Properties

Label 270.3.q.a.103.18
Level $270$
Weight $3$
Character 270.103
Analytic conductor $7.357$
Analytic rank $0$
Dimension $216$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,3,Mod(7,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([32, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.7");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 270.q (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.35696713773\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(18\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 103.18
Character \(\chi\) \(=\) 270.103
Dual form 270.3.q.a.97.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.123257 - 1.40883i) q^{2} +(2.87461 + 0.858266i) q^{3} +(-1.96962 - 0.347296i) q^{4} +(4.85982 + 1.17564i) q^{5} +(1.56347 - 3.94405i) q^{6} +(-0.652359 - 0.456787i) q^{7} +(-0.732051 + 2.73205i) q^{8} +(7.52676 + 4.93436i) q^{9} +(2.25528 - 6.70177i) q^{10} +(5.68724 + 2.06999i) q^{11} +(-5.36380 - 2.68880i) q^{12} +(-0.280399 - 3.20497i) q^{13} +(-0.723944 + 0.862763i) q^{14} +(12.9611 + 7.55052i) q^{15} +(3.75877 + 1.36808i) q^{16} +(0.588231 + 2.19531i) q^{17} +(7.87941 - 9.99574i) q^{18} +(3.13122 - 1.80781i) q^{19} +(-9.16369 - 4.00335i) q^{20} +(-1.48323 - 1.87298i) q^{21} +(3.61725 - 7.75723i) q^{22} +(0.925190 - 0.647825i) q^{23} +(-4.44919 + 7.22528i) q^{24} +(22.2357 + 11.4268i) q^{25} -4.54983 q^{26} +(17.4015 + 20.6443i) q^{27} +(1.12626 + 1.12626i) q^{28} +(-19.8287 - 23.6309i) q^{29} +(12.2350 - 17.3293i) q^{30} +(0.00905133 - 0.0513327i) q^{31} +(2.39069 - 5.12685i) q^{32} +(14.5720 + 10.8316i) q^{33} +(3.16532 - 0.558132i) q^{34} +(-2.63333 - 2.98684i) q^{35} +(-13.1111 - 12.3328i) q^{36} +(-4.78095 - 17.8427i) q^{37} +(-2.16096 - 4.63420i) q^{38} +(1.94468 - 9.45370i) q^{39} +(-6.76954 + 12.4167i) q^{40} +(-6.22209 - 5.22095i) q^{41} +(-2.82154 + 1.85877i) q^{42} +(19.8921 + 42.6587i) q^{43} +(-10.4828 - 6.05223i) q^{44} +(30.7777 + 32.8289i) q^{45} +(-0.798641 - 1.38329i) q^{46} +(-27.2749 - 19.0981i) q^{47} +(9.63082 + 7.15872i) q^{48} +(-16.5421 - 45.4490i) q^{49} +(18.8391 - 29.9180i) q^{50} +(-0.193225 + 6.81551i) q^{51} +(-0.560797 + 6.40994i) q^{52} +(-58.7394 - 58.7394i) q^{53} +(31.2292 - 21.9712i) q^{54} +(25.2054 + 16.7459i) q^{55} +(1.72553 - 1.44789i) q^{56} +(10.5526 - 2.50933i) q^{57} +(-35.7359 + 25.0226i) q^{58} +(-21.9317 - 60.2567i) q^{59} +(-22.9061 - 19.3730i) q^{60} +(9.89307 + 56.1064i) q^{61} +(-0.0712035 - 0.0190789i) q^{62} +(-2.65620 - 6.65710i) q^{63} +(-6.92820 - 4.00000i) q^{64} +(2.40520 - 15.9052i) q^{65} +(17.0560 - 19.1944i) q^{66} +(-58.3601 + 5.10585i) q^{67} +(-0.396166 - 4.52820i) q^{68} +(3.21557 - 1.06818i) q^{69} +(-4.53254 + 3.34178i) q^{70} +(-35.5365 + 61.5510i) q^{71} +(-18.9909 + 16.9513i) q^{72} +(-22.3272 + 83.3263i) q^{73} +(-25.7267 + 4.53631i) q^{74} +(54.1119 + 51.9317i) q^{75} +(-6.79516 + 2.47323i) q^{76} +(-2.76458 - 3.94823i) q^{77} +(-13.0790 - 3.90496i) q^{78} +(52.8171 + 62.9449i) q^{79} +(16.6586 + 11.0676i) q^{80} +(32.3042 + 74.2795i) q^{81} +(-8.12236 + 8.12236i) q^{82} +(-75.7516 - 6.62741i) q^{83} +(2.27092 + 4.20418i) q^{84} +(0.277810 + 11.3604i) q^{85} +(62.5507 - 22.7666i) q^{86} +(-36.7181 - 84.9478i) q^{87} +(-9.81865 + 14.0225i) q^{88} +(28.6318 - 16.5306i) q^{89} +(50.0439 - 39.3142i) q^{90} +(-1.28107 + 2.21888i) q^{91} +(-2.04726 + 0.954651i) q^{92} +(0.0700761 - 0.139793i) q^{93} +(-30.2678 + 36.0717i) q^{94} +(17.3425 - 5.10446i) q^{95} +(11.2725 - 12.6858i) q^{96} +(37.7569 - 17.6063i) q^{97} +(-66.0689 + 17.7031i) q^{98} +(32.5924 + 43.6432i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 36 q^{6} + 18 q^{7} + 216 q^{8} + 36 q^{11} - 18 q^{15} + 72 q^{20} + 288 q^{21} + 36 q^{22} + 108 q^{23} + 54 q^{25} - 162 q^{27} - 120 q^{30} - 432 q^{31} + 114 q^{33} - 162 q^{35} + 48 q^{36}+ \cdots + 756 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/270\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(217\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.123257 1.40883i 0.0616284 0.704416i
\(3\) 2.87461 + 0.858266i 0.958203 + 0.286089i
\(4\) −1.96962 0.347296i −0.492404 0.0868241i
\(5\) 4.85982 + 1.17564i 0.971964 + 0.235128i
\(6\) 1.56347 3.94405i 0.260578 0.657342i
\(7\) −0.652359 0.456787i −0.0931942 0.0652553i 0.526051 0.850453i \(-0.323672\pi\)
−0.619245 + 0.785198i \(0.712561\pi\)
\(8\) −0.732051 + 2.73205i −0.0915064 + 0.341506i
\(9\) 7.52676 + 4.93436i 0.836306 + 0.548262i
\(10\) 2.25528 6.70177i 0.225528 0.670177i
\(11\) 5.68724 + 2.06999i 0.517022 + 0.188181i 0.587334 0.809344i \(-0.300177\pi\)
−0.0703125 + 0.997525i \(0.522400\pi\)
\(12\) −5.36380 2.68880i −0.446984 0.224066i
\(13\) −0.280399 3.20497i −0.0215691 0.246536i −0.999323 0.0367822i \(-0.988289\pi\)
0.977754 0.209754i \(-0.0672663\pi\)
\(14\) −0.723944 + 0.862763i −0.0517103 + 0.0616259i
\(15\) 12.9611 + 7.55052i 0.864072 + 0.503368i
\(16\) 3.75877 + 1.36808i 0.234923 + 0.0855050i
\(17\) 0.588231 + 2.19531i 0.0346018 + 0.129136i 0.981066 0.193672i \(-0.0620398\pi\)
−0.946464 + 0.322808i \(0.895373\pi\)
\(18\) 7.87941 9.99574i 0.437745 0.555319i
\(19\) 3.13122 1.80781i 0.164801 0.0951481i −0.415331 0.909670i \(-0.636334\pi\)
0.580132 + 0.814522i \(0.303001\pi\)
\(20\) −9.16369 4.00335i −0.458184 0.200168i
\(21\) −1.48323 1.87298i −0.0706302 0.0891896i
\(22\) 3.61725 7.75723i 0.164421 0.352601i
\(23\) 0.925190 0.647825i 0.0402257 0.0281663i −0.553291 0.832988i \(-0.686628\pi\)
0.593516 + 0.804822i \(0.297739\pi\)
\(24\) −4.44919 + 7.22528i −0.185383 + 0.301054i
\(25\) 22.2357 + 11.4268i 0.889430 + 0.457071i
\(26\) −4.54983 −0.174993
\(27\) 17.4015 + 20.6443i 0.644500 + 0.764605i
\(28\) 1.12626 + 1.12626i 0.0402235 + 0.0402235i
\(29\) −19.8287 23.6309i −0.683747 0.814858i 0.306838 0.951762i \(-0.400729\pi\)
−0.990584 + 0.136904i \(0.956285\pi\)
\(30\) 12.2350 17.3293i 0.407832 0.577644i
\(31\) 0.00905133 0.0513327i 0.000291978 0.00165589i −0.984661 0.174476i \(-0.944177\pi\)
0.984953 + 0.172820i \(0.0552879\pi\)
\(32\) 2.39069 5.12685i 0.0747091 0.160214i
\(33\) 14.5720 + 10.8316i 0.441576 + 0.328229i
\(34\) 3.16532 0.558132i 0.0930978 0.0164156i
\(35\) −2.63333 2.98684i −0.0752381 0.0853384i
\(36\) −13.1111 12.3328i −0.364198 0.342578i
\(37\) −4.78095 17.8427i −0.129215 0.482236i 0.870740 0.491744i \(-0.163640\pi\)
−0.999955 + 0.00950747i \(0.996974\pi\)
\(38\) −2.16096 4.63420i −0.0568674 0.121953i
\(39\) 1.94468 9.45370i 0.0498637 0.242403i
\(40\) −6.76954 + 12.4167i −0.169239 + 0.310416i
\(41\) −6.22209 5.22095i −0.151758 0.127340i 0.563747 0.825947i \(-0.309359\pi\)
−0.715506 + 0.698607i \(0.753804\pi\)
\(42\) −2.82154 + 1.85877i −0.0671794 + 0.0442564i
\(43\) 19.8921 + 42.6587i 0.462606 + 0.992062i 0.989819 + 0.142329i \(0.0454591\pi\)
−0.527213 + 0.849733i \(0.676763\pi\)
\(44\) −10.4828 6.05223i −0.238245 0.137551i
\(45\) 30.7777 + 32.8289i 0.683949 + 0.729530i
\(46\) −0.798641 1.38329i −0.0173618 0.0300715i
\(47\) −27.2749 19.0981i −0.580316 0.406342i 0.246229 0.969212i \(-0.420808\pi\)
−0.826546 + 0.562870i \(0.809697\pi\)
\(48\) 9.63082 + 7.15872i 0.200642 + 0.149140i
\(49\) −16.5421 45.4490i −0.337593 0.927530i
\(50\) 18.8391 29.9180i 0.376783 0.598360i
\(51\) −0.193225 + 6.81551i −0.00378872 + 0.133637i
\(52\) −0.560797 + 6.40994i −0.0107846 + 0.123268i
\(53\) −58.7394 58.7394i −1.10829 1.10829i −0.993375 0.114915i \(-0.963340\pi\)
−0.114915 0.993375i \(-0.536660\pi\)
\(54\) 31.2292 21.9712i 0.578319 0.406875i
\(55\) 25.2054 + 16.7459i 0.458280 + 0.304471i
\(56\) 1.72553 1.44789i 0.0308130 0.0258551i
\(57\) 10.5526 2.50933i 0.185134 0.0440234i
\(58\) −35.7359 + 25.0226i −0.616137 + 0.431424i
\(59\) −21.9317 60.2567i −0.371723 1.02130i −0.974695 0.223538i \(-0.928239\pi\)
0.602972 0.797762i \(-0.293983\pi\)
\(60\) −22.9061 19.3730i −0.381768 0.322883i
\(61\) 9.89307 + 56.1064i 0.162182 + 0.919777i 0.951923 + 0.306337i \(0.0991036\pi\)
−0.789741 + 0.613440i \(0.789785\pi\)
\(62\) −0.0712035 0.0190789i −0.00114844 0.000307724i
\(63\) −2.65620 6.65710i −0.0421619 0.105668i
