\(97\) 41.0000i 0.422680i −0.977413 0.211340i \(-0.932217\pi\)
0.977413 0.211340i \(-0.0677828\pi\)
\(98\) −33.9411 −0.346338
\(99\) 0 0
\(100\) 50.0000i 0.500000i
\(101\) 90.5097i 0.896135i −0.894000 0.448068i \(-0.852112\pi\)
0.894000 0.448068i \(-0.147888\pi\)
\(102\) 0 0
\(103\) 13.0000i 0.126214i −0.998007 0.0631068i \(-0.979899\pi\)
0.998007 0.0631068i \(-0.0201009\pi\)
\(104\) 25.4558i 0.244768i
\(105\) 0 0
\(106\) −102.000 −0.962264
\(107\) −123.037 −1.14987 −0.574937 0.818197i \(-0.694974\pi\)
−0.574937 + 0.818197i \(0.694974\pi\)
\(108\) 0 0
\(109\) 8.00000 0.0733945 0.0366972 0.999326i \(-0.488316\pi\)
0.0366972 + 0.999326i \(0.488316\pi\)
\(110\) −7.07107 + 7.07107i −0.0642824 + 0.0642824i
\(111\) 0 0
\(112\) 20.0000i 0.178571i
\(113\) −38.1838 −0.337909 −0.168955 0.985624i \(-0.554039\pi\)
−0.168955 + 0.985624i \(0.554039\pi\)
\(114\) 0 0
\(115\) −5.00000 5.00000i −0.0434783 0.0434783i
\(116\) 76.3675i 0.658341i
\(117\) 0 0
\(118\) 128.000i 1.08475i
\(119\) 56.5685i 0.475366i
\(120\) 0 0
\(121\) 119.000 0.983471
\(122\) 137.179 1.12442
\(123\) 0 0
\(124\) 80.0000 0.645161
\(125\) 88.3883 88.3883i 0.707107 0.707107i
\(126\) 0 0
\(127\) 8.00000i 0.0629921i 0.999504 + 0.0314961i \(0.0100272\pi\)
−0.999504 + 0.0314961i \(0.989973\pi\)
\(128\) −11.3137 −0.0883883
\(129\) 0 0
\(130\) −45.0000 + 45.0000i −0.346154 + 0.346154i
\(131\) 135.765i 1.03637i −0.855268 0.518185i \(-0.826608\pi\)
0.855268 0.518185i \(-0.173392\pi\)
\(132\) 0 0
\(133\) 105.000i 0.789474i
\(134\) 185.262i 1.38255i
\(135\) 0 0
\(136\) −32.0000 −0.235294
\(137\) 267.286 1.95100 0.975498 0.220010i \(-0.0706089\pi\)
0.975498 + 0.220010i \(0.0706089\pi\)
\(138\) 0 0
\(139\) −37.0000 −0.266187 −0.133094 0.991103i \(-0.542491\pi\)
−0.133094 + 0.991103i \(0.542491\pi\)
\(140\) 35.3553 35.3553i 0.252538 0.252538i
\(141\) 0 0
\(142\) 126.000i 0.887324i
\(143\) −12.7279 −0.0890064
\(144\) 0 0
\(145\) 135.000 135.000i 0.931034 0.931034i
\(146\) 24.0416i 0.164669i
\(147\) 0 0
\(148\) 50.0000i 0.337838i
\(149\) 260.215i 1.74641i 0.487352 + 0.873206i \(0.337963\pi\)
−0.487352 + 0.873206i \(0.662037\pi\)
\(150\) 0 0
\(151\) 109.000 0.721854 0.360927 0.932594i \(-0.382460\pi\)
0.360927 + 0.932594i \(0.382460\pi\)
\(152\) −59.3970 −0.390770
\(153\) 0 0
\(154\) 10.0000 0.0649351
\(155\) −141.421 141.421i −0.912396 0.912396i
\(156\) 0 0
\(157\) 118.000i 0.751592i 0.926702 + 0.375796i \(0.122631\pi\)
−0.926702 + 0.375796i \(0.877369\pi\)
\(158\) 165.463 1.04723
\(159\) 0 0
\(160\) 20.0000 + 20.0000i 0.125000 + 0.125000i
\(161\) 7.07107i 0.0439197i
\(162\) 0 0
\(163\) 203.000i 1.24540i 0.782461 + 0.622699i \(0.213964\pi\)
−0.782461 + 0.622699i \(0.786036\pi\)
\(164\) 104.652i 0.638121i
\(165\) 0 0
\(166\) 82.0000 0.493976
\(167\) −101.823 −0.609721 −0.304860 0.952397i \(-0.598610\pi\)
−0.304860 + 0.952397i \(0.598610\pi\)
\(168\) 0 0
\(169\) 88.0000 0.520710
\(170\) 56.5685 + 56.5685i 0.332756 + 0.332756i
\(171\) 0 0
\(172\) 128.000i 0.744186i
\(173\) 11.3137 0.0653972 0.0326986 0.999465i \(-0.489590\pi\)
0.0326986 + 0.999465i \(0.489590\pi\)
\(174\) 0 0
\(175\) −125.000 −0.714286
\(176\) 5.65685i 0.0321412i
\(177\) 0 0
\(178\) 208.000i 1.16854i
\(179\) 125.865i 0.703156i −0.936159 0.351578i \(-0.885645\pi\)
0.936159 0.351578i \(-0.114355\pi\)
\(180\) 0 0
\(181\) −127.000 −0.701657 −0.350829 0.936440i \(-0.614100\pi\)
−0.350829 + 0.936440i \(0.614100\pi\)
\(182\) 63.6396 0.349668
\(183\) 0 0
\(184\) −4.00000 −0.0217391
\(185\) −88.3883 + 88.3883i −0.477775 + 0.477775i
\(186\) 0 0
\(187\) 16.0000i 0.0855615i
\(188\) 45.2548 0.240717
\(189\) 0 0
\(190\) 105.000 + 105.000i 0.552632 + 0.552632i
\(191\) 101.823i 0.533107i −0.963820 0.266553i \(-0.914115\pi\)
0.963820 0.266553i \(-0.0858849\pi\)
\(192\) 0 0
\(193\) 271.000i 1.40415i 0.712105 + 0.702073i \(0.247742\pi\)
−0.712105 + 0.702073i \(0.752258\pi\)
\(194\) 57.9828i 0.298880i
\(195\) 0 0
\(196\) 48.0000 0.244898
\(197\) −316.784 −1.60804 −0.804020 0.594602i \(-0.797309\pi\)
−0.804020 + 0.594602i \(0.797309\pi\)
\(198\) 0 0
\(199\) 147.000 0.738693 0.369347 0.929292i \(-0.379581\pi\)
0.369347 + 0.929292i \(0.379581\pi\)
\(200\) 70.7107i 0.353553i
\(201\) 0 0
\(202\) 128.000i 0.633663i
\(203\) −190.919 −0.940487
\(204\) 0 0
