Properties

Label 270.6.a.i
Level $270$
Weight $6$
Character orbit 270.a
Self dual yes
Analytic conductor $43.304$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,6,Mod(1,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 270.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.3036313495\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{11}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 18\sqrt{11}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} + 16 q^{4} + 25 q^{5} + (\beta - 10) q^{7} - 64 q^{8} - 100 q^{10} + (9 \beta + 60) q^{11} + (5 \beta - 10) q^{13} + ( - 4 \beta + 40) q^{14} + 256 q^{16} + ( - 25 \beta + 849) q^{17} + ( - 15 \beta - 229) q^{19}+ \cdots + (80 \beta + 52572) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 32 q^{4} + 50 q^{5} - 20 q^{7} - 128 q^{8} - 200 q^{10} + 120 q^{11} - 20 q^{13} + 80 q^{14} + 512 q^{16} + 1698 q^{17} - 458 q^{19} + 800 q^{20} - 480 q^{22} + 1386 q^{23} + 1250 q^{25}+ \cdots + 105144 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.31662
3.31662
−4.00000 0 16.0000 25.0000 0 −69.6992 −64.0000 0 −100.000
1.2 −4.00000 0 16.0000 25.0000 0 49.6992 −64.0000 0 −100.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 270.6.a.i 2
3.b odd 2 1 270.6.a.k yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
270.6.a.i 2 1.a even 1 1 trivial
270.6.a.k yes 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(270))\):

\( T_{7}^{2} + 20T_{7} - 3464 \) Copy content Toggle raw display
\( T_{11}^{2} - 120T_{11} - 285084 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T - 25)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 20T - 3464 \) Copy content Toggle raw display
$11$ \( T^{2} - 120T - 285084 \) Copy content Toggle raw display
$13$ \( T^{2} + 20T - 89000 \) Copy content Toggle raw display
$17$ \( T^{2} - 1698 T - 1506699 \) Copy content Toggle raw display
$19$ \( T^{2} + 458T - 749459 \) Copy content Toggle raw display
$23$ \( T^{2} - 1386 T - 16983351 \) Copy content Toggle raw display
$29$ \( T^{2} - 9060 T + 473400 \) Copy content Toggle raw display
$31$ \( T^{2} + 9866 T - 1415411 \) Copy content Toggle raw display
$37$ \( T^{2} + 8300 T + 14428324 \) Copy content Toggle raw display
$41$ \( T^{2} + 1080 T - 176942556 \) Copy content Toggle raw display
$43$ \( T^{2} + 9440 T - 251183756 \) Copy content Toggle raw display
$47$ \( T^{2} - 25344 T + 124939584 \) Copy content Toggle raw display
$53$ \( T^{2} - 43314 T + 413338149 \) Copy content Toggle raw display
$59$ \( T^{2} + 13380 T - 148729896 \) Copy content Toggle raw display
$61$ \( T^{2} - 13642 T - 142009559 \) Copy content Toggle raw display
$67$ \( T^{2} - 59020 T + 510434164 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 2210771700 \) Copy content Toggle raw display
$73$ \( T^{2} - 64600 T + 929095876 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 1260317075 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 1576470375 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 4365901764 \) Copy content Toggle raw display
$97$ \( T^{2} - 112480 T - 372607424 \) Copy content Toggle raw display
show more
show less