\(64\) −6.92820 4.00000i −0.108253 0.0625000i
\(65\) 2.40520 15.9052i 0.0370031 0.244696i
\(66\) 17.0560 19.1944i 0.258424 0.290825i
\(67\) −58.3601 + 5.10585i −0.871046 + 0.0762067i −0.513908 0.857845i \(-0.671803\pi\)
−0.357138 + 0.934052i \(0.616247\pi\)
\(68\) −0.396166 4.52820i −0.00582598 0.0665912i
\(69\) 3.21557 1.06818i 0.0466024 0.0154809i
\(70\) −4.53254 + 3.34178i −0.0647505 + 0.0477397i
\(71\) −35.5365 + 61.5510i −0.500514 + 0.866915i 0.499486 + 0.866322i \(0.333522\pi\)
−1.00000 0.000593321i \(0.999811\pi\)
\(72\) −18.9909 + 16.9513i −0.263762 + 0.235434i
\(73\) −22.3272 + 83.3263i −0.305852 + 1.14146i 0.626357 + 0.779537i \(0.284545\pi\)
−0.932209 + 0.361920i \(0.882121\pi\)
\(74\) −25.7267 + 4.53631i −0.347658 + 0.0613015i
\(75\) 54.1119 + 51.9317i 0.721492 + 0.692423i
\(76\) −6.79516 + 2.47323i −0.0894099 + 0.0325426i
\(77\) −2.76458 3.94823i −0.0359037 0.0512757i
\(78\) −13.0790 3.90496i −0.167679 0.0500636i
\(79\) 52.8171 + 62.9449i 0.668571 + 0.796771i 0.988589 0.150640i \(-0.0481334\pi\)
−0.320018 + 0.947411i \(0.603689\pi\)
\(80\) 16.6586 + 11.0676i 0.208232 + 0.138345i
\(81\) 32.3042 + 74.2795i 0.398817 + 0.917031i
\(82\) −8.12236 + 8.12236i −0.0990532 + 0.0990532i
\(83\) −75.7516 6.62741i −0.912670 0.0798483i −0.378861 0.925454i \(-0.623684\pi\)
−0.533809 + 0.845605i \(0.679240\pi\)
\(84\) 2.27092 + 4.20418i 0.0270348 + 0.0500497i
\(85\) 0.277810 + 11.3604i 0.00326836 + 0.133651i
\(86\) 62.5507 22.7666i 0.727334 0.264728i
\(87\) −36.7181 84.9478i −0.422047 0.976411i
\(88\) −9.81865 + 14.0225i −0.111576 + 0.159347i
\(89\) 28.6318 16.5306i 0.321706 0.185737i −0.330447 0.943825i \(-0.607199\pi\)
0.652153 + 0.758088i \(0.273866\pi\)
\(90\) 50.0439 39.3142i 0.556043 0.436825i
\(91\) −1.28107 + 2.21888i −0.0140777 + 0.0243833i
\(92\) −2.04726 + 0.954651i −0.0222528 + 0.0103766i
\(93\) 0.0700761 0.139793i 0.000753507 0.00150315i
\(94\) −30.2678 + 36.0717i −0.321998 + 0.383742i
\(95\) 17.3425 5.10446i 0.182553 0.0537312i
\(96\) 11.2725 12.6858i 0.117422 0.132144i
\(97\) 37.7569 17.6063i 0.389247 0.181509i −0.218135 0.975919i \(-0.569997\pi\)
0.607382 + 0.794410i \(0.292220\pi\)
\(98\) −66.0689 + 17.7031i −0.674172 + 0.180644i
\(99\) 32.5924 + 43.6432i 0.329216 + 0.440840i
\(100\) −39.8274 30.2288i −0.398274 0.302288i
\(101\) 14.0944 + 79.9331i 0.139548 + 0.791417i 0.971584 + 0.236695i \(0.0760642\pi\)
−0.832036 + 0.554722i \(0.812825\pi\)
\(102\) 9.57810 + 1.11228i 0.0939029 + 0.0109047i
\(103\) −5.58477 2.60422i −0.0542211 0.0252837i 0.395319 0.918544i \(-0.370634\pi\)
−0.449540 + 0.893260i \(0.648412\pi\)
\(104\) 8.96141 + 1.58014i 0.0861674 + 0.0151936i
\(105\) −5.00630 10.8461i −0.0476791 0.103296i
\(106\) −89.9940 + 75.5139i −0.849000 + 0.712395i
\(107\) −115.938 + 115.938i −1.08353 + 1.08353i −0.0873556 + 0.996177i \(0.527842\pi\)
−0.996177 + 0.0873556i \(0.972158\pi\)
\(108\) −27.1046 46.7049i −0.250968 0.432452i
\(109\) 86.5956i 0.794455i 0.917720 + 0.397227i \(0.130028\pi\)
−0.917720 + 0.397227i \(0.869972\pi\)
\(110\) 26.6989 33.4462i 0.242717 0.304056i
\(111\) 1.57047 55.3942i 0.0141483 0.499047i
\(112\) −1.82715 2.60944i −0.0163138 0.0232986i
\(113\) −161.937 75.5125i −1.43307 0.668252i −0.457757 0.889077i \(-0.651347\pi\)
−0.975313 + 0.220825i \(0.929125\pi\)
\(114\) −2.23454 15.1762i −0.0196013 0.133124i
\(115\) 5.25787 2.06063i 0.0457206 0.0179185i
\(116\) 30.8479 + 53.4302i 0.265930 + 0.460605i
\(117\) 13.7040 25.5066i 0.117128 0.218005i
\(118\) −87.5948 + 23.4710i −0.742329 + 0.198906i
\(119\) 0.619050 1.70083i 0.00520210 0.0142927i
\(120\) −30.1166 + 29.8830i −0.250972 + 0.249025i
\(121\) −64.6315 54.2323i −0.534145 0.448201i
\(122\) 80.2639 7.02218i 0.657901 0.0575589i
\(123\) −13.4051 20.3484i −0.108985 0.165434i
\(124\) −0.0356553 + 0.0979621i −0.000287543 + 0.000790017i
\(125\) 94.6280 + 81.6734i 0.757024 + 0.653387i
\(126\) −9.70613 + 2.92161i −0.0770328 + 0.0231873i
\(127\) −217.376 58.2456i −1.71162 0.458627i −0.735798 0.677201i \(-0.763193\pi\)
−0.975820 + 0.218574i \(0.929860\pi\)
\(128\) −6.48928 + 9.26765i −0.0506975 + 0.0724035i
\(129\) 20.5694 + 139.700i 0.159453 + 1.08294i
\(130\) −22.1114 5.34895i −0.170087 0.0411458i
\(131\) −6.98428 + 39.6098i −0.0533151 + 0.302365i −0.999792 0.0204074i \(-0.993504\pi\)
0.946477 + 0.322772i \(0.104615\pi\)
\(132\) −24.9395 26.3948i −0.188935 0.199961i
\(133\) −2.86847 0.250959i −0.0215674 0.00188691i
\(134\) 82.8489i 0.618275i
\(135\) 60.2979 + 120.786i 0.446651 + 0.894708i
\(136\) −6.42831 −0.0472670
\(137\) 13.5498 154.875i 0.0989035 1.13047i −0.770860 0.637004i \(-0.780173\pi\)
0.869764 0.493468i \(-0.164271\pi\)
\(138\) −1.10855 4.66186i −0.00803299 0.0337816i
\(139\) 133.547 + 23.5479i 0.960766 + 0.169409i 0.631971 0.774992i \(-0.282246\pi\)
0.328795 + 0.944401i \(0.393357\pi\)
\(140\) 4.14934 + 6.79748i 0.0296381 + 0.0485534i
\(141\) −62.0133 78.3086i −0.439811 0.555380i
\(142\) 82.3349 + 57.6515i 0.579823 + 0.405997i
\(143\) 5.03955 18.8079i 0.0352416 0.131524i
\(144\) 21.5408 + 28.8443i 0.149589 + 0.200308i
\(145\) −68.5824 138.153i −0.472982 0.952780i
\(146\) 114.641 + 41.7258i 0.785211 + 0.285793i
\(147\) −8.54467 144.846i −0.0581270 0.985344i
\(148\) 3.21991 + 36.8037i 0.0217562 + 0.248674i
\(149\) 59.2589 70.6220i 0.397711 0.473973i −0.529610 0.848241i \(-0.677662\pi\)
0.927320 + 0.374268i \(0.122106\pi\)
\(150\) 79.8328 69.8336i 0.532218 0.465557i
\(151\) 0.519781 + 0.189185i 0.00344226 + 0.00125288i 0.343741 0.939065i \(-0.388306\pi\)
−0.340298 + 0.940317i \(0.610528\pi\)
\(152\) 2.64682 + 9.87808i 0.0174133 + 0.0649873i
\(153\) −6.40497 + 19.4261i −0.0418625 + 0.126968i
\(154\) −5.90315 + 3.40818i −0.0383321 + 0.0221311i
\(155\) 0.104337 0.238827i 0.000673139 0.00154082i
\(156\) −7.11351 + 17.9448i −0.0455994 + 0.115031i
\(157\) 112.579 241.426i 0.717061 1.53774i −0.121293 0.992617i \(-0.538704\pi\)
0.838354 0.545126i \(-0.183518\pi\)
\(158\) 95.1889 66.6520i 0.602462 0.421848i
\(159\) −118.439 219.267i −0.744898 1.37904i
\(160\) 17.6457 22.1050i 0.110285 0.138156i
\(161\) −0.899475 −0.00558680
\(162\) 108.629 36.3557i 0.670549 0.224418i
\(163\) 228.749 + 228.749i 1.40337 + 1.40337i 0.789093 + 0.614274i \(0.210551\pi\)
0.614274 + 0.789093i \(0.289449\pi\)
\(164\) 10.4419 + 12.4442i 0.0636702 + 0.0758792i
\(165\) 58.0833 + 69.7709i 0.352020 + 0.422854i
\(166\) −18.6738 + 105.904i −0.112493 + 0.637978i
\(167\) 66.7035 143.046i 0.399422 0.856564i −0.599018 0.800735i \(-0.704442\pi\)
0.998440 0.0558283i \(-0.0177799\pi\)
\(168\) 6.20289 2.68115i 0.0369219 0.0159592i
\(169\) 156.239 27.5492i 0.924493 0.163013i
\(170\) 16.0391 + 1.00885i 0.0943475 + 0.00593443i
\(171\) 32.4884 + 1.84362i 0.189990 + 0.0107814i
\(172\) −24.3645 90.9296i −0.141654 0.528660i
\(173\) −76.0505 163.091i −0.439598 0.942722i −0.993887 0.110398i \(-0.964788\pi\)
0.554289 0.832324i \(-0.312990\pi\)
\(174\) −124.203 + 41.2592i −0.713810 + 0.237122i
\(175\) −9.28609 17.6114i −0.0530634 0.100636i
\(176\) 18.5451 + 15.5612i 0.105370 + 0.0884159i
\(177\) −11.3286 192.038i −0.0640035 1.08496i
\(178\) −19.7598 42.3749i −0.111010 0.238061i
\(179\) 305.867 + 176.593i 1.70876 + 0.986551i 0.936106 + 0.351719i \(0.114403\pi\)
0.772650 + 0.634832i \(0.218931\pi\)
\(180\) −49.2189 75.3492i −0.273438 0.418607i
\(181\) −131.495 227.756i −0.726490 1.25832i −0.958358 0.285571i \(-0.907817\pi\)
0.231867 0.972747i \(-0.425516\pi\)
\(182\) 2.96812 + 2.07830i 0.0163084 + 0.0114192i
\(183\) −19.7155 + 169.775i −0.107735 + 0.927732i
\(184\) 1.09261 + 3.00191i 0.00593807 + 0.0163147i
\(185\) −2.25795 92.3332i −0.0122051 0.499098i
\(186\) −0.188307 0.115956i −0.00101240 0.000623419i
\(187\) −1.19885 + 13.7029i −0.00641094 + 0.0732774i
\(188\) 47.0883 + 47.0883i 0.250470 + 0.250470i
\(189\) −1.92197 21.4163i −0.0101692 0.113314i
\(190\) −5.05375 25.0619i −0.0265987 0.131905i
\(191\) 194.673 163.350i 1.01923 0.855235i 0.0296990 0.999559i \(-0.490545\pi\)
0.989531 + 0.144324i \(0.0461007\pi\)
\(192\) −16.4828 17.4447i −0.0858480 0.0908577i
\(193\) 148.925 104.279i 0.771634 0.540304i −0.120155 0.992755i \(-0.538339\pi\)