\(205\) 185.000 185.000i 0.902439 0.902439i
\(206\) 18.3848i 0.0892465i
\(207\) 0 0
\(208\) 36.0000i 0.173077i
\(209\) 29.6985i 0.142098i
\(210\) 0 0
\(211\) 141.000 0.668246 0.334123 0.942529i \(-0.391560\pi\)
0.334123 + 0.942529i \(0.391560\pi\)
\(212\) 144.250 0.680424
\(213\) 0 0
\(214\) 174.000 0.813084
\(215\) 226.274 226.274i 1.05244 1.05244i
\(216\) 0 0
\(217\) 200.000i 0.921659i
\(218\) −11.3137 −0.0518977
\(219\) 0 0
\(220\) 10.0000 10.0000i 0.0454545 0.0454545i
\(221\) 101.823i 0.460739i
\(222\) 0 0
\(223\) 8.00000i 0.0358744i −0.999839 0.0179372i \(-0.994290\pi\)
0.999839 0.0179372i \(-0.00570990\pi\)
\(224\) 28.2843i 0.126269i
\(225\) 0 0
\(226\) 54.0000 0.238938
\(227\) −69.2965 −0.305271 −0.152635 0.988283i \(-0.548776\pi\)
−0.152635 + 0.988283i \(0.548776\pi\)
\(228\) 0 0
\(229\) −8.00000 −0.0349345 −0.0174672 0.999847i \(-0.505560\pi\)
−0.0174672 + 0.999847i \(0.505560\pi\)
\(230\) 7.07107 + 7.07107i 0.0307438 + 0.0307438i
\(231\) 0 0
\(232\) 108.000i 0.465517i
\(233\) 316.784 1.35959 0.679794 0.733403i \(-0.262069\pi\)
0.679794 + 0.733403i \(0.262069\pi\)
\(234\) 0 0
\(235\) −80.0000 80.0000i −0.340426 0.340426i
\(236\) 181.019i 0.767031i
\(237\) 0 0
\(238\) 80.0000i 0.336134i
\(239\) 205.061i 0.857996i −0.903306 0.428998i \(-0.858867\pi\)
0.903306 0.428998i \(-0.141133\pi\)
\(240\) 0 0
\(241\) 79.0000 0.327801 0.163900 0.986477i \(-0.447592\pi\)
0.163900 + 0.986477i \(0.447592\pi\)
\(242\) −168.291 −0.695419
\(243\) 0 0
\(244\) −194.000 −0.795082
\(245\) −84.8528 84.8528i −0.346338 0.346338i
\(246\) 0 0
\(247\) 189.000i 0.765182i
\(248\) −113.137 −0.456198
\(249\) 0 0
\(250\) −125.000 + 125.000i −0.500000 + 0.500000i
\(251\) 46.6690i 0.185932i −0.995669 0.0929662i \(-0.970365\pi\)
0.995669 0.0929662i \(-0.0296349\pi\)
\(252\) 0 0
\(253\) 2.00000i 0.00790514i
\(254\) 11.3137i 0.0445422i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 169.706 0.660333 0.330167 0.943923i \(-0.392895\pi\)
0.330167 + 0.943923i \(0.392895\pi\)
\(258\) 0 0
\(259\) 125.000 0.482625
\(260\) 63.6396 63.6396i 0.244768 0.244768i
\(261\) 0 0
\(262\) 192.000i 0.732824i
\(263\) −282.843 −1.07545 −0.537724 0.843121i \(-0.680716\pi\)
−0.537724 + 0.843121i \(0.680716\pi\)
\(264\) 0 0
\(265\) −255.000 255.000i −0.962264 0.962264i
\(266\) 148.492i 0.558242i
\(267\) 0 0
\(268\) 262.000i 0.977612i
\(269\) 101.823i 0.378526i −0.981926 0.189263i \(-0.939390\pi\)
0.981926 0.189263i \(-0.0606098\pi\)
\(270\) 0 0
\(271\) −221.000 −0.815498 −0.407749 0.913094i \(-0.633686\pi\)
−0.407749 + 0.913094i \(0.633686\pi\)
\(272\) 45.2548 0.166378
\(273\) 0 0
\(274\) −378.000 −1.37956
\(275\) −35.3553 −0.128565
\(276\) 0 0
\(277\) 88.0000i 0.317690i −0.987304 0.158845i \(-0.949223\pi\)
0.987304 0.158845i \(-0.0507769\pi\)
\(278\) 52.3259 0.188223
\(279\) 0 0
\(280\) −50.0000 + 50.0000i −0.178571 + 0.178571i
\(281\) 203.647i 0.724722i 0.932038 + 0.362361i \(0.118029\pi\)
−0.932038 + 0.362361i \(0.881971\pi\)
\(282\) 0 0
\(283\) 32.0000i 0.113074i 0.998400 + 0.0565371i \(0.0180059\pi\)
−0.998400 + 0.0565371i \(0.981994\pi\)
\(284\) 178.191i 0.627433i
\(285\) 0 0
\(286\) 18.0000 0.0629371
\(287\) −261.630 −0.911601
\(288\) 0 0
\(289\) −161.000 −0.557093
\(290\) −190.919 + 190.919i −0.658341 + 0.658341i
\(291\) 0 0
\(292\) 34.0000i 0.116438i
\(293\) −173.948 −0.593680 −0.296840 0.954927i \(-0.595933\pi\)
−0.296840 + 0.954927i \(0.595933\pi\)
\(294\) 0 0
\(295\) 320.000 320.000i 1.08475 1.08475i
\(296\) 70.7107i 0.238887i
\(297\) 0 0
\(298\) 368.000i 1.23490i
\(299\) 12.7279i 0.0425683i
\(300\) 0 0
\(301\) −320.000 −1.06312
\(302\) −154.149 −0.510428
\(303\) 0 0
\(304\) 84.0000 0.276316
\(305\) 342.947 + 342.947i 1.12442 + 1.12442i
\(306\) 0 0
\(307\) 486.000i 1.58306i −0.611129 0.791531i \(-0.709284\pi\)
0.611129 0.791531i \(-0.290716\pi\)
\(308\) −14.1421 −0.0459160
\(309\) 0 0
\(310\) 200.000 + 200.000i 0.645161 + 0.645161i
\(311\) 67.8823i 0.218271i 0.994027 + 0.109135i \(0.0348082\pi\)
−0.994027 + 0.109135i \(0.965192\pi\)
\(312\) 0 0
\(313\) 281.000i 0.897764i −0.893591 0.448882i \(-0.851822\pi\)
0.893591 0.448882i \(-0.148178\pi\)
\(314\) 166.877i 0.531456i
\(315\) 0 0
\(316\) −234.000 −0.740506
\(317\) 520.431 1.64174 0.820868 0.571117i \(-0.193490\pi\)
