Properties

Label 2700.1.ca.a.1307.2
Level $2700$
Weight $1$
Character 2700.1307
Analytic conductor $1.347$
Analytic rank $0$
Dimension $24$
Projective image $D_{18}$
CM discriminant -20
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2700,1,Mod(407,2700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2700, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([18, 2, 9]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2700.407");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2700.ca (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34747553411\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(2\) over \(\Q(\zeta_{36})\)
Coefficient field: \(\Q(\zeta_{72})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} - x^{12} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{18}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{18} + \cdots)\)

Embedding invariants

Embedding label 1307.2
Root \(-0.422618 - 0.906308i\) of defining polynomial
Character \(\chi\) \(=\) 2700.1307
Dual form 2700.1.ca.a.2543.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0871557 + 0.996195i) q^{2} +(0.906308 - 0.422618i) q^{3} +(-0.984808 + 0.173648i) q^{4} +(0.500000 + 0.866025i) q^{6} +(0.392349 + 0.560333i) q^{7} +(-0.258819 - 0.965926i) q^{8} +(0.642788 - 0.766044i) q^{9} +(-0.819152 + 0.573576i) q^{12} +(-0.524005 + 0.439693i) q^{14} +(0.939693 - 0.342020i) q^{16} +(0.819152 + 0.573576i) q^{18} +(0.592396 + 0.342020i) q^{21} +(0.284489 + 0.199201i) q^{23} +(-0.642788 - 0.766044i) q^{24} +(0.258819 - 0.965926i) q^{27} +(-0.483690 - 0.483690i) q^{28} +(1.50881 + 1.26604i) q^{29} +(0.422618 + 0.906308i) q^{32} +(-0.500000 + 0.866025i) q^{36} +(-0.826352 - 0.984808i) q^{41} +(-0.289088 + 0.619951i) q^{42} +(1.56977 + 0.731996i) q^{43} +(-0.173648 + 0.300767i) q^{46} +(-1.25501 + 0.878770i) q^{47} +(0.707107 - 0.707107i) q^{48} +(0.181985 - 0.500000i) q^{49} +(0.984808 + 0.173648i) q^{54} +(0.439693 - 0.524005i) q^{56} +(-1.12973 + 1.61341i) q^{58} +(0.326352 - 1.85083i) q^{61} +(0.681437 + 0.0596180i) q^{63} +(-0.866025 + 0.500000i) q^{64} +(-0.112045 + 1.28068i) q^{67} +(0.342020 + 0.0603074i) q^{69} +(-0.906308 - 0.422618i) q^{72} +(-0.173648 - 0.984808i) q^{81} +(0.909039 - 0.909039i) q^{82} +(-1.52626 + 0.133530i) q^{83} +(-0.642788 - 0.233956i) q^{84} +(-0.592396 + 1.62760i) q^{86} +(1.90250 + 0.509774i) q^{87} +(0.642788 - 1.11334i) q^{89} +(-0.314757 - 0.146774i) q^{92} +(-0.984808 - 1.17365i) q^{94} +(0.766044 + 0.642788i) q^{96} +(0.513958 + 0.137715i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 12 q^{6} - 12 q^{36} - 24 q^{41} - 12 q^{56} + 12 q^{61}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2700\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1351\) \(2377\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0871557 + 0.996195i 0.0871557 + 0.996195i
\(3\) 0.906308 0.422618i 0.906308 0.422618i
\(4\) −0.984808 + 0.173648i −0.984808 + 0.173648i
\(5\) 0 0
\(6\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(7\) 0.392349 + 0.560333i 0.392349 + 0.560333i 0.965926 0.258819i \(-0.0833333\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(8\) −0.258819 0.965926i −0.258819 0.965926i
\(9\) 0.642788 0.766044i 0.642788 0.766044i
\(10\) 0 0
\(11\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(12\) −0.819152 + 0.573576i −0.819152 + 0.573576i
\(13\) 0 0 −0.996195 0.0871557i \(-0.972222\pi\)
0.996195 + 0.0871557i \(0.0277778\pi\)
\(14\) −0.524005 + 0.439693i −0.524005 + 0.439693i
\(15\) 0 0