0.891789 + 0.452451i \(0.149450\pi\)
\(194\) −20.1506 55.3633i −0.103869 0.285378i
\(195\) 20.5649 43.6571i 0.105461 0.223882i
\(196\) 16.7973 + 95.2620i 0.0857003 + 0.486030i
\(197\) −288.693 77.3551i −1.46545 0.392665i −0.564080 0.825720i \(-0.690769\pi\)
−0.901368 + 0.433055i \(0.857436\pi\)
\(198\) 65.5031 40.5379i 0.330824 0.204737i
\(199\) 70.9417 + 40.9582i 0.356491 + 0.205820i 0.667540 0.744574i \(-0.267347\pi\)
−0.311049 + 0.950394i \(0.600680\pi\)
\(200\) −47.4963 + 52.3842i −0.237481 + 0.261921i
\(201\) −172.145 35.4112i −0.856441 0.176175i
\(202\) 114.350 10.0043i 0.566087 0.0495262i
\(203\) 2.14114 + 24.4733i 0.0105475 + 0.120558i
\(204\) 2.74758 13.3568i 0.0134685 0.0654747i
\(205\) −24.1003 32.6878i −0.117562 0.159453i
\(206\) −4.35727 + 7.54701i −0.0211518 + 0.0366360i
\(207\) 10.1603 0.310801i 0.0490835 0.00150145i
\(208\) 3.33071 12.4304i 0.0160130 0.0597614i
\(209\) 21.5502 3.79988i 0.103111 0.0181812i
\(210\) −15.8974 + 5.71618i −0.0757019 + 0.0272199i
\(211\) 109.935 40.0131i 0.521020 0.189636i −0.0681045 0.997678i \(-0.521695\pi\)
0.589124 + 0.808043i \(0.299473\pi\)
\(212\) 95.2940 + 136.094i 0.449500 + 0.641953i
\(213\) −154.981 + 146.435i −0.727609 + 0.687490i
\(214\) 149.047 + 177.627i 0.696481 + 0.830034i
\(215\) 46.5207 + 230.699i 0.216375 + 1.07302i
\(216\) −69.1401 + 32.4291i −0.320093 + 0.150135i
\(217\) −0.0293528 + 0.0293528i −0.000135266 + 0.000135266i
\(218\) 121.999 + 10.6735i 0.559627 + 0.0489610i
\(219\) −135.698 + 220.368i −0.619627 + 1.00625i
\(220\) −43.8292 41.7367i −0.199224 0.189712i
\(221\) 6.87096 2.50083i 0.0310903 0.0113160i
\(222\) −77.8476 9.04024i −0.350665 0.0407218i
\(223\) 17.6738 25.2408i 0.0792548 0.113188i −0.777567 0.628800i \(-0.783547\pi\)
0.856822 + 0.515612i \(0.172435\pi\)
\(224\) −3.90147 + 2.25251i −0.0174173 + 0.0100559i
\(225\) 110.979 + 195.726i 0.493241 + 0.869893i
\(226\) −126.344 + 218.835i −0.559045 + 0.968295i
\(227\) −366.696 + 170.993i −1.61540 + 0.753275i −0.999406 0.0344735i \(-0.989025\pi\)
−0.615997 + 0.787748i \(0.711247\pi\)
\(228\) −21.6561 + 1.27753i −0.0949830 + 0.00560320i
\(229\) 193.219 230.269i 0.843750 1.00554i −0.156092 0.987743i \(-0.549890\pi\)
0.999842 0.0177994i \(-0.00566603\pi\)
\(230\) −2.25501 7.66144i −0.00980438 0.0333106i
\(231\) −4.55846 13.7224i −0.0197336 0.0594042i
\(232\) 79.0763 36.8739i 0.340846 0.158939i
\(233\) 179.838 48.1874i 0.771836 0.206813i 0.148654 0.988889i \(-0.452506\pi\)
0.623182 + 0.782077i \(0.285839\pi\)
\(234\) −34.2455 22.4505i −0.146348 0.0959423i
\(235\) −110.099 124.879i −0.468505 0.531398i
\(236\) 22.2700 + 126.299i 0.0943643 + 0.535167i
\(237\) 97.8049 + 226.273i 0.412679 + 0.954739i
\(238\) −2.31988 1.08178i −0.00974738 0.00454528i
\(239\) −1.82954 0.322597i −0.00765498 0.00134978i 0.169819 0.985475i \(-0.445682\pi\)
−0.177474 + 0.984125i \(0.556793\pi\)
\(240\) 38.3880 + 46.1125i 0.159950 + 0.192135i
\(241\) −250.023 + 209.794i −1.03744 + 0.870514i −0.991717 0.128440i \(-0.959003\pi\)
−0.0457213 + 0.998954i \(0.514559\pi\)
\(242\) −84.3705 + 84.3705i −0.348638 + 0.348638i
\(243\) 29.1103 + 241.250i 0.119795 + 0.992799i
\(244\) 113.944i 0.466983i
\(245\) −26.9600 240.321i −0.110041 0.980904i
\(246\) −30.3198 + 16.3775i −0.123251 + 0.0665751i
\(247\) −6.67198 9.52858i −0.0270121 0.0385772i
\(248\) 0.133617 + 0.0623068i 0.000538780 + 0.000251237i
\(249\) −212.068 84.0662i −0.851679 0.337615i
\(250\) 126.728 123.248i 0.506910 0.492993i
\(251\) 70.4335 + 121.994i 0.280612 + 0.486034i 0.971536 0.236894i \(-0.0761294\pi\)
−0.690924 + 0.722928i \(0.742796\pi\)
\(252\) 2.91970 + 14.0344i 0.0115861 + 0.0556921i
\(253\) 6.60277 1.76921i 0.0260979 0.00699291i
\(254\) −108.851 + 299.067i −0.428548 + 1.17743i
\(255\) −8.95161 + 32.8950i −0.0351044 + 0.129000i
\(256\) 12.2567 + 10.2846i 0.0478778 + 0.0401742i
\(257\) −35.1453 + 3.07481i −0.136752 + 0.0119643i −0.155326 0.987863i \(-0.549643\pi\)
0.0185742 + 0.999827i \(0.494087\pi\)
\(258\) 199.349 11.7599i 0.772669 0.0455810i
\(259\) −5.03144 + 13.8238i −0.0194264 + 0.0533736i
\(260\) −10.2612 + 30.4919i −0.0394660 + 0.117277i
\(261\) −32.6422 275.706i −0.125066 1.05634i
\(262\) 54.9427 + 14.7218i 0.209705 + 0.0561903i
\(263\) −134.056 + 191.452i −0.509720 + 0.727955i −0.988706 0.149867i \(-0.952115\pi\)
0.478986 + 0.877822i \(0.341004\pi\)
\(264\) −40.2598 + 31.8822i −0.152499 + 0.120766i
\(265\) −216.407 354.519i −0.816629 1.33781i
\(266\) −0.707117 + 4.01026i −0.00265833 + 0.0150762i
\(267\) 96.4929 22.9453i 0.361397 0.0859373i
\(268\) 116.720 + 10.2117i 0.435523 + 0.0381033i
\(269\) 28.0339i 0.104215i 0.998641 + 0.0521077i \(0.0165939\pi\)
−0.998641 + 0.0521077i \(0.983406\pi\)
\(270\) 177.599 70.0620i 0.657773 0.259489i
\(271\) −107.555 −0.396883 −0.198441 0.980113i \(-0.563588\pi\)
−0.198441 + 0.980113i \(0.563588\pi\)
\(272\) −0.792333 + 9.05641i −0.00291299 + 0.0332956i
\(273\) −5.58696 + 5.27890i −0.0204650 + 0.0193366i
\(274\) −216.522 38.1787i −0.790228 0.139338i
\(275\) 102.807 + 111.015i 0.373843 + 0.403689i
\(276\) −6.70441 + 0.987159i −0.0242913 + 0.00357666i
\(277\) 177.142 + 124.036i 0.639500 + 0.447783i 0.847824 0.530277i \(-0.177912\pi\)
−0.208324 + 0.978060i \(0.566801\pi\)
\(278\) 49.6355 185.242i 0.178545 0.666339i
\(279\) 0.321421 0.341706i 0.00115205 0.00122475i
\(280\) 10.0879 5.00788i 0.0360284 0.0178853i
\(281\) −112.640 40.9977i −0.400855 0.145899i 0.133722 0.991019i \(-0.457307\pi\)
−0.534577 + 0.845119i \(0.679529\pi\)
\(282\) −117.967 + 77.7143i −0.418323 + 0.275583i
\(283\) −3.43040 39.2096i −0.0121216 0.138550i 0.987722 0.156220i \(-0.0499308\pi\)
−0.999844 + 0.0176698i \(0.994375\pi\)
\(284\) 91.3696 108.890i 0.321724 0.383416i
\(285\) 54.2340 + 0.211168i 0.190295 + 0.000740940i
\(286\) −25.8760 9.41808i −0.0904754 0.0329303i
\(287\) 1.67418 + 6.24811i 0.00583337 + 0.0217704i
\(288\) 43.2919 26.7920i 0.150319 0.0930279i
\(289\) 245.808 141.917i 0.850547 0.491063i
\(290\) −203.088 + 79.5927i −0.700303 + 0.274458i
\(291\) 123.647 18.2059i 0.424905 0.0625631i
\(292\) 72.9150 156.367i 0.249709 0.535502i
\(293\) 30.8447 21.5977i 0.105272 0.0737123i −0.519755 0.854315i \(-0.673977\pi\)
0.625027 + 0.780603i \(0.285088\pi\)
\(294\) −205.116 5.81519i −0.697674 0.0197796i
\(295\) −35.7438 318.621i −0.121166 1.08007i
\(296\) 52.2472 0.176511
\(297\) 56.2330 + 153.430i 0.189337 + 0.516599i
\(298\) −92.1905 92.1905i −0.309364 0.309364i
\(299\) −2.33568 2.78356i −0.00781165 0.00930956i
\(300\) −88.5439 121.078i −0.295146 0.403595i
\(301\) 6.50915 36.9152i 0.0216251 0.122642i
\(302\) 0.330596 0.708966i 0.00109469 0.00234757i
\(303\) −28.0881 + 241.873i −0.0927000 + 0.798261i
\(304\) 14.2428 2.51139i 0.0468513 0.00826115i
\(305\) −17.8823 + 284.298i −0.0586304 + 0.932124i
\(306\) 26.5787 + 11.4179i 0.0868583 + 0.0373135i
\(307\) 71.8588 + 268.181i 0.234068 + 0.873553i 0.978567 + 0.205929i \(0.0660217\pi\)
−0.744499 + 0.667623i \(0.767312\pi\)
\(308\) 4.07396 + 8.73663i 0.0132271 + 0.0283657i
\(309\) −13.8189 12.2793i −0.0447214 0.0397390i
\(310\) −0.323606 0.176430i −0.00104389 0.000569128i
\(311\) 313.411 + 262.983i 1.00775 + 0.845604i 0.988039 0.154202i \(-0.0492807\pi\)
0.0197118 + 0.999806i \(0.493725\pi\)
\(312\) 24.4044 + 12.2336i 0.0782192 + 0.0392101i
\(313\) −124.718 267.459i −0.398461 0.854502i −0.998512 0.0545402i \(-0.982631\pi\)
0.600051 0.799962i \(-0.295147\pi\)
\(314\) −326.252 188.362i −1.03902 0.599878i
\(315\) −5.08232 35.4751i −0.0161343 0.112619i
\(316\) −82.1688 142.321i −0.260028 0.450381i
\(317\) −28.4123 19.8945i −0.0896286 0.0627586i 0.527903 0.849305i \(-0.322978\pi\)
−0.617532 + 0.786546i \(0.711867\pi\)
\(318\) −323.509 + 139.834i −1.01732 + 0.439730i
\(319\) −63.8547 175.439i −0.200172 0.549967i
\(320\) −28.9673 27.5844i −0.0905228 0.0862011i
\(321\) −432.782 + 233.771i −1.34823 + 0.728258i
\(322\) −0.110866 + 1.26721i −0.000344306 + 0.00393543i
\(323\) 5.81059 + 5.81059i 0.0179894 + 0.0179894i
\(324\) −37.8298 157.521i −0.116759 0.486176i
\(325\) 30.3877 74.4690i 0.0935005 0.229135i
\(326\) 350.463 294.074i 1.07504 0.902067i