0.820868 + 0.571117i \(0.193490\pi\)
\(318\) 0 0
\(319\) −54.0000 −0.169279
\(320\) −28.2843 28.2843i −0.0883883 0.0883883i
\(321\) 0 0
\(322\) 10.0000i 0.0310559i
\(323\) 237.588 0.735566
\(324\) 0 0
\(325\) −225.000 −0.692308
\(326\) 287.085i 0.880630i
\(327\) 0 0
\(328\) 148.000i 0.451220i
\(329\) 113.137i 0.343882i
\(330\) 0 0
\(331\) −59.0000 −0.178248 −0.0891239 0.996021i \(-0.528407\pi\)
−0.0891239 + 0.996021i \(0.528407\pi\)
\(332\) −115.966 −0.349294
\(333\) 0 0
\(334\) 144.000 0.431138
\(335\) −463.155 + 463.155i −1.38255 + 1.38255i
\(336\) 0 0
\(337\) 55.0000i 0.163205i −0.996665 0.0816024i \(-0.973996\pi\)
0.996665 0.0816024i \(-0.0260038\pi\)
\(338\) −124.451 −0.368198
\(339\) 0 0
\(340\) −80.0000 80.0000i −0.235294 0.235294i
\(341\) 56.5685i 0.165890i
\(342\) 0 0
\(343\) 365.000i 1.06414i
\(344\) 181.019i 0.526219i
\(345\) 0 0
\(346\) −16.0000 −0.0462428
\(347\) 598.212 1.72395 0.861977 0.506947i \(-0.169226\pi\)
0.861977 + 0.506947i \(0.169226\pi\)
\(348\) 0 0
\(349\) −439.000 −1.25788 −0.628940 0.777454i \(-0.716511\pi\)
−0.628940 + 0.777454i \(0.716511\pi\)
\(350\) 176.777 0.505076
\(351\) 0 0
\(352\) 8.00000i 0.0227273i
\(353\) 520.431 1.47431 0.737154 0.675725i \(-0.236169\pi\)
0.737154 + 0.675725i \(0.236169\pi\)
\(354\) 0 0
\(355\) −315.000 + 315.000i −0.887324 + 0.887324i
\(356\) 294.156i 0.826282i
\(357\) 0 0
\(358\) 178.000i 0.497207i
\(359\) 55.1543i 0.153633i −0.997045 0.0768166i \(-0.975524\pi\)
0.997045 0.0768166i \(-0.0244756\pi\)
\(360\) 0 0
\(361\) 80.0000 0.221607
\(362\) 179.605 0.496147
\(363\) 0 0
\(364\) −90.0000 −0.247253
\(365\) −60.1041 + 60.1041i −0.164669 + 0.164669i
\(366\) 0 0
\(367\) 589.000i 1.60490i −0.596716 0.802452i \(-0.703528\pi\)
0.596716 0.802452i \(-0.296472\pi\)
\(368\) 5.65685 0.0153719
\(369\) 0 0
\(370\) 125.000 125.000i 0.337838 0.337838i
\(371\) 360.624i 0.972034i
\(372\) 0 0
\(373\) 9.00000i 0.0241287i 0.999927 + 0.0120643i \(0.00384029\pi\)
−0.999927 + 0.0120643i \(0.996160\pi\)
\(374\) 22.6274i 0.0605011i
\(375\) 0 0
\(376\) −64.0000 −0.170213
\(377\) −343.654 −0.911549
\(378\) 0 0
\(379\) 157.000 0.414248 0.207124 0.978315i \(-0.433590\pi\)
0.207124 + 0.978315i \(0.433590\pi\)
\(380\) −148.492 148.492i −0.390770 0.390770i
\(381\) 0 0
\(382\) 144.000i 0.376963i
\(383\) 282.843 0.738493 0.369246 0.929332i \(-0.379616\pi\)
0.369246 + 0.929332i \(0.379616\pi\)
\(384\) 0 0
\(385\) 25.0000 + 25.0000i 0.0649351 + 0.0649351i
\(386\) 383.252i 0.992881i
\(387\) 0 0
\(388\) 82.0000i 0.211340i
\(389\) 599.627i 1.54146i −0.637164 0.770728i \(-0.719893\pi\)
0.637164 0.770728i \(-0.280107\pi\)
\(390\) 0 0
\(391\) 16.0000 0.0409207
\(392\) −67.8823 −0.173169
\(393\) 0 0
\(394\) 448.000 1.13706
\(395\) 413.657 + 413.657i 1.04723 + 1.04723i
\(396\) 0 0
\(397\) 296.000i 0.745592i 0.927913 + 0.372796i \(0.121601\pi\)
−0.927913 + 0.372796i \(0.878399\pi\)
\(398\) −207.889 −0.522335
\(399\) 0 0
\(400\) 100.000i 0.250000i
\(401\) 388.909i 0.969847i 0.874557 + 0.484924i \(0.161153\pi\)
−0.874557 + 0.484924i \(0.838847\pi\)
\(402\) 0 0
\(403\) 360.000i 0.893300i
\(404\) 181.019i 0.448068i
\(405\) 0 0
\(406\) 270.000 0.665025
\(407\) 35.3553 0.0868682
\(408\) 0 0
\(409\) 145.000 0.354523 0.177262 0.984164i \(-0.443276\pi\)
0.177262 + 0.984164i \(0.443276\pi\)
\(410\) −261.630 + 261.630i −0.638121 + 0.638121i
\(411\) 0 0
\(412\) 26.0000i 0.0631068i
\(413\) −452.548 −1.09576
\(414\) 0 0
\(415\) 205.000 + 205.000i 0.493976 + 0.493976i
\(416\) 50.9117i 0.122384i
\(417\) 0 0
\(418\) 42.0000i 0.100478i
\(419\) 701.450i 1.67410i −0.547123 0.837052i \(-0.684277\pi\)
0.547123 0.837052i \(-0.315723\pi\)
\(420\) 0 0
\(421\) 505.000 1.19952 0.599762 0.800178i \(-0.295262\pi\)
0.599762 + 0.800178i \(0.295262\pi\)
\(422\) −199.404 −0.472522
\(423\) 0 0
\(424\) −204.000 −0.481132
\(425\) 282.843i 0.665512i
\(426\) 0 0
\(427\) 485.000i 1.13583i
\(428\) −246.073 −0.574937
\(429\) 0 0
\(430\) −320.000 + 320.000i −0.744186 + 0.744186i
\(431\) 43.8406i 0.101718i 0.998706 + 0.0508592i \(0.0161960\pi\)
−0.998706 + 0.0508592i \(0.983804\pi\)
\(432\) 0 0
\(433\) 32.0000i 0.0739030i −0.999317 0.0369515i \(-0.988235\pi\)
0.999317 0.0369515i \(-0.0117647\pi\)
\(434\) 282.843i 0.651711i
\(435\) 0 0
\(436\) 16.0000 0.0366972