\(16\) 0.939693 0.342020i 0.939693 0.342020i
\(17\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(18\) 0.819152 + 0.573576i 0.819152 + 0.573576i
\(19\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(20\) 0 0
\(21\) 0.592396 + 0.342020i 0.592396 + 0.342020i
\(22\) 0 0
\(23\) 0.284489 + 0.199201i 0.284489 + 0.199201i 0.707107 0.707107i \(-0.250000\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(24\) −0.642788 0.766044i −0.642788 0.766044i
\(25\) 0 0
\(26\) 0 0
\(27\) 0.258819 0.965926i 0.258819 0.965926i
\(28\) −0.483690 0.483690i −0.483690 0.483690i
\(29\) 1.50881 + 1.26604i 1.50881 + 1.26604i 0.866025 + 0.500000i \(0.166667\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(30\) 0 0
\(31\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(32\) 0.422618 + 0.906308i 0.422618 + 0.906308i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(37\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.826352 0.984808i −0.826352 0.984808i 0.173648 0.984808i \(-0.444444\pi\)
−1.00000 \(\pi\)
\(42\) −0.289088 + 0.619951i −0.289088 + 0.619951i
\(43\) 1.56977 + 0.731996i 1.56977 + 0.731996i 0.996195 0.0871557i \(-0.0277778\pi\)
0.573576 + 0.819152i \(0.305556\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(47\) −1.25501 + 0.878770i −1.25501 + 0.878770i −0.996195 0.0871557i \(-0.972222\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(48\) 0.707107 0.707107i 0.707107 0.707107i
\(49\) 0.181985 0.500000i 0.181985 0.500000i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(54\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(55\) 0 0
\(56\) 0.439693 0.524005i 0.439693 0.524005i
\(57\) 0 0
\(58\) −1.12973 + 1.61341i −1.12973 + 1.61341i
\(59\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(60\) 0 0
\(61\) 0.326352 1.85083i 0.326352 1.85083i −0.173648 0.984808i \(-0.555556\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(62\) 0 0
\(63\) 0.681437 + 0.0596180i 0.681437 + 0.0596180i
\(64\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(65\) 0 0
\(66\) 0 0
\(67\) −0.112045 + 1.28068i −0.112045 + 1.28068i 0.707107 + 0.707107i \(0.250000\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(68\) 0 0
\(69\) 0.342020 + 0.0603074i 0.342020 + 0.0603074i
\(70\) 0 0
\(71\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(72\) −0.906308 0.422618i −0.906308 0.422618i
\(73\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(80\) 0 0
\(81\) −0.173648 0.984808i −0.173648 0.984808i
\(82\) 0.909039 0.909039i 0.909039 0.909039i
\(83\) −1.52626 + 0.133530i −1.52626 + 0.133530i −0.819152 0.573576i \(-0.805556\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(84\) −0.642788 0.233956i −0.642788 0.233956i
\(85\) 0 0
\(86\) −0.592396 + 1.62760i −0.592396 + 1.62760i
\(87\) 1.90250 + 0.509774i 1.90250 + 0.509774i
\(88\) 0 0
\(89\) 0.642788 1.11334i 0.642788 1.11334i −0.342020 0.939693i \(-0.611111\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.314757 0.146774i −0.314757 0.146774i
\(93\) 0 0
\(94\) −0.984808 1.17365i −0.984808 1.17365i
\(95\) 0 0
\(96\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(97\) 0 0 0.422618 0.906308i \(-0.361111\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(98\) 0.513958 + 0.137715i 0.513958 + 0.137715i
\(99\) 0 0
\(100\) 0 0
\(101\) −1.70574 0.300767i −1.70574 0.300767i −0.766044 0.642788i \(-0.777778\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(102\) 0 0
\(103\) 0.731996 + 1.56977i 0.731996 + 1.56977i 0.819152 + 0.573576i \(0.194444\pi\)