\(327\) −74.3221 + 248.928i −0.227285 + 0.761249i
\(328\) 18.8188 13.1771i 0.0573744 0.0401740i
\(329\) 9.06927 + 24.9176i 0.0275662 + 0.0757374i
\(330\) 105.455 73.2299i 0.319559 0.221909i
\(331\) 17.6748 + 100.239i 0.0533983 + 0.302837i 0.999797 0.0201649i \(-0.00641912\pi\)
−0.946398 + 0.323002i \(0.895308\pi\)
\(332\) 146.900 + 39.3617i 0.442469 + 0.118559i
\(333\) 52.0575 157.889i 0.156329 0.474141i
\(334\) −193.306 111.605i −0.578761 0.334148i
\(335\) −289.622 43.7969i −0.864544 0.130737i
\(336\) −3.01274 9.06929i −0.00896650 0.0269919i
\(337\) 479.480 41.9491i 1.42279 0.124478i 0.650383 0.759606i \(-0.274608\pi\)
0.772407 + 0.635128i \(0.219053\pi\)
\(338\) −19.5546 223.511i −0.0578540 0.661274i
\(339\) −400.696 356.054i −1.18199 1.05031i
\(340\) 3.39823 22.4720i 0.00999480 0.0660942i
\(341\) 0.157735 0.273205i 0.000462566 0.000801188i
\(342\) 6.60176 45.5434i 0.0193034 0.133168i
\(343\) −20.0690 + 74.8984i −0.0585101 + 0.218363i
\(344\) −131.108 + 23.1178i −0.381127 + 0.0672029i
\(345\) 16.8829 1.41084i 0.0489359 0.00408940i
\(346\) −239.141 + 87.0404i −0.691160 + 0.251562i
\(347\) 294.489 + 420.574i 0.848671 + 1.21203i 0.975477 + 0.220101i \(0.0706386\pi\)
−0.126806 + 0.991928i \(0.540473\pi\)
\(348\) 42.8184 + 180.067i 0.123041 + 0.517433i
\(349\) 110.903 + 132.169i 0.317774 + 0.378709i 0.901160 0.433486i \(-0.142717\pi\)
−0.583386 + 0.812195i \(0.698272\pi\)
\(350\) −25.9560 + 10.9118i −0.0741601 + 0.0311766i
\(351\) 61.2851 61.5599i 0.174601 0.175384i
\(352\) 24.2089 24.2089i 0.0687754 0.0687754i
\(353\) −406.016 35.5218i −1.15019 0.100628i −0.503928 0.863746i \(-0.668112\pi\)
−0.646260 + 0.763117i \(0.723668\pi\)
\(354\) −271.945 7.70984i −0.768207 0.0217792i
\(355\) −245.063 + 257.349i −0.690317 + 0.724926i
\(356\) −62.1347 + 22.6152i −0.174536 + 0.0635258i
\(357\) 3.23929 4.35790i 0.00907364 0.0122070i
\(358\) 286.490 409.149i 0.800250 1.14288i
\(359\) 329.355 190.153i 0.917425 0.529675i 0.0346122 0.999401i \(-0.488980\pi\)
0.882813 + 0.469725i \(0.155647\pi\)
\(360\) −112.221 + 60.0538i −0.311725 + 0.166816i
\(361\) −173.964 + 301.314i −0.481894 + 0.834664i
\(362\) −337.077 + 157.182i −0.931152 + 0.434203i
\(363\) −139.245 211.368i −0.383594 0.582280i
\(364\) 3.29382 3.92542i 0.00904896 0.0107841i
\(365\) −206.468 + 378.702i −0.565666 + 1.03754i
\(366\) 236.754 + 48.7018i 0.646870 + 0.133065i
\(367\) −251.297 + 117.182i −0.684733 + 0.319296i −0.733670 0.679506i \(-0.762194\pi\)
0.0489374 + 0.998802i \(0.484417\pi\)
\(368\) 4.36386 1.16929i 0.0118583 0.00317742i
\(369\) −21.0701 69.9989i −0.0571005 0.189699i
\(370\) −130.360 8.19963i −0.352325 0.0221612i
\(371\) 11.4878 + 65.1506i 0.0309644 + 0.175608i
\(372\) −0.186573 + 0.251001i −0.000501539 + 0.000674734i
\(373\) 243.860 + 113.714i 0.653781 + 0.304863i 0.721062 0.692871i \(-0.243654\pi\)
−0.0672803 + 0.997734i \(0.521432\pi\)
\(374\) 19.1573 + 3.37795i 0.0512227 + 0.00903194i
\(375\) 201.921 + 315.995i 0.538456 + 0.842653i
\(376\) 72.1435 60.5355i 0.191871 0.160999i
\(377\) −70.1763 + 70.1763i −0.186144 + 0.186144i
\(378\) −30.4089 + 0.0680286i −0.0804467 + 0.000179970i
\(379\) 227.151i 0.599343i 0.954042 + 0.299672i \(0.0968771\pi\)
−0.954042 + 0.299672i \(0.903123\pi\)
\(380\) −35.9309 + 4.03084i −0.0945550 + 0.0106075i
\(381\) −574.880 354.000i −1.50887 0.929133i
\(382\) −206.138 294.395i −0.539628 0.770668i
\(383\) 149.624 + 69.7709i 0.390664 + 0.182170i 0.608018 0.793923i \(-0.291965\pi\)
−0.217354 + 0.976093i \(0.569743\pi\)
\(384\) −26.6082 + 21.0713i −0.0692923 + 0.0548733i
\(385\) −8.79368 22.4379i −0.0228407 0.0582801i
\(386\) −128.555 222.664i −0.333044 0.576850i
\(387\) −60.7705 + 419.236i −0.157030 + 1.08330i
\(388\) −80.4813 + 21.5649i −0.207426 + 0.0555796i
\(389\) −31.6460 + 86.9467i −0.0813522 + 0.223513i −0.973700 0.227836i \(-0.926835\pi\)
0.892347 + 0.451349i \(0.149057\pi\)
\(390\) −58.9707 34.3536i −0.151207 0.0880861i
\(391\) 1.96640 + 1.65001i 0.00502916 + 0.00421997i
\(392\) 136.279 11.9228i 0.347649 0.0304154i
\(393\) −54.0728 + 107.868i −0.137590 + 0.274474i
\(394\) −144.564 + 397.186i −0.366913 + 1.00809i
\(395\) 182.681 + 367.995i 0.462484 + 0.931633i
\(396\) −49.0374 97.2795i −0.123832 0.245655i
\(397\) −102.854 27.5595i −0.259077 0.0694195i 0.126943 0.991910i \(-0.459484\pi\)
−0.386020 + 0.922491i \(0.626150\pi\)
\(398\) 66.4473 94.8966i 0.166953 0.238434i
\(399\) −8.03034 3.18332i −0.0201262 0.00797824i
\(400\) 67.9463 + 73.3710i 0.169866 + 0.183427i
\(401\) −10.3107 + 58.4750i −0.0257125 + 0.145823i −0.994961 0.100260i \(-0.968033\pi\)
0.969249 + 0.246083i \(0.0791436\pi\)
\(402\) −71.1064 + 238.158i −0.176882 + 0.592433i
\(403\) −0.167058 0.0146157i −0.000414535 3.62671e-5i
\(404\) 162.332i 0.401813i
\(405\) 69.6667 + 398.963i 0.172017 + 0.985094i
\(406\) 34.7427 0.0855731
\(407\) 9.74383 111.372i 0.0239406 0.273642i
\(408\) −18.4789 5.51720i −0.0452914 0.0135226i
\(409\) 130.225 + 22.9622i 0.318398 + 0.0561422i 0.330563 0.943784i \(-0.392761\pi\)
−0.0121651 + 0.999926i \(0.503872\pi\)
\(410\) −49.0222 + 29.9243i −0.119566 + 0.0729861i
\(411\) 171.874 433.575i 0.418185 1.05493i
\(412\) 10.0954 + 7.06888i 0.0245034 + 0.0171575i
\(413\) −13.2172 + 49.3271i −0.0320028 + 0.119436i
\(414\) 0.814459 14.3524i 0.00196729 0.0346677i
\(415\) −360.348 121.264i −0.868308 0.292204i
\(416\) −17.1018 6.22453i −0.0411100 0.0149628i
\(417\) 363.684 + 182.309i 0.872143 + 0.437193i
\(418\) −2.69718 30.8289i −0.00645259 0.0737534i
\(419\) 348.421 415.232i 0.831553 0.991006i −0.168433 0.985713i \(-0.553871\pi\)
0.999986 0.00529323i \(-0.00168489\pi\)
\(420\) 6.09368 + 23.1013i 0.0145088 + 0.0550032i
\(421\) 221.767 + 80.7167i 0.526763 + 0.191726i 0.591693 0.806164i \(-0.298460\pi\)
−0.0649292 + 0.997890i \(0.520682\pi\)
\(422\) −42.8215 159.812i −0.101473 0.378702i
\(423\) −111.055 278.330i −0.262540 0.657992i
\(424\) 203.479 117.479i 0.479904 0.277073i
\(425\) −12.0056 + 55.5359i −0.0282484 + 0.130673i
\(426\) 187.200 + 236.391i 0.439437 + 0.554908i
\(427\) 19.1748 41.1206i 0.0449059 0.0963011i
\(428\) 268.618 188.088i 0.627612 0.439459i
\(429\) 30.6289 49.7400i 0.0713960 0.115944i
\(430\) 330.751 37.1046i 0.769188 0.0862898i
\(431\) 420.640 0.975963 0.487982 0.872854i \(-0.337733\pi\)
0.487982 + 0.872854i \(0.337733\pi\)
\(432\) 37.1651 + 101.404i 0.0860304 + 0.234731i
\(433\) 574.468 + 574.468i 1.32672 + 1.32672i 0.908217 + 0.418501i \(0.137444\pi\)
0.418501 + 0.908217i \(0.362556\pi\)
\(434\) 0.0377352 + 0.0449711i 8.69476e−5 + 0.000103620i
\(435\) −78.5754 455.998i −0.180633 1.04827i
\(436\) 30.0743 170.560i 0.0689778 0.391193i
\(437\) 1.72583 3.70106i 0.00394927 0.00846924i
\(438\) 293.736 + 218.338i 0.670629 + 0.498488i
\(439\) −792.973 + 139.823i −1.80632 + 0.318502i −0.972388 0.233371i \(-0.925024\pi\)
−0.833928 + 0.551873i \(0.813913\pi\)
\(440\) −64.2023 + 56.6036i −0.145914 + 0.128645i
\(441\) 99.7534 423.708i 0.226198 0.960789i
\(442\) −2.67635 9.98827i −0.00605509 0.0225979i
\(443\) −321.687 689.861i −0.726156 1.55725i −0.826909 0.562336i \(-0.809903\pi\)
0.100752 0.994912i \(-0.467875\pi\)
\(444\) −22.3314 + 108.560i −0.0502960 + 0.244504i
\(445\) 158.580 46.6751i 0.356359 0.104888i
\(446\) −33.3817 28.0105i −0.0748468 0.0628039i
\(447\) 230.959 152.151i 0.516686 0.340382i
\(448\) 2.69253 + 5.77415i 0.00601011 + 0.0128887i
\(449\) −104.196 60.1577i −0.232063 0.133982i 0.379461 0.925208i \(-0.376110\pi\)
−0.611523 + 0.791226i \(0.709443\pi\)
\(450\) 289.424 132.227i 0.643164 0.293837i
\(451\) −24.5792 42.5725i −0.0544994 0.0943957i
\(452\) 292.728 + 204.971i 0.647629 + 0.453475i
\(453\) 1.33180 + 0.989943i 0.00293995 + 0.00218530i
\(454\) 195.703 + 537.690i 0.431064 + 1.18434i
\(455\) −8.83436 + 9.27727i −0.0194162 + 0.0203896i
\(456\) −0.869439 + 30.6673i −0.00190667 + 0.0672528i
\(457\) −18.3355 + 209.576i −0.0401215 + 0.458591i 0.949386 + 0.314111i \(0.101707\pi\)
−0.989508 + 0.144480i \(0.953849\pi\)
\(458\) −300.595 300.595i −0.656321 0.656321i
\(459\) −35.0846 + 50.3453i −0.0764369 + 0.109685i
\(460\) −11.0716 + 2.23260i −0.0240688 + 0.00485349i