\(437\) 29.6985 0.0679599
\(438\) 0 0
\(439\) −504.000 −1.14806 −0.574032 0.818833i \(-0.694621\pi\)
−0.574032 + 0.818833i \(0.694621\pi\)
\(440\) −14.1421 + 14.1421i −0.0321412 + 0.0321412i
\(441\) 0 0
\(442\) 144.000i 0.325792i
\(443\) −237.588 −0.536316 −0.268158 0.963375i \(-0.586415\pi\)
−0.268158 + 0.963375i \(0.586415\pi\)
\(444\) 0 0
\(445\) 520.000 520.000i 1.16854 1.16854i
\(446\) 11.3137i 0.0253671i
\(447\) 0 0
\(448\) 40.0000i 0.0892857i
\(449\) 67.8823i 0.151185i −0.997139 0.0755927i \(-0.975915\pi\)
0.997139 0.0755927i \(-0.0240849\pi\)
\(450\) 0 0
\(451\) −74.0000 −0.164080
\(452\) −76.3675 −0.168955
\(453\) 0 0
\(454\) 98.0000 0.215859
\(455\) 159.099 + 159.099i 0.349668 + 0.349668i
\(456\) 0 0
\(457\) 752.000i 1.64551i 0.568393 + 0.822757i \(0.307565\pi\)
−0.568393 + 0.822757i \(0.692435\pi\)
\(458\) 11.3137 0.0247024
\(459\) 0 0
\(460\) −10.0000 10.0000i −0.0217391 0.0217391i
\(461\) 610.940i 1.32525i −0.748951 0.662625i \(-0.769442\pi\)
0.748951 0.662625i \(-0.230558\pi\)
\(462\) 0 0
\(463\) 597.000i 1.28942i 0.764429 + 0.644708i \(0.223021\pi\)
−0.764429 + 0.644708i \(0.776979\pi\)
\(464\) 152.735i 0.329170i
\(465\) 0 0
\(466\) −448.000 −0.961373
\(467\) −848.528 −1.81698 −0.908488 0.417910i \(-0.862763\pi\)
−0.908488 + 0.417910i \(0.862763\pi\)
\(468\) 0 0
\(469\) 655.000 1.39659
\(470\) 113.137 + 113.137i 0.240717 + 0.240717i
\(471\) 0 0
\(472\) 256.000i 0.542373i
\(473\) −90.5097 −0.191352
\(474\) 0 0
\(475\) 525.000i 1.10526i
\(476\) 113.137i 0.237683i
\(477\) 0 0
\(478\) 290.000i 0.606695i
\(479\) 168.291i 0.351339i 0.984449 + 0.175670i \(0.0562090\pi\)
−0.984449 + 0.175670i \(0.943791\pi\)
\(480\) 0 0
\(481\) 225.000 0.467775
\(482\) −111.723 −0.231790
\(483\) 0 0
\(484\) 238.000 0.491736
\(485\) −144.957 + 144.957i −0.298880 + 0.298880i
\(486\) 0 0
\(487\) 507.000i 1.04107i −0.853841 0.520534i \(-0.825733\pi\)
0.853841 0.520534i \(-0.174267\pi\)
\(488\) 274.357 0.562208
\(489\) 0 0
\(490\) 120.000 + 120.000i 0.244898 + 0.244898i
\(491\) 428.507i 0.872722i −0.899772 0.436361i \(-0.856267\pi\)
0.899772 0.436361i \(-0.143733\pi\)
\(492\) 0 0
\(493\) 432.000i 0.876268i
\(494\) 267.286i 0.541066i
\(495\) 0 0
\(496\) 160.000 0.322581
\(497\) 445.477 0.896333
\(498\) 0 0
\(499\) 870.000 1.74349 0.871743 0.489963i \(-0.162990\pi\)
0.871743 + 0.489963i \(0.162990\pi\)
\(500\) 176.777 176.777i 0.353553 0.353553i
\(501\) 0 0
\(502\) 66.0000i 0.131474i
\(503\) 462.448 0.919379 0.459690 0.888080i \(-0.347961\pi\)
0.459690 + 0.888080i \(0.347961\pi\)
\(504\) 0 0
\(505\) −320.000 + 320.000i −0.633663 + 0.633663i
\(506\) 2.82843i 0.00558978i
\(507\) 0 0
\(508\) 16.0000i 0.0314961i
\(509\) 818.830i 1.60870i −0.594154 0.804351i \(-0.702513\pi\)
0.594154 0.804351i \(-0.297487\pi\)
\(510\) 0 0
\(511\) 85.0000 0.166341
\(512\) −22.6274 −0.0441942
\(513\) 0 0
\(514\) −240.000 −0.466926
\(515\) −45.9619 + 45.9619i −0.0892465 + 0.0892465i
\(516\) 0 0
\(517\) 32.0000i 0.0618956i
\(518\) −176.777 −0.341268
\(519\) 0 0
\(520\) −90.0000 + 90.0000i −0.173077 + 0.173077i
\(521\) 864.084i 1.65851i 0.558869 + 0.829256i \(0.311235\pi\)
−0.558869 + 0.829256i \(0.688765\pi\)
\(522\) 0 0
\(523\) 163.000i 0.311663i −0.987784 0.155832i \(-0.950194\pi\)
0.987784 0.155832i \(-0.0498058\pi\)
\(524\) 271.529i 0.518185i
\(525\) 0 0
\(526\) 400.000 0.760456
\(527\) 452.548 0.858726
\(528\) 0 0
\(529\) −527.000 −0.996219
\(530\) 360.624 + 360.624i 0.680424 + 0.680424i
\(531\) 0 0
\(532\) 210.000i 0.394737i
\(533\) −470.933 −0.883552
\(534\) 0 0
\(535\) 435.000 + 435.000i 0.813084 + 0.813084i
\(536\) 370.524i 0.691276i
\(537\) 0 0
\(538\) 144.000i 0.267658i
\(539\) 33.9411i 0.0629705i
\(540\) 0 0
\(541\) 697.000 1.28835 0.644177 0.764876i \(-0.277200\pi\)
0.644177 + 0.764876i \(0.277200\pi\)
\(542\) 312.541 0.576644
\(543\) 0 0
\(544\) −64.0000 −0.117647
\(545\) −28.2843 28.2843i −0.0518977 0.0518977i
\(546\) 0 0
\(547\) 389.000i 0.711152i 0.934647 + 0.355576i \(0.115715\pi\)
−0.934647 + 0.355576i \(0.884285\pi\)
\(548\) 534.573 0.975498
\(549\) 0 0
\(550\) 50.0000 0.0909091
\(551\) 801.859i 1.45528i
\(552\) 0 0
\(553\) 585.000i 1.05787i
\(554\) 124.451i 0.224640i
\(555\) 0 0
\(556\) −74.0000 −0.133094
\(557\) −1086.12 −1.94994 −0.974969 0.222339i \(-0.928631\pi\)
