Properties

Label 270.6.a.g
Level $270$
Weight $6$
Character orbit 270.a
Self dual yes
Analytic conductor $43.304$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,6,Mod(1,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 270.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.3036313495\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{9681}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 2420 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + 3\sqrt{9681})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} + 16 q^{4} - 25 q^{5} + ( - \beta + 85) q^{7} - 64 q^{8} + 100 q^{10} + (\beta - 164) q^{11} + ( - 4 \beta + 319) q^{13} + (4 \beta - 340) q^{14} + 256 q^{16} + ( - 13 \beta + 158) q^{17} + (13 \beta - 183) q^{19}+ \cdots + (676 \beta - 48800) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 32 q^{4} - 50 q^{5} + 169 q^{7} - 128 q^{8} + 200 q^{10} - 327 q^{11} + 634 q^{13} - 676 q^{14} + 512 q^{16} + 303 q^{17} - 353 q^{19} - 800 q^{20} + 1308 q^{22} - 1041 q^{23} + 1250 q^{25}+ \cdots - 96924 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
49.6960
−48.6960
−4.00000 0 16.0000 −25.0000 0 −63.0881 −64.0000 0 100.000
1.2 −4.00000 0 16.0000 −25.0000 0 232.088 −64.0000 0 100.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 270.6.a.g 2
3.b odd 2 1 270.6.a.p yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
270.6.a.g 2 1.a even 1 1 trivial
270.6.a.p yes 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(270))\):

\( T_{7}^{2} - 169T_{7} - 14642 \) Copy content Toggle raw display
\( T_{11}^{2} + 327T_{11} + 4950 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 25)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 169T - 14642 \) Copy content Toggle raw display
$11$ \( T^{2} + 327T + 4950 \) Copy content Toggle raw display
$13$ \( T^{2} - 634T - 248027 \) Copy content Toggle raw display
$17$ \( T^{2} - 303 T - 3658248 \) Copy content Toggle raw display
$19$ \( T^{2} + 353 T - 3650048 \) Copy content Toggle raw display
$23$ \( T^{2} + 1041 T + 249138 \) Copy content Toggle raw display
$29$ \( T^{2} + 4005 T + 1374354 \) Copy content Toggle raw display
$31$ \( T^{2} - 2773 T + 1900600 \) Copy content Toggle raw display
$37$ \( T^{2} - 1075T + 92866 \) Copy content Toggle raw display
$41$ \( T^{2} + 3990 T - 34443864 \) Copy content Toggle raw display
$43$ \( T^{2} - 7621 T - 22096052 \) Copy content Toggle raw display
$47$ \( T^{2} + 12801 T + 40421844 \) Copy content Toggle raw display
$53$ \( T^{2} - 7482 T - 729720 \) Copy content Toggle raw display
$59$ \( T^{2} + 29436 T - 369235872 \) Copy content Toggle raw display
$61$ \( T^{2} - 54073 T + 697841530 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 1366172324 \) Copy content Toggle raw display
$71$ \( T^{2} - 71334 T - 930573360 \) Copy content Toggle raw display
$73$ \( T^{2} - 42565 T - 17747834 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 6832014541 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 3844057932 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 2629182240 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 1695148690 \) Copy content Toggle raw display
show more
show less