\(461\) 695.156 583.305i 1.50793 1.26530i 0.640269 0.768151i \(-0.278823\pi\)
0.867662 0.497154i \(-0.165622\pi\)
\(462\) −19.8944 + 4.73073i −0.0430614 + 0.0102397i
\(463\) 235.607 164.974i 0.508870 0.356315i −0.290771 0.956793i \(-0.593912\pi\)
0.799641 + 0.600478i \(0.205023\pi\)
\(464\) −42.2024 115.950i −0.0909535 0.249893i
\(465\) 0.504903 0.596984i 0.00108581 0.00128384i
\(466\) −45.7217 259.301i −0.0981152 0.556439i
\(467\) −306.450 82.1132i −0.656211 0.175831i −0.0846754 0.996409i \(-0.526985\pi\)
−0.571535 + 0.820577i \(0.693652\pi\)
\(468\) −35.8500 + 45.4789i −0.0766025 + 0.0971772i
\(469\) 40.4040 + 23.3273i 0.0861494 + 0.0497384i
\(470\) −189.503 + 139.718i −0.403199 + 0.297273i
\(471\) 530.827 597.382i 1.12702 1.26833i
\(472\) 180.680 15.8074i 0.382796 0.0334903i
\(473\) 24.8281 + 283.786i 0.0524907 + 0.599971i
\(474\) 330.836 109.901i 0.697966 0.231859i
\(475\) 90.2826 4.41825i 0.190069 0.00930158i
\(476\) −1.80998 + 3.13498i −0.00380248 + 0.00658609i
\(477\) −152.276 731.959i −0.319237 1.53450i
\(478\) −0.679989 + 2.53775i −0.00142257 + 0.00530910i
\(479\) 533.976 94.1544i 1.11477 0.196564i 0.414228 0.910173i \(-0.364052\pi\)
0.700544 + 0.713609i \(0.252941\pi\)
\(480\) 69.6963 48.3986i 0.145201 0.100830i
\(481\) −55.8449 + 20.3259i −0.116102 + 0.0422576i
\(482\) 264.747 + 378.099i 0.549269 + 0.784437i
\(483\) −2.58564 0.771989i −0.00535329 0.00159832i
\(484\) 108.465 + 129.263i 0.224100 + 0.267072i
\(485\) 204.191 41.1752i 0.421012 0.0848974i
\(486\) 343.469 11.2758i 0.706726 0.0232012i
\(487\) −412.716 + 412.716i −0.847467 + 0.847467i −0.989816 0.142350i \(-0.954534\pi\)
0.142350 + 0.989816i \(0.454534\pi\)
\(488\) −160.528 14.0444i −0.328950 0.0287794i
\(489\) 461.236 + 853.891i 0.943223 + 1.74620i
\(490\) −341.895 + 8.36083i −0.697746 + 0.0170629i
\(491\) 155.990 56.7757i 0.317699 0.115633i −0.178249 0.983985i \(-0.557043\pi\)
0.495947 + 0.868353i \(0.334821\pi\)
\(492\) 19.3360 + 44.7341i 0.0393008 + 0.0909230i
\(493\) 40.2132 57.4304i 0.0815684 0.116492i
\(494\) −14.2465 + 8.22524i −0.0288391 + 0.0166503i
\(495\) 107.085 + 250.415i 0.216333 + 0.505889i
\(496\) 0.104249 0.180565i 0.000210180 0.000364042i
\(497\) 51.2982 23.9208i 0.103216 0.0481303i
\(498\) −144.574 + 288.407i −0.290309 + 0.579130i
\(499\) −223.737 + 266.639i −0.448371 + 0.534347i −0.942128 0.335252i \(-0.891179\pi\)
0.493758 + 0.869600i \(0.335623\pi\)
\(500\) −158.016 193.729i −0.316032 0.387458i
\(501\) 314.518 353.952i 0.627781 0.706492i
\(502\) 180.551 84.1924i 0.359664 0.167714i
\(503\) 636.761 170.620i 1.26593 0.339204i 0.437458 0.899239i \(-0.355879\pi\)
0.828469 + 0.560035i \(0.189212\pi\)
\(504\) 20.1320 2.38354i 0.0399445 0.00472924i
\(505\) −25.4763 + 405.031i −0.0504482 + 0.802041i
\(506\) −1.67868 9.52026i −0.00331755 0.0188147i
\(507\) 472.771 + 54.9017i 0.932488 + 0.108287i
\(508\) 407.918 + 190.215i 0.802988 + 0.374439i
\(509\) −919.472 162.128i −1.80643 0.318522i −0.834007 0.551754i \(-0.813959\pi\)
−0.972421 + 0.233231i \(0.925070\pi\)
\(510\) 45.2402 + 16.6659i 0.0887063 + 0.0326781i
\(511\) 52.6278 44.1599i 0.102990 0.0864187i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 91.8091 + 33.1834i 0.178965 + 0.0646849i
\(514\) 49.8928i 0.0970676i
\(515\) −24.0794 19.2217i −0.0467560 0.0373237i
\(516\) 8.00335 282.298i 0.0155104 0.547090i
\(517\) −115.586 165.074i −0.223570 0.319292i
\(518\) 18.8552 + 8.79232i 0.0364000 + 0.0169736i
\(519\) −78.6401 534.094i −0.151522 1.02908i
\(520\) 41.6932 + 18.2146i 0.0801792 + 0.0350280i
\(521\) 115.411 + 199.898i 0.221519 + 0.383682i 0.955269 0.295737i \(-0.0955652\pi\)
−0.733750 + 0.679419i \(0.762232\pi\)
\(522\) −392.446 + 12.0048i −0.751813 + 0.0229978i
\(523\) −81.7206 + 21.8970i −0.156253 + 0.0418680i −0.336098 0.941827i \(-0.609107\pi\)
0.179844 + 0.983695i \(0.442441\pi\)
\(524\) 27.5127 75.5904i 0.0525051 0.144257i
\(525\) −11.5786 58.5958i −0.0220546 0.111611i
\(526\) 253.201 + 212.461i 0.481370 + 0.403918i
\(527\) 0.118015 0.0103250i 0.000223938 1.95920e-5i
\(528\) 39.9543 + 60.6490i 0.0756711 + 0.114866i
\(529\) −180.492 + 495.899i −0.341195 + 0.937427i
\(530\) −526.132 + 261.184i −0.992701 + 0.492800i
\(531\) 132.254 561.756i 0.249066 1.05792i
\(532\) 5.56263 + 1.49050i 0.0104561 + 0.00280169i
\(533\) −14.9883 + 21.4056i −0.0281207 + 0.0401606i
\(534\) −20.4326 138.771i −0.0382633 0.259870i
\(535\) −699.739 + 427.137i −1.30792 + 0.798387i
\(536\) 28.7731 163.181i 0.0536812 0.304441i
\(537\) 727.686 + 770.150i 1.35509 + 1.43417i
\(538\) 39.4951 + 3.45537i 0.0734110 + 0.00642263i
\(539\) 292.721i 0.543082i
\(540\) −76.8153 258.842i −0.142251 0.479338i
\(541\) 141.371 0.261315 0.130657 0.991428i \(-0.458291\pi\)
0.130657 + 0.991428i \(0.458291\pi\)
\(542\) −13.2569 + 151.527i −0.0244593 + 0.279571i
\(543\) −182.521 767.566i −0.336135 1.41356i
\(544\) 12.6613 + 2.23253i 0.0232744 + 0.00410391i
\(545\) −101.805 + 420.839i −0.186798 + 0.772182i
\(546\) 6.74846 + 8.52175i 0.0123598 + 0.0156076i
\(547\) −472.814 331.068i −0.864376 0.605243i 0.0550594 0.998483i \(-0.482465\pi\)
−0.919436 + 0.393240i \(0.871354\pi\)
\(548\) −80.4753 + 300.338i −0.146853 + 0.548062i
\(549\) −202.387 + 471.115i −0.368646 + 0.858134i
\(550\) 169.073 131.154i 0.307405 0.238462i
\(551\) −104.808 38.1471i −0.190214 0.0692324i
\(552\) 0.564377 + 9.56706i 0.00102242 + 0.0173316i
\(553\) −5.70329 65.1889i −0.0103134 0.117882i
\(554\) 196.580 234.274i 0.354837 0.422878i
\(555\) 72.7558 267.360i 0.131091 0.481729i
\(556\) −254.857 92.7604i −0.458376 0.166835i
\(557\) −185.024 690.519i −0.332180 1.23971i −0.906895 0.421357i \(-0.861554\pi\)
0.574715 0.818354i \(-0.305113\pi\)
\(558\) −0.441789 0.494946i −0.000791736 0.000887000i
\(559\) 131.142 75.7149i 0.234601 0.135447i
\(560\) −5.81186 14.8295i −0.0103783 0.0264812i
\(561\) −15.2069 + 38.3615i −0.0271068 + 0.0683805i
\(562\) −71.6426 + 153.638i −0.127478 + 0.273377i
\(563\) −553.136 + 387.310i −0.982479 + 0.687939i −0.950233 0.311541i \(-0.899155\pi\)
−0.0322464 + 0.999480i \(0.510266\pi\)
\(564\) 94.9462 + 175.775i 0.168344 + 0.311657i
\(565\) −698.210 557.356i −1.23577 0.986472i
\(566\) −55.6626 −0.0983438
\(567\) 12.8560 63.2130i 0.0226737 0.111487i
\(568\) −142.146 142.146i −0.250257 0.250257i
\(569\) 108.701 + 129.545i 0.191039 + 0.227671i 0.853058 0.521815i \(-0.174745\pi\)
−0.662020 + 0.749486i \(0.730301\pi\)
\(570\) 6.98221 76.3806i 0.0122495 0.134001i
\(571\) −10.7270 + 60.8361i −0.0187864 + 0.106543i −0.992759 0.120122i \(-0.961671\pi\)
0.973973 + 0.226665i \(0.0727824\pi\)
\(572\) −16.4579 + 35.2940i −0.0287725 + 0.0617029i
\(573\) 699.806 302.486i 1.22130 0.527899i
\(574\) 9.00889 1.58851i 0.0156949 0.00276744i
\(575\) 27.9749 3.83293i 0.0486519 0.00666596i
\(576\) −32.4095 64.2933i −0.0562664 0.111620i
\(577\) 182.474 + 681.003i 0.316247 + 1.18025i 0.922823 + 0.385223i \(0.125876\pi\)
−0.606577 + 0.795025i \(0.707458\pi\)
\(578\) −169.640 363.794i −0.293495 0.629402i
\(579\) 517.601 171.943i 0.893957 0.296965i
\(580\) 87.1008 + 295.927i 0.150174 + 0.510219i
\(581\) 46.3900 + 38.9258i 0.0798450 + 0.0669979i
\(582\) −10.4086 176.442i −0.0178842 0.303166i
\(583\) −212.475 455.655i −0.364452 0.781569i
\(584\) −211.307 121.998i −0.361827 0.208901i
\(585\) 96.5856 107.847i 0.165104 0.184353i
\(586\) −26.6257 46.1171i −0.0454364 0.0786981i
\(587\) 655.287 + 458.837i 1.11633 + 0.781664i 0.977976 0.208719i \(-0.0669293\pi\)
0.138356 + 0.990383i \(0.455818\pi\)
\(588\) −33.4746 + 288.257i −0.0569296 + 0.490234i
\(589\) −0.0644581 0.177097i −0.000109437 0.000300674i
\(590\) −453.289 + 11.0849i −0.768286 + 0.0187879i
\(591\) −763.489 470.141i −1.29186 0.795501i
\(592\) 6.43982 73.6075i 0.0108781 0.124337i
\(593\) 199.640 + 199.640i 0.336662 + 0.336662i 0.855109 0.518448i \(-0.173490\pi\)
−0.518448 + 0.855109i \(0.673490\pi\)
\(594\) 223.088 60.3116i 0.375569 0.101535i
\(595\) 5.00803 7.53793i 0.00841686 0.0126688i
\(596\) −141.244 + 118.518i −0.236987 + 0.198855i
\(597\) 168.777 + 178.626i 0.282708 + 0.299206i