−0.974969 + 0.222339i \(0.928631\pi\)
\(558\) 0 0
\(559\) −576.000 −1.03041
\(560\) 70.7107 70.7107i 0.126269 0.126269i
\(561\) 0 0
\(562\) 288.000i 0.512456i
\(563\) 622.254 1.10525 0.552623 0.833431i \(-0.313627\pi\)
0.552623 + 0.833431i \(0.313627\pi\)
\(564\) 0 0
\(565\) 135.000 + 135.000i 0.238938 + 0.238938i
\(566\) 45.2548i 0.0799555i
\(567\) 0 0
\(568\) 252.000i 0.443662i
\(569\) 463.862i 0.815223i −0.913155 0.407612i \(-0.866362\pi\)
0.913155 0.407612i \(-0.133638\pi\)
\(570\) 0 0
\(571\) −923.000 −1.61646 −0.808231 0.588865i \(-0.799575\pi\)
−0.808231 + 0.588865i \(0.799575\pi\)
\(572\) −25.4558 −0.0445032
\(573\) 0 0
\(574\) 370.000 0.644599
\(575\) 35.3553i 0.0614875i
\(576\) 0 0
\(577\) 247.000i 0.428076i −0.976825 0.214038i \(-0.931338\pi\)
0.976825 0.214038i \(-0.0686617\pi\)
\(578\) 227.688 0.393925
\(579\) 0 0
\(580\) 270.000 270.000i 0.465517 0.465517i
\(581\) 289.914i 0.498991i
\(582\) 0 0
\(583\) 102.000i 0.174957i
\(584\) 48.0833i 0.0823344i
\(585\) 0 0
\(586\) 246.000 0.419795
\(587\) 453.963 0.773360 0.386680 0.922214i \(-0.373622\pi\)
0.386680 + 0.922214i \(0.373622\pi\)
\(588\) 0 0
\(589\) 840.000 1.42615
\(590\) −452.548 + 452.548i −0.767031 + 0.767031i
\(591\) 0 0
\(592\) 100.000i 0.168919i
\(593\) 4.24264 0.00715454 0.00357727 0.999994i \(-0.498861\pi\)
0.00357727 + 0.999994i \(0.498861\pi\)
\(594\) 0 0
\(595\) 200.000 200.000i 0.336134 0.336134i
\(596\) 520.431i 0.873206i
\(597\) 0 0
\(598\) 18.0000i 0.0301003i
\(599\) 224.860i 0.375392i −0.982227 0.187696i \(-0.939898\pi\)
0.982227 0.187696i \(-0.0601020\pi\)
\(600\) 0 0
\(601\) −736.000 −1.22463 −0.612313 0.790616i \(-0.709761\pi\)
−0.612313 + 0.790616i \(0.709761\pi\)
\(602\) 452.548 0.751741
\(603\) 0 0
\(604\) 218.000 0.360927
\(605\) −420.729 420.729i −0.695419 0.695419i
\(606\) 0 0
\(607\) 437.000i 0.719934i −0.932965 0.359967i \(-0.882788\pi\)
0.932965 0.359967i \(-0.117212\pi\)
\(608\) −118.794 −0.195385
\(609\) 0 0
\(610\) −485.000 485.000i −0.795082 0.795082i
\(611\) 203.647i 0.333301i
\(612\) 0 0
\(613\) 335.000i 0.546493i −0.961944 0.273246i \(-0.911903\pi\)
0.961944 0.273246i \(-0.0880974\pi\)
\(614\) 687.308i 1.11939i
\(615\) 0 0
\(616\) 20.0000 0.0324675
\(617\) −255.973 −0.414867 −0.207433 0.978249i \(-0.566511\pi\)
−0.207433 + 0.978249i \(0.566511\pi\)
\(618\) 0 0
\(619\) −965.000 −1.55897 −0.779483 0.626423i \(-0.784518\pi\)
−0.779483 + 0.626423i \(0.784518\pi\)
\(620\) −282.843 282.843i −0.456198 0.456198i
\(621\) 0 0
\(622\) 96.0000i 0.154341i
\(623\) −735.391 −1.18040
\(624\) 0 0
\(625\) −625.000 −1.00000
\(626\) 397.394i 0.634815i
\(627\) 0 0
\(628\) 236.000i 0.375796i
\(629\) 282.843i 0.449670i
\(630\) 0 0
\(631\) 275.000 0.435816 0.217908 0.975969i \(-0.430077\pi\)
0.217908 + 0.975969i \(0.430077\pi\)
\(632\) 330.926 0.523617
\(633\) 0 0
\(634\) −736.000 −1.16088
\(635\) 28.2843 28.2843i 0.0445422 0.0445422i
\(636\) 0 0
\(637\) 216.000i 0.339089i
\(638\) 76.3675 0.119698
\(639\) 0 0
\(640\) 40.0000 + 40.0000i 0.0625000 + 0.0625000i
\(641\) 486.489i 0.758954i −0.925201 0.379477i \(-0.876104\pi\)
0.925201 0.379477i \(-0.123896\pi\)
\(642\) 0 0
\(643\) 1152.00i 1.79160i −0.444455 0.895801i \(-0.646603\pi\)
0.444455 0.895801i \(-0.353397\pi\)
\(644\) 14.1421i 0.0219598i
\(645\) 0 0
\(646\) −336.000 −0.520124
\(647\) 691.550 1.06886 0.534428 0.845214i \(-0.320527\pi\)
0.534428 + 0.845214i \(0.320527\pi\)
\(648\) 0 0
\(649\) −128.000 −0.197227
\(650\) 318.198 0.489535
\(651\) 0 0
\(652\) 406.000i 0.622699i
\(653\) −350.725 −0.537098 −0.268549 0.963266i \(-0.586544\pi\)
−0.268549 + 0.963266i \(0.586544\pi\)
\(654\) 0 0
\(655\) −480.000 + 480.000i −0.732824 + 0.732824i
\(656\) 209.304i 0.319060i
\(657\) 0 0
\(658\) 160.000i 0.243161i
\(659\) 497.803i 0.755392i 0.925930 + 0.377696i \(0.123284\pi\)
−0.925930 + 0.377696i \(0.876716\pi\)
\(660\) 0 0
\(661\) −577.000 −0.872920 −0.436460 0.899724i \(-0.643768\pi\)
−0.436460 + 0.899724i \(0.643768\pi\)
\(662\) 83.4386 0.126040
\(663\) 0 0
\(664\) 164.000 0.246988
\(665\) 371.231 371.231i 0.558242 0.558242i
\(666\) 0 0
\(667\) 54.0000i 0.0809595i
\(668\) −203.647 −0.304860
\(669\) 0 0
\(670\) 655.000 655.000i 0.977612 0.977612i
\(671\) 137.179i 0.204439i
\(672\) 0 0