\(598\) −4.20946 + 2.94749i −0.00703923 + 0.00492892i
\(599\) −266.831 733.112i −0.445461 1.22389i −0.935853 0.352391i \(-0.885369\pi\)
0.490392 0.871502i \(-0.336853\pi\)
\(600\) −181.493 + 109.820i −0.302488 + 0.183033i
\(601\) 50.5949 + 286.938i 0.0841845 + 0.477434i 0.997530 + 0.0702477i \(0.0223790\pi\)
−0.913345 + 0.407186i \(0.866510\pi\)
\(602\) −51.2050 13.7203i −0.0850582 0.0227913i
\(603\) −464.456 249.539i −0.770243 0.413830i
\(604\) −0.958065 0.553139i −0.00158620 0.000915793i
\(605\) −250.340 339.543i −0.413785 0.561227i
\(606\) 337.297 + 69.3839i 0.556595 + 0.114495i
\(607\) −701.907 + 61.4089i −1.15635 + 0.101168i −0.649152 0.760659i \(-0.724876\pi\)
−0.507203 + 0.861827i \(0.669320\pi\)
\(608\) −1.78260 20.3752i −0.00293191 0.0335119i
\(609\) −14.8497 + 72.1888i −0.0243837 + 0.118537i
\(610\) 398.324 + 60.2348i 0.652990 + 0.0987455i
\(611\) −53.5609 + 92.7702i −0.0876611 + 0.151833i
\(612\) 19.3619 36.0375i 0.0316372 0.0588848i
\(613\) −142.210 + 530.735i −0.231990 + 0.865800i 0.747492 + 0.664271i \(0.231258\pi\)
−0.979482 + 0.201529i \(0.935409\pi\)
\(614\) 386.679 68.1819i 0.629770 0.111045i
\(615\) −41.2241 114.649i −0.0670310 0.186422i
\(616\) 12.8106 4.66267i 0.0207964 0.00756927i
\(617\) −350.277 500.247i −0.567710 0.810774i 0.427954 0.903801i \(-0.359235\pi\)
−0.995664 + 0.0930270i \(0.970346\pi\)
\(618\) −19.0028 + 17.9550i −0.0307489 + 0.0290534i
\(619\) −386.112 460.150i −0.623768 0.743377i 0.357946 0.933742i \(-0.383477\pi\)
−0.981713 + 0.190365i \(0.939033\pi\)
\(620\) −0.288446 + 0.434161i −0.000465236 + 0.000700259i
\(621\) 29.4736 + 7.82680i 0.0474615 + 0.0126035i
\(622\) 409.128 409.128i 0.657763 0.657763i
\(623\) −26.2292 2.29476i −0.0421014 0.00368340i
\(624\) 20.2430 32.8738i 0.0324408 0.0526824i
\(625\) 363.857 + 508.166i 0.582171 + 0.813066i
\(626\) −392.177 + 142.741i −0.626482 + 0.228021i
\(627\) 65.2096 + 7.57263i 0.104003 + 0.0120776i
\(628\) −305.583 + 436.418i −0.486597 + 0.694932i
\(629\) 36.3580 20.9913i 0.0578029 0.0333725i
\(630\) −50.6048 + 2.78758i −0.0803251 + 0.00442474i
\(631\) −73.5369 + 127.370i −0.116540 + 0.201854i −0.918394 0.395666i \(-0.870514\pi\)
0.801854 + 0.597520i \(0.203847\pi\)
\(632\) −210.634 + 98.2200i −0.333281 + 0.155411i
\(633\) 350.363 20.6685i 0.553495 0.0326516i
\(634\) −31.5300 + 37.5760i −0.0497318 + 0.0592681i
\(635\) −987.931 538.618i −1.55580 0.848218i
\(636\) 157.128 + 473.005i 0.247057 + 0.743718i
\(637\) −141.024 + 65.7607i −0.221388 + 0.103235i
\(638\) −255.035 + 68.3365i −0.399742 + 0.107110i
\(639\) −571.189 + 287.930i −0.893880 + 0.450594i
\(640\) −42.4321 + 37.4101i −0.0663002 + 0.0584532i
\(641\) 186.524 + 1057.83i 0.290989 + 1.65028i 0.683071 + 0.730352i \(0.260644\pi\)
−0.392082 + 0.919930i \(0.628245\pi\)
\(642\) 276.000 + 638.531i 0.429907 + 0.994597i
\(643\) 461.364 + 215.138i 0.717518 + 0.334584i 0.746856 0.664985i \(-0.231562\pi\)
−0.0293384 + 0.999570i \(0.509340\pi\)
\(644\) 1.77162 + 0.312384i 0.00275096 + 0.000485069i
\(645\) −64.2726 + 703.098i −0.0996474 + 1.09007i
\(646\) 8.90234 7.46995i 0.0137807 0.0115634i
\(647\) 256.439 256.439i 0.396351 0.396351i −0.480593 0.876944i \(-0.659579\pi\)
0.876944 + 0.480593i \(0.159579\pi\)
\(648\) −226.584 + 33.8803i −0.349666 + 0.0522844i
\(649\) 388.093i 0.597986i
\(650\) −101.169 51.9899i −0.155644 0.0799845i
\(651\) −0.109570 + 0.0591853i −0.000168311 + 9.09145e-5i
\(652\) −371.104 529.991i −0.569177 0.812869i
\(653\) 249.711 + 116.442i 0.382406 + 0.178319i 0.604309 0.796750i \(-0.293449\pi\)
−0.221903 + 0.975069i \(0.571227\pi\)
\(654\) 341.538 + 135.389i 0.522229 + 0.207017i
\(655\) −80.5091 + 184.286i −0.122915 + 0.281352i
\(656\) −16.2447 28.1367i −0.0247633 0.0428913i
\(657\) −579.214 + 517.007i −0.881604 + 0.786920i
\(658\) 36.2226 9.70581i 0.0550495 0.0147505i
\(659\) −106.155 + 291.658i −0.161085 + 0.442577i −0.993808 0.111113i \(-0.964558\pi\)
0.832723 + 0.553690i \(0.186781\pi\)
\(660\) −90.1706 157.594i −0.136622 0.238779i
\(661\) −204.370 171.486i −0.309182 0.259435i 0.474972 0.880001i \(-0.342458\pi\)
−0.784154 + 0.620566i \(0.786903\pi\)
\(662\) 143.398 12.5457i 0.216614 0.0189513i
\(663\) 21.8977 1.29178i 0.0330282 0.00194839i
\(664\) 73.5604 202.106i 0.110784 0.304376i
\(665\) −13.6452 4.59190i −0.0205191 0.00690511i
\(666\) −216.023 92.8011i −0.324358 0.139341i
\(667\) −33.6540 9.01755i −0.0504557 0.0135196i
\(668\) −181.060 + 258.580i −0.271047 + 0.387096i
\(669\) 72.4687 57.3887i 0.108324 0.0857828i
\(670\) −97.4003 + 402.631i −0.145374 + 0.600942i
\(671\) −59.8752 + 339.569i −0.0892328 + 0.506064i
\(672\) −13.1485 + 3.12660i −0.0195661 + 0.00465268i
\(673\) 42.9500 + 3.75764i 0.0638187 + 0.00558341i 0.119020 0.992892i \(-0.462025\pi\)
−0.0552017 + 0.998475i \(0.517580\pi\)
\(674\) 680.678i 1.00991i
\(675\) 151.037 + 657.885i 0.223758 + 0.974645i
\(676\) −317.299 −0.469377
\(677\) 70.3437 804.032i 0.103905 1.18764i −0.747911 0.663799i \(-0.768943\pi\)
0.851816 0.523841i \(-0.175501\pi\)
\(678\) −551.009 + 520.627i −0.812697 + 0.767886i
\(679\) −32.6734 5.76121i −0.0481199 0.00848484i
\(680\) −31.2404 7.55737i −0.0459418 0.0111138i
\(681\) −1200.87 + 176.816i −1.76339 + 0.259642i
\(682\) −0.365458 0.255896i −0.000535862 0.000375215i
\(683\) 213.299 796.041i 0.312297 1.16551i −0.614183 0.789163i \(-0.710514\pi\)
0.926480 0.376344i \(-0.122819\pi\)
\(684\) −63.3493 14.9143i −0.0926160 0.0218046i
\(685\) 247.926 736.734i 0.361936 1.07552i
\(686\) 103.046 + 37.5055i 0.150212 + 0.0546728i
\(687\) 753.061 496.101i 1.09616 0.722126i
\(688\) 16.4092 + 187.558i 0.0238506 + 0.272613i
\(689\) −171.788 + 204.729i −0.249329 + 0.297139i
\(690\) 0.0932880 23.9590i 0.000135200 0.0347233i
\(691\) 982.595 + 357.635i 1.42199 + 0.517562i 0.934624 0.355636i \(-0.115736\pi\)
0.487365 + 0.873198i \(0.337958\pi\)
\(692\) 93.1494 + 347.638i 0.134609 + 0.502368i
\(693\) −1.32634 43.3588i −0.00191391 0.0625669i
\(694\) 628.816 363.047i 0.906074 0.523122i
\(695\) 621.329 + 271.441i 0.893998 + 0.390562i
\(696\) 258.961 38.1295i 0.372071 0.0547838i
\(697\) 7.80158 16.7305i 0.0111931 0.0240036i
\(698\) 199.874 139.953i 0.286353 0.200506i
\(699\) 558.321 + 15.8288i 0.798742 + 0.0226449i
\(700\) 12.1737 + 37.9127i 0.0173910 + 0.0541609i
\(701\) −623.558 −0.889526 −0.444763 0.895648i \(-0.646712\pi\)
−0.444763 + 0.895648i \(0.646712\pi\)
\(702\) −79.1738 93.9281i −0.112783 0.133801i
\(703\) −47.2266 47.2266i −0.0671786 0.0671786i
\(704\) −31.1224 37.0902i −0.0442080 0.0526850i
\(705\) −209.311 453.471i −0.296895 0.643221i
\(706\) −100.089 + 567.631i −0.141769 + 0.804009i
\(707\) 27.3178 58.5832i 0.0386391 0.0828617i
\(708\) −44.3810 + 382.175i −0.0626850 + 0.539795i
\(709\) −790.758 + 139.432i −1.11531 + 0.196660i −0.700783 0.713375i \(-0.747166\pi\)
−0.414532 + 0.910035i \(0.636055\pi\)
\(710\) 332.356 + 376.972i 0.468106 + 0.530947i
\(711\) 86.9483 + 734.390i 0.122290 + 1.03290i
\(712\) 24.2025 + 90.3248i 0.0339922 + 0.126861i
\(713\) −0.0248804 0.0533562i −3.48954e−5 7.48333e-5i
\(714\) −5.74029 5.10076i −0.00803962 0.00714392i
\(715\) 46.6026 85.4782i 0.0651784 0.119550i
\(716\) −541.111 454.046i −0.755742 0.634143i
\(717\) −4.98234 2.49757i −0.00694887 0.00348337i
\(718\) −227.299 487.444i −0.316572 0.678892i
\(719\) −666.490 384.798i −0.926968 0.535185i −0.0411164 0.999154i \(-0.513091\pi\)
−0.885851 + 0.463969i \(0.846425\pi\)
\(720\) 70.7737 + 165.503i 0.0982968 + 0.229865i
\(721\) 2.45370 + 4.24994i 0.00340319 + 0.00589450i
\(722\) 403.058 + 282.225i 0.558253 + 0.390893i
\(723\) −898.777 + 388.490i −1.24312 + 0.537330i
\(724\) 179.895 + 494.259i 0.248474 + 0.682678i
\(725\) −170.880 752.028i −0.235697 1.03728i
\(726\) −314.944 + 170.120i −0.433808 + 0.234325i
\(727\) 5.68709 65.0038i 0.00782269 0.0894137i −0.991280 0.131775i \(-0.957932\pi\)
0.999102 + 0.0423611i \(0.0134880\pi\)
\(728\) −5.12427 5.12427i −0.00703884 0.00703884i
\(729\) −123.376 + 718.484i −0.169240 + 0.985575i
\(730\) 508.080 + 337.556i 0.695999 + 0.462406i
\(731\) −81.9478 + 68.7623i −0.112104 + 0.0940661i
\(732\) 97.7942 327.544i 0.133599 0.447465i