\(673\) 489.000i 0.726597i −0.931673 0.363299i \(-0.881650\pi\)
0.931673 0.363299i \(-0.118350\pi\)
\(674\) 77.7817i 0.115403i
\(675\) 0 0
\(676\) 176.000 0.260355
\(677\) −599.627 −0.885711 −0.442856 0.896593i \(-0.646035\pi\)
−0.442856 + 0.896593i \(0.646035\pi\)
\(678\) 0 0
\(679\) 205.000 0.301915
\(680\) 113.137 + 113.137i 0.166378 + 0.166378i
\(681\) 0 0
\(682\) 80.0000i 0.117302i
\(683\) −236.174 −0.345789 −0.172894 0.984940i \(-0.555312\pi\)
−0.172894 + 0.984940i \(0.555312\pi\)
\(684\) 0 0
\(685\) −945.000 945.000i −1.37956 1.37956i
\(686\) 516.188i 0.752461i
\(687\) 0 0
\(688\) 256.000i 0.372093i
\(689\) 649.124i 0.942125i
\(690\) 0 0
\(691\) 640.000 0.926194 0.463097 0.886308i \(-0.346738\pi\)
0.463097 + 0.886308i \(0.346738\pi\)
\(692\) 22.6274 0.0326986
\(693\) 0 0
\(694\) −846.000 −1.21902
\(695\) 130.815 + 130.815i 0.188223 + 0.188223i
\(696\) 0 0
\(697\) 592.000i 0.849354i
\(698\) 620.840 0.889455
\(699\) 0 0
\(700\) −250.000 −0.357143
\(701\) 1093.19i 1.55947i −0.626111 0.779734i \(-0.715354\pi\)
0.626111 0.779734i \(-0.284646\pi\)
\(702\) 0 0
\(703\) 525.000i 0.746799i
\(704\) 11.3137i 0.0160706i
\(705\) 0 0
\(706\) −736.000 −1.04249
\(707\) 452.548 0.640097
\(708\) 0 0
\(709\) −489.000 −0.689704 −0.344852 0.938657i \(-0.612071\pi\)
−0.344852 + 0.938657i \(0.612071\pi\)
\(710\) 445.477 445.477i 0.627433 0.627433i
\(711\) 0 0
\(712\) 416.000i 0.584270i
\(713\) 56.5685 0.0793388
\(714\) 0 0
\(715\) 45.0000 + 45.0000i 0.0629371 + 0.0629371i
\(716\) 251.730i 0.351578i
\(717\) 0 0
\(718\) 78.0000i 0.108635i
\(719\) 620.840i 0.863477i −0.901999 0.431738i \(-0.857900\pi\)
0.901999 0.431738i \(-0.142100\pi\)
\(720\) 0 0
\(721\) 65.0000 0.0901526
\(722\) −113.137 −0.156700
\(723\) 0 0
\(724\) −254.000 −0.350829
\(725\) −954.594 −1.31668
\(726\) 0 0
\(727\) 1080.00i 1.48556i −0.669537 0.742779i \(-0.733508\pi\)
0.669537 0.742779i \(-0.266492\pi\)
\(728\) 127.279 0.174834
\(729\) 0 0
\(730\) 85.0000 85.0000i 0.116438 0.116438i
\(731\) 724.077i 0.990530i
\(732\) 0 0
\(733\) 248.000i 0.338336i 0.985587 + 0.169168i \(0.0541080\pi\)
−0.985587 + 0.169168i \(0.945892\pi\)
\(734\) 832.972i 1.13484i
\(735\) 0 0
\(736\) −8.00000 −0.0108696
\(737\) 185.262 0.251373
\(738\) 0 0
\(739\) 848.000 1.14750 0.573748 0.819032i \(-0.305489\pi\)
0.573748 + 0.819032i \(0.305489\pi\)
\(740\) −176.777 + 176.777i −0.238887 + 0.238887i
\(741\) 0 0
\(742\) 510.000i 0.687332i
\(743\) −33.9411 −0.0456812 −0.0228406 0.999739i \(-0.507271\pi\)
−0.0228406 + 0.999739i \(0.507271\pi\)
\(744\) 0 0
\(745\) 920.000 920.000i 1.23490 1.23490i
\(746\) 12.7279i 0.0170616i
\(747\) 0 0
\(748\) 32.0000i 0.0427807i
\(749\) 615.183i 0.821339i
\(750\) 0 0
\(751\) −133.000 −0.177097 −0.0885486 0.996072i \(-0.528223\pi\)
−0.0885486 + 0.996072i \(0.528223\pi\)
\(752\) 90.5097 0.120359
\(753\) 0 0
\(754\) 486.000 0.644562
\(755\) −385.373 385.373i −0.510428 0.510428i
\(756\) 0 0
\(757\) 1271.00i 1.67900i 0.543363 + 0.839498i \(0.317151\pi\)
−0.543363 + 0.839498i \(0.682849\pi\)
\(758\) −222.032 −0.292918
\(759\) 0 0
\(760\) 210.000 + 210.000i 0.276316 + 0.276316i
\(761\) 538.815i 0.708036i −0.935239 0.354018i \(-0.884815\pi\)
0.935239 0.354018i \(-0.115185\pi\)
\(762\) 0 0
\(763\) 40.0000i 0.0524246i
\(764\) 203.647i 0.266553i
\(765\) 0 0
\(766\) −400.000 −0.522193
\(767\) −814.587 −1.06204
\(768\) 0 0
\(769\) −81.0000 −0.105332 −0.0526658 0.998612i \(-0.516772\pi\)
−0.0526658 + 0.998612i \(0.516772\pi\)
\(770\) −35.3553 35.3553i −0.0459160 0.0459160i
\(771\) 0 0
\(772\) 542.000i 0.702073i
\(773\) −445.477 −0.576297 −0.288148 0.957586i \(-0.593040\pi\)
−0.288148 + 0.957586i \(0.593040\pi\)
\(774\) 0 0
\(775\) 1000.00i 1.29032i
\(776\) 115.966i 0.149440i
\(777\) 0 0
\(778\) 848.000i 1.08997i
\(779\) 1098.84i 1.41058i
\(780\) 0 0
\(781\) 126.000 0.161332
\(782\) −22.6274 −0.0289353
\(783\) 0 0
\(784\) 96.0000 0.122449
\(785\) 417.193 417.193i 0.531456 0.531456i
\(786\) 0 0
\(787\) 395.000i 0.501906i 0.967999 + 0.250953i \(0.0807440\pi\)
−0.967999 + 0.250953i \(0.919256\pi\)
\(788\) −633.568 −0.804020
\(789\) 0 0
\(790\) −585.000 585.000i −0.740506 0.740506i
\(791\) 190.919i 0.241364i
\(792\) 0 0
\(793\) 873.000i 1.10088i
\(794\) 418.607i 0.527213i
\(795\) 0 0
\(796\) 294.000 0.369347
\(797\) −1074.80 −1.34856 −0.674280 0.738476i \(-0.735546\pi\)
−0.674280 + 0.738476i \(0.735546\pi\)
\(798\) 0 0
\(799\) 256.000 0.320401
\(800\) 141.421i 0.176777i
\(801\) 0 0
\(802\) 550.000i 0.685786i
\(803\) 24.0416 0.0299398
\(804\) 0 0
\(805\) 25.0000 25.0000i 0.0310559 0.0310559i
\(806\) 509.117i 0.631659i
\(807\) 0 0
\(808\) 256.000i 0.316832i
\(809\) 1255.82i 1.55231i 0.630540 + 0.776157i \(0.282833\pi\)
−0.630540 + 0.776157i \(0.717167\pi\)
\(810\) 0 0
\(811\) −752.000 −0.927250 −0.463625 0.886031i \(-0.653452\pi\)
−0.463625 + 0.886031i \(0.653452\pi\)
\(812\) −381.838 −0.470243
\(813\) 0 0
\(814\) −50.0000 −0.0614251
\(815\) 717.713 717.713i 0.880630 0.880630i
\(816\) 0 0
\(817\) 1344.00i 1.64504i
\(818\) −205.061 −0.250686
\(819\) 0 0
\(820\) 370.000 370.000i 0.451220 0.451220i
\(821\) 497.803i 0.606338i −0.952937 0.303169i \(-0.901955\pi\)
0.952937 0.303169i \(-0.0980446\pi\)
\(822\) 0 0
\(823\) 531.000i 0.645200i −0.946535 0.322600i \(-0.895443\pi\)
0.946535 0.322600i \(-0.104557\pi\)
\(824\) 36.7696i 0.0446232i
\(825\) 0 0
\(826\) 640.000 0.774818
\(827\) 350.725 0.424093 0.212047 0.977260i \(-0.431987\pi\)
0.212047 + 0.977260i \(0.431987\pi\)
\(828\) 0 0
\(829\) −705.000 −0.850422 −0.425211 0.905094i \(-0.639800\pi\)
−0.425211 + 0.905094i \(0.639800\pi\)
\(830\) −289.914 289.914i −0.349294 0.349294i
\(831\) 0 0
\(832\) 72.0000i 0.0865385i
\(833\) 271.529 0.325965
\(834\) 0 0
\(835\) 360.000 + 360.000i 0.431138 + 0.431138i
\(836\) 59.3970i 0.0710490i
\(837\) 0 0
\(838\) 992.000i 1.18377i
\(839\) 1617.86i 1.92832i 0.265322 + 0.964160i \(0.414522\pi\)
−0.265322 + 0.964160i \(0.585478\pi\)
\(840\) 0 0
\(841\) −617.000 −0.733650
\(842\) −714.178 −0.848192
\(843\) 0 0
\(844\) 282.000 0.334123
\(845\) −311.127 311.127i −0.368198 0.368198i
\(846\) 0 0
\(847\) 595.000i 0.702479i
\(848\) 288.500 0.340212
\(849\) 0 0
\(850\) 400.000i 0.470588i
\(851\) 35.3553i 0.0415456i
\(852\) 0 0
\(853\) 1639.00i 1.92145i −0.277496 0.960727i \(-0.589504\pi\)
0.277496 0.960727i \(-0.410496\pi\)
\(854\) 685.894i 0.803154i
\(855\) 0 0
\(856\) 348.000 0.406542
\(857\) 988.535 1.15348 0.576742 0.816927i \(-0.304324\pi\)
0.576742 + 0.816927i \(0.304324\pi\)
\(858\) 0 0
\(859\) 355.000 0.413271 0.206636 0.978418i \(-0.433749\pi\)
0.206636 + 0.978418i \(0.433749\pi\)
\(860\) 452.548 452.548i 0.526219 0.526219i
\(861\) 0 0
\(862\) 62.0000i 0.0719258i
\(863\) 1459.47 1.69116 0.845578 0.533851i \(-0.179256\pi\)
0.845578 + 0.533851i \(0.179256\pi\)
\(864\) 0 0
\(865\) −40.0000 40.0000i −0.0462428 0.0462428i
\(866\) 45.2548i 0.0522573i
\(867\) 0 0
\(868\) 400.000i 0.460829i
\(869\) 165.463i 0.190406i
\(870\) 0 0
\(871\) 1179.00 1.35362
\(872\) −22.6274 −0.0259489
\(873\) 0 0
\(874\) −42.0000 −0.0480549
\(875\) 441.942 + 441.942i 0.505076 + 0.505076i
\(876\) 0 0
\(877\) 1129.00i 1.28734i 0.765302 + 0.643672i \(0.222590\pi\)
−0.765302 + 0.643672i \(0.777410\pi\)
\(878\) 712.764 0.811804
\(879\) 0 0
\(880\) 20.0000 20.0000i 0.0227273 0.0227273i
\(881\) 165.463i 0.187813i −0.995581 0.0939063i \(-0.970065\pi\)
0.995581 0.0939063i \(-0.0299354\pi\)
\(882\) 0 0
\(883\) 1227.00i 1.38958i 0.719212 + 0.694790i \(0.244503\pi\)
−0.719212 + 0.694790i \(0.755497\pi\)
\(884\) 203.647i 0.230370i
\(885\) 0 0
\(886\) 336.000 0.379233
\(887\) −237.588 −0.267856 −0.133928 0.990991i \(-0.542759\pi\)
−0.133928 + 0.990991i \(0.542759\pi\)
\(888\) 0 0
\(889\) −40.0000 −0.0449944
\(890\) −735.391 + 735.391i −0.826282 + 0.826282i
\(891\) 0 0
\(892\) 16.0000i 0.0179372i
\(893\) 475.176 0.532112
\(894\) 0 0
\(895\) −445.000 + 445.000i −0.497207 + 0.497207i
\(896\) 56.5685i 0.0631345i
\(897\) 0 0
\(898\) 96.0000i 0.106904i
\(899\) 1527.35i 1.69894i
\(900\) 0 0
\(901\) 816.000 0.905660
\(902\) 104.652 0.116022
\(903\) 0 0
\(904\) 108.000 0.119469
\(905\) 449.013 + 449.013i 0.496147 + 0.496147i
\(906\) 0 0
\(907\) 1005.00i 1.10805i −0.832501 0.554024i \(-0.813091\pi\)
0.832501 0.554024i \(-0.186909\pi\)
\(908\) −138.593 −0.152635
\(909\) 0 0
\(910\) −225.000 225.000i −0.247253 0.247253i
\(911\) 780.646i 0.856911i −0.903563 0.428455i \(-0.859058\pi\)
0.903563 0.428455i \(-0.140942\pi\)
\(912\) 0 0
\(913\) 82.0000i 0.0898138i
\(914\) 1063.49i 1.16355i
\(915\) 0 0
\(916\) −16.0000 −0.0174672