\(733\) 542.827 380.092i 0.740556 0.518543i −0.141355 0.989959i \(-0.545146\pi\)
0.881911 + 0.471416i \(0.156257\pi\)
\(734\) 134.115 + 368.479i 0.182718 + 0.502015i
\(735\) 128.760 713.969i 0.175184 0.971386i
\(736\) −1.10946 6.29206i −0.00150742 0.00854900i
\(737\) −342.477 91.7664i −0.464691 0.124513i
\(738\) −101.214 + 21.0564i −0.137146 + 0.0285317i
\(739\) 30.9505 + 17.8693i 0.0418816 + 0.0241803i 0.520795 0.853682i \(-0.325636\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(740\) −27.6197 + 182.645i −0.0373239 + 0.246818i
\(741\) −11.0013 33.1173i −0.0148465 0.0446927i
\(742\) 93.2022 8.15413i 0.125609 0.0109894i
\(743\) 87.8043 + 1003.61i 0.118175 + 1.35075i 0.791394 + 0.611307i \(0.209356\pi\)
−0.673218 + 0.739444i \(0.735089\pi\)
\(744\) 0.330622 + 0.293787i 0.000444384 + 0.000394875i
\(745\) 371.014 273.543i 0.498005 0.367172i
\(746\) 190.261 329.542i 0.255042 0.441746i
\(747\) −537.462 423.669i −0.719494 0.567160i
\(748\) 7.12022 26.5730i 0.00951902 0.0355254i
\(749\) 128.592 22.6743i 0.171685 0.0302727i
\(750\) 470.072 245.524i 0.626763 0.327366i
\(751\) −336.078 + 122.322i −0.447507 + 0.162879i −0.555936 0.831225i \(-0.687640\pi\)
0.108429 + 0.994104i \(0.465418\pi\)
\(752\) −76.3922 109.099i −0.101585 0.145079i
\(753\) 97.7651 + 411.137i 0.129834 + 0.545999i
\(754\) 90.2170 + 107.516i 0.119651 + 0.142595i
\(755\) 2.30363 + 1.53048i 0.00305117 + 0.00202712i
\(756\) −3.65226 + 42.8494i −0.00483103 + 0.0566790i
\(757\) 845.879 845.879i 1.11741 1.11741i 0.125290 0.992120i \(-0.460014\pi\)
0.992120 0.125290i \(-0.0399860\pi\)
\(758\) 320.018 + 27.9979i 0.422187 + 0.0369366i
\(759\) 20.4988 + 0.581156i 0.0270077 + 0.000765687i
\(760\) 1.25004 + 51.1174i 0.00164479 + 0.0672597i
\(761\) −976.441 + 355.396i −1.28310 + 0.467011i −0.891457 0.453105i \(-0.850316\pi\)
−0.391646 + 0.920116i \(0.628094\pi\)
\(762\) −569.584 + 766.276i −0.747485 + 1.00561i
\(763\) 39.5557 56.4914i 0.0518424 0.0740386i
\(764\) −440.161 + 254.127i −0.576128 + 0.332627i
\(765\) −53.9651 + 86.8775i −0.0705426 + 0.113565i
\(766\) 116.738 202.196i 0.152399 0.263963i
\(767\) −186.971 + 87.1862i −0.243770 + 0.113672i
\(768\) 26.4063 + 40.0837i 0.0343832 + 0.0521924i
\(769\) −478.976 + 570.821i −0.622856 + 0.742291i −0.981559 0.191161i \(-0.938775\pi\)
0.358703 + 0.933452i \(0.383219\pi\)
\(770\) −32.6950 + 9.62320i −0.0424611 + 0.0124977i
\(771\) −103.668 21.3251i −0.134459 0.0276590i
\(772\) −329.541 + 153.668i −0.426867 + 0.199051i
\(773\) 164.355 44.0388i 0.212620 0.0569713i −0.150937 0.988543i \(-0.548229\pi\)
0.363557 + 0.931572i \(0.381562\pi\)
\(774\) 583.143 + 137.289i 0.753414 + 0.177376i
\(775\) 0.787830 1.03799i 0.00101656 0.00133935i
\(776\) 20.4614 + 116.043i 0.0263678 + 0.149539i
\(777\) −26.3279 + 35.4196i −0.0338840 + 0.0455850i
\(778\) 118.593 + 55.3007i 0.152433 + 0.0710806i
\(779\) −28.9213 5.09960i −0.0371262 0.00654634i
\(780\) −55.6670 + 78.8455i −0.0713679 + 0.101084i
\(781\) −329.514 + 276.495i −0.421913 + 0.354027i
\(782\) 2.56696 2.56696i 0.00328255 0.00328255i
\(783\) 142.795 820.562i 0.182369 1.04797i
\(784\) 193.463i 0.246764i
\(785\) 830.941 1040.93i 1.05852 1.32603i
\(786\) 145.303 + 89.4750i 0.184864 + 0.113836i
\(787\) 327.527 + 467.757i 0.416171 + 0.594354i 0.971431 0.237323i \(-0.0762699\pi\)
−0.555259 + 0.831677i \(0.687381\pi\)
\(788\) 541.749 + 252.622i 0.687499 + 0.320586i
\(789\) −549.676 + 435.294i −0.696675 + 0.551704i
\(790\) 540.960 212.009i 0.684759 0.268366i
\(791\) 71.1480 + 123.232i 0.0899469 + 0.155793i
\(792\) −143.095 + 57.0951i −0.180675 + 0.0720898i
\(793\) 177.045 47.4392i 0.223260 0.0598224i
\(794\) −51.5041 + 141.506i −0.0648667 + 0.178220i
\(795\) −317.813 1204.84i −0.399765 1.51552i
\(796\) −125.503 105.310i −0.157667 0.132299i
\(797\) −880.490 + 77.0329i −1.10475 + 0.0966535i −0.624908 0.780699i \(-0.714863\pi\)
−0.479847 + 0.877352i \(0.659308\pi\)
\(798\) −5.47456 + 10.9210i −0.00686035 + 0.0136855i
\(799\) 25.8822 71.1108i 0.0323933 0.0889997i
\(800\) 111.742 86.6815i 0.139678 0.108352i
\(801\) 297.073 + 16.8580i 0.370877 + 0.0210462i
\(802\) 81.1106 + 21.7335i 0.101135 + 0.0270992i
\(803\) −299.465 + 427.680i −0.372932 + 0.532602i
\(804\) 326.761 + 129.532i 0.406419 + 0.161109i
\(805\) −4.37129 1.05746i −0.00543017 0.00131361i
\(806\) −0.0411820 + 0.233555i −5.10943e−5 + 0.000289770i
\(807\) −24.0606 + 80.5866i −0.0298148 + 0.0998595i
\(808\) −228.699 20.0086i −0.283043 0.0247631i
\(809\) 97.2239i 0.120178i 0.998193 + 0.0600890i \(0.0191384\pi\)
−0.998193 + 0.0600890i \(0.980862\pi\)
\(810\) 570.659 48.9738i 0.704517 0.0604615i
\(811\) −107.652 −0.132739 −0.0663696 0.997795i \(-0.521142\pi\)
−0.0663696 + 0.997795i \(0.521142\pi\)
\(812\) 4.28227 48.9466i 0.00527373 0.0602790i
\(813\) −309.179 92.3111i −0.380294 0.113544i
\(814\) −155.704 27.4548i −0.191283 0.0337283i
\(815\) 842.753 + 1380.60i 1.03405 + 1.69399i
\(816\) −10.0505 + 25.3536i −0.0123167 + 0.0310706i
\(817\) 139.405 + 97.6127i 0.170631 + 0.119477i
\(818\) 48.4009 180.635i 0.0591699 0.220825i
\(819\) −20.5910 + 10.3797i −0.0251417 + 0.0126736i
\(820\) 36.1160 + 72.7524i 0.0440439 + 0.0887225i
\(821\) −166.434 60.5771i −0.202721 0.0737846i 0.238664 0.971102i \(-0.423291\pi\)
−0.441385 + 0.897318i \(0.645513\pi\)
\(822\) −589.650 295.583i −0.717335 0.359590i
\(823\) −13.3632 152.742i −0.0162372 0.185592i −0.999982 0.00601921i \(-0.998084\pi\)
0.983745 0.179573i \(-0.0574715\pi\)
\(824\) 11.2032 13.3515i 0.0135961 0.0162032i
\(825\) 200.249 + 407.359i 0.242726 + 0.493769i
\(826\) 67.8645 + 24.7007i 0.0821605 + 0.0299040i
\(827\) −258.188 963.571i −0.312198 1.16514i −0.926570 0.376123i \(-0.877257\pi\)
0.614371 0.789017i \(-0.289410\pi\)
\(828\) −20.1198 2.91647i −0.0242993 0.00352231i
\(829\) 1363.00 786.926i 1.64414 0.949247i 0.664807 0.747015i \(-0.268514\pi\)
0.979338 0.202232i \(-0.0648194\pi\)
\(830\) −215.257 + 492.723i −0.259345 + 0.593642i
\(831\) 402.757 + 508.589i 0.484665 + 0.612021i
\(832\) −10.8772 + 23.3263i −0.0130736 + 0.0280364i
\(833\) 90.0439 63.0494i 0.108096 0.0756896i
\(834\) 301.670 489.898i 0.361714 0.587408i
\(835\) 492.338 616.760i 0.589626 0.738634i
\(836\) −43.7652 −0.0523508
\(837\) 1.21723 0.706406i 0.00145428 0.000843974i
\(838\) −542.046 542.046i −0.646833 0.646833i
\(839\) 597.869 + 712.512i 0.712597 + 0.849240i 0.993889 0.110382i \(-0.0352076\pi\)
−0.281292 + 0.959622i \(0.590763\pi\)
\(840\) 33.2970 5.73757i 0.0396393 0.00683044i
\(841\) −19.2044 + 108.913i −0.0228352 + 0.129505i
\(842\) 141.051 302.484i 0.167519 0.359245i
\(843\) −288.610 214.528i −0.342361 0.254481i
\(844\) −230.426 + 40.6304i −0.273017 + 0.0481403i
\(845\) 791.683 + 49.7967i 0.936903 + 0.0589310i
\(846\) −405.809 + 122.151i −0.479680 + 0.144387i
\(847\) 17.3904 + 64.9018i 0.0205317 + 0.0766255i
\(848\) −140.428 301.148i −0.165599 0.355127i
\(849\) 23.7913 115.657i 0.0280227 0.136227i
\(850\) 76.7610 + 23.7590i 0.0903071 + 0.0279518i
\(851\) −15.9823 13.4107i −0.0187806 0.0157588i
\(852\) 356.109 234.597i 0.417968 0.275349i
\(853\) −255.392 547.691i −0.299405 0.642076i 0.697840 0.716254i \(-0.254145\pi\)
−0.997245 + 0.0741776i \(0.976367\pi\)
\(854\) −55.5686 32.0825i −0.0650686 0.0375674i
\(855\) 155.720 + 47.1542i 0.182129 + 0.0551512i
\(856\) −231.876 401.621i −0.270883 0.469183i
\(857\) 943.470 + 660.625i 1.10090 + 0.770858i 0.975225 0.221214i \(-0.0710019\pi\)
0.125674 + 0.992072i \(0.459891\pi\)
\(858\) −66.3001 49.2818i −0.0772728 0.0574380i
\(859\) −220.689 606.337i −0.256913 0.705864i −0.999354 0.0359514i \(-0.988554\pi\)
0.742440 0.669912i \(-0.233668\pi\)
\(860\) −11.5069 470.546i −0.0133801 0.547146i
\(861\) −0.549940 + 19.3978i −0.000638723 + 0.0225293i
\(862\) 51.8468 592.611i 0.0601471 0.687484i
\(863\) −12.8993 12.8993i −0.0149470 0.0149470i 0.699594 0.714541i \(-0.253364\pi\)
−0.714541 + 0.699594i \(0.753364\pi\)
\(864\) 147.442 39.8607i 0.170650 0.0461351i
\(865\) −177.856 882.001i −0.205614 1.01965i
\(866\) 880.137 738.522i 1.01632 0.852797i
\(867\) 828.405 196.988i 0.955484 0.227207i
\(868\) 0.0680079 0.0476196i 7.83501e−5 5.48613e-5i
\(869\) 170.088 + 467.314i 0.195729 + 0.537760i
\(870\) −652.110 + 54.4946i −0.749552 + 0.0626375i
\(871\) 32.7282 + 185.611i 0.0375754 + 0.213101i
\(872\) −236.584 63.3924i −0.271311 0.0726977i
\(873\) 371.063 + 53.7876i 0.425044 + 0.0616124i
\(874\) −5.00145 2.88759i −0.00572248 0.00330388i
\(875\) −24.4242 96.5052i −0.0279133 0.110292i
\(876\) 343.806 386.913i 0.392473 0.441681i
\(877\) −1524.69 + 133.393i −1.73853 + 0.152102i −0.911837 0.410553i \(-0.865336\pi\)
−0.826692 + 0.562654i \(0.809780\pi\)
\(878\) 99.2471 + 1134.40i 0.113038 + 1.29203i
\(879\) 107.203 35.6120i 0.121960 0.0405142i
\(880\) 71.8316 + 97.4270i 0.0816269 + 0.110713i
\(881\) −563.305 + 975.674i −0.639393 + 1.10746i 0.346173 + 0.938171i \(0.387481\pi\)
−0.985566 + 0.169291i \(0.945852\pi\)
\(882\) −584.638 192.761i −0.662855 0.218550i
\(883\) 22.7162 84.7781i 0.0257262 0.0960114i −0.951869 0.306505i \(-0.900840\pi\)
0.977595 + 0.210493i \(0.0675071\pi\)
\(884\) −14.4017 + 2.53940i −0.0162915 + 0.00287263i
\(885\) 170.712 946.588i 0.192895 1.06959i
\(886\) −1011.55 + 368.173i −1.14170 + 0.415546i
\(887\) 477.868 + 682.467i 0.538747 + 0.769410i 0.992569 0.121682i \(-0.0388288\pi\)
−0.453822 + 0.891092i \(0.649940\pi\)
\(888\) 150.190 + 44.8420i 0.169133 + 0.0504977i
\(889\) 115.201 + 137.291i 0.129585 + 0.154434i
\(890\) −46.2113 229.165i −0.0519228 0.257489i
\(891\) 29.9641 + 489.314i 0.0336297 + 0.549174i
\(892\) −43.5767 + 43.5767i −0.0488528 + 0.0488528i
\(893\) −119.929 10.4925i −0.134299 0.0117497i
\(894\) −185.888 344.136i −0.207928 0.384939i
\(895\) 1278.85 + 1217.80i 1.42888 + 1.36067i
\(896\) 8.46668 3.08162i 0.00944942 0.00343931i
\(897\) −4.32514 10.0063i −0.00482179 0.0111553i
\(898\) −97.5950 + 139.380i −0.108680 + 0.155212i
\(899\) −1.39251 + 0.803967i −0.00154896 + 0.000894290i
\(900\) −150.612 424.047i −0.167346 0.471164i
\(901\) 94.3987 163.503i 0.104771 0.181469i
\(902\) −63.0070 + 29.3806i −0.0698526 + 0.0325728i
\(903\) 50.3943 100.530i 0.0558077 0.111329i
\(904\) 324.850 387.141i 0.359347 0.428253i
\(905\) −371.283 1261.44i −0.410257 1.39386i
\(906\) 1.55882 1.75426i 0.00172055 0.00193627i
\(907\) −832.554 + 388.226i −0.917921 + 0.428034i −0.823382 0.567488i \(-0.807915\pi\)
−0.0945390 + 0.995521i \(0.530138\pi\)
\(908\) 781.636 209.439i 0.860833 0.230660i
\(909\) −288.334 + 671.184i −0.317199 + 0.738376i
\(910\) 11.9812 + 13.5896i 0.0131662 + 0.0149336i
\(911\) 175.942 + 997.818i 0.193131 + 1.09530i 0.915056 + 0.403328i \(0.132147\pi\)
−0.721925 + 0.691972i \(0.756742\pi\)
\(912\) 43.0979 + 5.00485i 0.0472565 + 0.00548777i
\(913\) −417.099 194.496i −0.456844 0.213030i
\(914\) 292.998 + 51.6634i 0.320567 + 0.0565245i
\(915\) −295.408 + 801.898i −0.322850 + 0.876391i
\(916\) −460.538 + 386.437i −0.502771 + 0.421875i
\(917\) 22.6495 22.6495i 0.0246996 0.0246996i
\(918\) 66.6036 + 55.6336i 0.0725530 + 0.0606031i
\(919\) 220.261i 0.239675i −0.992794 0.119837i \(-0.961763\pi\)
0.992794 0.119837i \(-0.0382373\pi\)
\(920\) 1.78071 + 15.8732i 0.00193555 + 0.0172535i
\(921\) −23.6045 + 832.589i −0.0256292 + 0.904005i
\(922\) −736.097 1051.25i −0.798369 1.14019i
\(923\) 207.234 + 96.6346i 0.224522 + 0.104696i
\(924\) 4.21268 + 28.6109i 0.00455918 + 0.0309642i
\(925\) 97.5772 451.378i 0.105489 0.487976i
\(926\) −203.380 352.265i −0.219633 0.380415i
\(927\) −29.1850 47.1586i −0.0314833 0.0508723i
\(928\) −168.556 + 45.1645i −0.181634 + 0.0486686i
\(929\) −434.218 + 1193.01i −0.467404 + 1.28418i 0.452404 + 0.891813i \(0.350567\pi\)
−0.919808 + 0.392369i \(0.871656\pi\)
\(930\) −0.778818 0.784907i −0.000837439 0.000843986i
\(931\) −133.960 112.406i −0.143888 0.120737i
\(932\) −370.947 + 32.4536i −0.398011 + 0.0348215i
\(933\) 675.224 + 1024.96i 0.723713 + 1.09857i
\(934\) −153.456 + 421.616i −0.164300 + 0.451409i
\(935\) −21.9358 + 65.1841i −0.0234607 + 0.0697156i
\(936\) 59.6534 + 56.1122i 0.0637323 + 0.0599489i
\(937\) 1546.75 + 414.451i 1.65075 + 0.442317i 0.959823 0.280606i \(-0.0905354\pi\)
0.690928 + 0.722923i \(0.257202\pi\)
\(938\) 37.8443 54.0473i 0.0403457 0.0576197i
\(939\) −128.965 875.882i −0.137343 0.932782i
\(940\) 173.482 + 284.200i 0.184555 + 0.302340i
\(941\) 246.491 1397.92i 0.261946 1.48557i −0.515646 0.856802i \(-0.672448\pi\)
0.777592 0.628769i \(-0.216441\pi\)
\(942\) −776.183 821.478i −0.823973 0.872057i
\(943\) −9.13889 0.799549i −0.00969129 0.000847878i
\(944\) 256.495i 0.271711i
\(945\) 15.8374 106.339i 0.0167591 0.112528i
\(946\) 402.867 0.425864
\(947\) 15.5050 177.223i 0.0163728 0.187142i −0.983604 0.180341i \(-0.942280\pi\)
0.999977 0.00680044i \(-0.00216466\pi\)
\(948\) −114.054 479.639i −0.120310 0.505948i
\(949\) 273.319 + 48.1935i 0.288007 + 0.0507835i
\(950\) 4.90338 127.738i 0.00516145 0.134461i
\(951\) −64.5994 81.5741i −0.0679279 0.0857772i
\(952\) 4.19357 + 2.93637i 0.00440501 + 0.00308442i
\(953\) 97.6401 364.398i 0.102456 0.382369i −0.895589 0.444883i \(-0.853245\pi\)
0.998044 + 0.0625140i \(0.0199118\pi\)
\(954\) −1049.98 + 124.312i −1.10060 + 0.130306i
\(955\) 1138.12 564.987i 1.19174 0.591609i
\(956\) 3.49145 + 1.27078i 0.00365215 + 0.00132927i
\(957\) −32.9837 559.124i −0.0344657 0.584247i
\(958\) −66.8315 763.888i −0.0697615 0.797378i
\(959\) −79.5841 + 94.8446i −0.0829865 + 0.0988995i
\(960\) −59.5949 104.156i −0.0620780 0.108496i
\(961\) 903.042 + 328.680i 0.939690 + 0.342019i
\(962\) 21.7525 + 81.1814i 0.0226117 + 0.0843881i
\(963\) −1444.72 + 300.557i −1.50023 + 0.312105i
\(964\) 565.309 326.381i 0.586420 0.338570i
\(965\) 846.345 331.694i 0.877042 0.343724i
\(966\) −1.40630 + 3.54758i −0.00145580 + 0.00367244i
\(967\) 297.044 637.012i 0.307181 0.658751i −0.690747 0.723096i \(-0.742718\pi\)
0.997928 + 0.0643456i \(0.0204960\pi\)
\(968\) 195.479 136.876i 0.201941 0.141401i
\(969\) 11.7161 + 21.6902i 0.0120910 + 0.0223841i
\(970\) −32.8411 292.746i −0.0338568 0.301799i
\(971\) 189.252 0.194905 0.0974523 0.995240i \(-0.468931\pi\)
0.0974523 + 0.995240i \(0.468931\pi\)
\(972\) 26.4492 485.280i 0.0272111 0.499259i
\(973\) −76.3640 76.3640i −0.0784830 0.0784830i
\(974\) 530.578 + 632.318i 0.544741 + 0.649197i
\(975\) 151.267 187.989i 0.155146 0.192809i
\(976\) −39.5723 + 224.426i −0.0405454 + 0.229944i
\(977\) 228.843 490.755i 0.234230 0.502308i −0.753698 0.657221i \(-0.771732\pi\)
0.987928 + 0.154913i \(0.0495097\pi\)
\(978\) 1259.84 544.556i 1.28818 0.556806i
\(979\) 197.054 34.7460i 0.201281 0.0354913i
\(980\) −30.3619 + 482.704i −0.0309816 + 0.492555i
\(981\) −427.294 + 651.784i −0.435570 + 0.664408i
\(982\) −60.7606 226.762i −0.0618744 0.230918i
\(983\) −100.045 214.547i −0.101775 0.218258i 0.848826 0.528672i \(-0.177310\pi\)
−0.950601 + 0.310414i \(0.899532\pi\)
\(984\) 65.4061 21.7274i 0.0664696 0.0220807i
\(985\) −1312.06 715.331i −1.33204 0.726224i
\(986\) −75.9533 63.7324i −0.0770317 0.0646373i
\(987\) 4.68466 + 79.4122i 0.00474636 + 0.0804582i
\(988\) 9.83200 + 21.0848i 0.00995142 + 0.0213409i
\(989\) 46.0393 + 26.5808i 0.0465514 + 0.0268764i
\(990\) 365.992 119.999i 0.369688 0.121211i
\(991\) −502.082 869.631i −0.506642 0.877529i −0.999970 0.00768622i \(-0.997553\pi\)
0.493329 0.869843i \(-0.335780\pi\)
\(992\) −0.241536 0.169125i −0.000243484 0.000170489i
\(993\) −35.2235 + 303.318i −0.0354718 + 0.305456i
\(994\) −27.3775 75.2190i −0.0275427 0.0756730i
\(995\) 296.612 + 282.451i 0.298103 + 0.283871i
\(996\) 388.497 + 239.229i 0.390057 + 0.240189i
\(997\) −27.0761 + 309.482i −0.0271576 + 0.310413i 0.970451 + 0.241298i \(0.0775731\pi\)
−0.997609 + 0.0691150i \(0.977982\pi\)
\(998\) 348.073 + 348.073i 0.348771 + 0.348771i
\(999\) 285.156 409.190i 0.285441 0.409599i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 270.3.q.a.103.18 yes 216
5.2 odd 4 inner 270.3.q.a.157.11 yes 216
27.16 even 9 inner 270.3.q.a.43.11 216
135.97 odd 36 inner 270.3.q.a.97.18 yes 216
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
270.3.q.a.43.11 216 27.16 even 9 inner
270.3.q.a.97.18 yes 216 135.97 odd 36 inner
270.3.q.a.103.18 yes 216 1.1 even 1 trivial
270.3.q.a.157.11 yes 216 5.2 odd 4 inner