\(917\) 678.823 0.740264
\(918\) 0 0
\(919\) 600.000 0.652884 0.326442 0.945217i \(-0.394150\pi\)
0.326442 + 0.945217i \(0.394150\pi\)
\(920\) 14.1421 + 14.1421i 0.0153719 + 0.0153719i
\(921\) 0 0
\(922\) 864.000i 0.937093i
\(923\) 801.859 0.868753
\(924\) 0 0
\(925\) 625.000 0.675676
\(926\) 844.285i 0.911755i
\(927\) 0 0
\(928\) 216.000i 0.232759i
\(929\) 1260.06i 1.35637i 0.734893 + 0.678183i \(0.237232\pi\)
−0.734893 + 0.678183i \(0.762768\pi\)
\(930\) 0 0
\(931\) 504.000 0.541353
\(932\) 633.568 0.679794
\(933\) 0 0
\(934\) 1200.00 1.28480
\(935\) 56.5685 56.5685i 0.0605011 0.0605011i
\(936\) 0 0
\(937\) 1465.00i 1.56350i 0.623592 + 0.781750i \(0.285673\pi\)
−0.623592 + 0.781750i \(0.714327\pi\)
\(938\) −926.310 −0.987537
\(939\) 0 0
\(940\) −160.000 160.000i −0.170213 0.170213i
\(941\) 255.973i 0.272022i 0.990707 + 0.136011i \(0.0434282\pi\)
−0.990707 + 0.136011i \(0.956572\pi\)
\(942\) 0 0
\(943\) 74.0000i 0.0784730i
\(944\) 362.039i 0.383516i
\(945\) 0 0
\(946\) 128.000 0.135307
\(947\) −407.294 −0.430088 −0.215044 0.976604i \(-0.568990\pi\)
−0.215044 + 0.976604i \(0.568990\pi\)
\(948\) 0 0
\(949\) 153.000 0.161222
\(950\) 742.462i 0.781539i
\(951\) 0 0
\(952\) 160.000i 0.168067i
\(953\) −497.803 −0.522354 −0.261177 0.965291i \(-0.584111\pi\)
−0.261177 + 0.965291i \(0.584111\pi\)
\(954\) 0 0
\(955\) −360.000 + 360.000i −0.376963 + 0.376963i
\(956\) 410.122i 0.428998i
\(957\) 0 0
\(958\) 238.000i 0.248434i
\(959\) 1336.43i 1.39357i
\(960\) 0 0
\(961\) 639.000 0.664932
\(962\) −318.198 −0.330767
\(963\) 0 0
\(964\) 158.000 0.163900
\(965\) 958.130 958.130i 0.992881 0.992881i
\(966\) 0 0
\(967\) 491.000i 0.507756i −0.967236 0.253878i \(-0.918294\pi\)
0.967236 0.253878i \(-0.0817062\pi\)
\(968\) −336.583 −0.347710
\(969\) 0 0
\(970\) 205.000 205.000i 0.211340 0.211340i
\(971\) 509.117i 0.524322i 0.965024 + 0.262161i \(0.0844352\pi\)
−0.965024 + 0.262161i \(0.915565\pi\)
\(972\) 0 0
\(973\) 185.000i 0.190134i
\(974\) 717.006i 0.736146i
\(975\) 0 0
\(976\) −388.000 −0.397541
\(977\) 470.933 0.482020 0.241010 0.970523i \(-0.422521\pi\)
0.241010 + 0.970523i \(0.422521\pi\)
\(978\) 0 0
\(979\) −208.000 −0.212462
\(980\) −169.706 169.706i −0.173169 0.173169i
\(981\) 0 0
\(982\) 606.000i 0.617108i
\(983\) 601.041 0.611435 0.305718 0.952122i \(-0.401104\pi\)
0.305718 + 0.952122i \(0.401104\pi\)
\(984\) 0 0
\(985\) 1120.00 + 1120.00i 1.13706 + 1.13706i
\(986\) 610.940i 0.619615i
\(987\) 0 0
\(988\) 378.000i 0.382591i
\(989\) 90.5097i 0.0915163i
\(990\) 0 0
\(991\) −755.000 −0.761857 −0.380928 0.924605i \(-0.624396\pi\)
−0.380928 + 0.924605i \(0.624396\pi\)
\(992\) −226.274 −0.228099
\(993\) 0 0
\(994\) −630.000 −0.633803
\(995\) −519.723 519.723i −0.522335 0.522335i
\(996\) 0 0
\(997\) 24.0000i 0.0240722i 0.999928 + 0.0120361i \(0.00383130\pi\)
−0.999928 + 0.0120361i \(0.996169\pi\)
\(998\) −1230.37 −1.23283
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 270.3.b.c.269.1 4
3.2 odd 2 inner 270.3.b.c.269.4 yes 4
4.3 odd 2 2160.3.c.i.1889.1 4
5.2 odd 4 1350.3.d.f.701.1 2
5.3 odd 4 1350.3.d.g.701.2 2
5.4 even 2 inner 270.3.b.c.269.3 yes 4
9.2 odd 6 810.3.j.e.539.1 8
9.4 even 3 810.3.j.e.269.3 8
9.5 odd 6 810.3.j.e.269.2 8
9.7 even 3 810.3.j.e.539.4 8
12.11 even 2 2160.3.c.i.1889.4 4
15.2 even 4 1350.3.d.f.701.2 2
15.8 even 4 1350.3.d.g.701.1 2
15.14 odd 2 inner 270.3.b.c.269.2 yes 4
20.19 odd 2 2160.3.c.i.1889.3 4
45.4 even 6 810.3.j.e.269.1 8
45.14 odd 6 810.3.j.e.269.4 8
45.29 odd 6 810.3.j.e.539.3 8
45.34 even 6 810.3.j.e.539.2 8
60.59 even 2 2160.3.c.i.1889.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
270.3.b.c.269.1 4 1.1 even 1 trivial
270.3.b.c.269.2 yes 4 15.14 odd 2 inner
270.3.b.c.269.3 yes 4 5.4 even 2 inner
270.3.b.c.269.4 yes 4 3.2 odd 2 inner
810.3.j.e.269.1 8 45.4 even 6
810.3.j.e.269.2 8 9.5 odd 6
810.3.j.e.269.3 8 9.4 even 3
810.3.j.e.269.4 8 45.14 odd 6
810.3.j.e.539.1 8 9.2 odd 6
810.3.j.e.539.2 8 45.34 even 6
810.3.j.e.539.3 8 45.29 odd 6
810.3.j.e.539.4 8 9.7 even 3
1350.3.d.f.701.1 2 5.2 odd 4
1350.3.d.f.701.2 2 15.2 even 4
1350.3.d.g.701.1 2 15.8 even 4
1350.3.d.g.701.2 2 5.3 odd 4
2160.3.c.i.1889.1 4 4.3 odd 2
2160.3.c.i.1889.2 4 60.59 even 2
2160.3.c.i.1889.3 4 20.19 odd 2
2160.3.c.i.1889.4 4 12.11 even 2