−0.0871557 + 0.996195i \(0.527778\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.32893 1.32893i −1.32893 1.32893i −0.906308 0.422618i \(-0.861111\pi\)
−0.422618 0.906308i \(-0.638889\pi\)
\(108\) −0.0871557 + 0.996195i −0.0871557 + 0.996195i
\(109\) 0.347296i 0.347296i −0.984808 0.173648i \(-0.944444\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.560333 + 0.392349i 0.560333 + 0.392349i
\(113\) 0 0 0.906308 0.422618i \(-0.138889\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.70574 0.984808i −1.70574 0.984808i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(122\) 1.87223 + 0.163799i 1.87223 + 0.163799i
\(123\) −1.16513 0.543308i −1.16513 0.543308i
\(124\) 0 0
\(125\) 0 0
\(126\) 0.684040i 0.684040i
\(127\) 0.509774 + 1.90250i 0.509774 + 1.90250i 0.422618 + 0.906308i \(0.361111\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(128\) −0.573576 0.819152i −0.573576 0.819152i
\(129\) 1.73205 1.73205
\(130\) 0 0
\(131\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −1.28558 −1.28558
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.0871557 0.996195i \(-0.527778\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(138\) −0.0302689 + 0.345975i −0.0302689 + 0.345975i
\(139\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(140\) 0 0
\(141\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(142\) 0 0
\(143\) 0 0
\(144\) 0.342020 0.939693i 0.342020 0.939693i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.0463746 0.530064i −0.0463746 0.530064i
\(148\) 0 0
\(149\) −1.50881 + 1.26604i −1.50881 + 1.26604i −0.642788 + 0.766044i \(0.722222\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(150\) 0 0
\(151\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.906308 0.422618i \(-0.138889\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.237565i 0.237565i
\(162\) 0.965926 0.258819i 0.965926 0.258819i
\(163\) −1.22474 1.22474i −1.22474 1.22474i −0.965926 0.258819i \(-0.916667\pi\)
−0.258819 0.965926i \(-0.583333\pi\)
\(164\) 0.984808 + 0.826352i 0.984808 + 0.826352i
\(165\) 0 0
\(166\) −0.266044 1.50881i −0.266044 1.50881i
\(167\) −0.146774 0.314757i −0.146774 0.314757i 0.819152 0.573576i \(-0.194444\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(168\) 0.177043 0.660732i 0.177043 0.660732i
\(169\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(170\) 0 0
\(171\) 0 0
\(172\) −1.67303 0.448288i −1.67303 0.448288i
\(173\) 0 0 0.422618 0.906308i \(-0.361111\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(174\) −0.342020 + 1.93969i −0.342020 + 1.93969i
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 1.16513 + 0.543308i 1.16513 + 0.543308i
\(179\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(180\) 0 0
\(181\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(182\) 0 0
\(183\) −0.486421 1.81535i −0.486421 1.81535i
\(184\) 0.118782 0.326352i 0.118782 0.326352i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 1.08335 1.08335i 1.08335 1.08335i
\(189\) 0.642788 0.233956i 0.642788 0.233956i
\(190\) 0 0
\(191\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(192\) −0.573576 + 0.819152i −0.573576 + 0.819152i
\(193\) 0 0 0.573576 0.819152i \(-0.305556\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.0923963 + 0.524005i −0.0923963 + 0.524005i
\(197\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(198\) 0 0
\(199\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(200\) 0 0
\(201\) 0.439693 + 1.20805i 0.439693 + 1.20805i
\(202\) 0.150958 1.72546i 0.150958 1.72546i
\(203\) −0.117425 + 1.34217i −0.117425 + 1.34217i
\(204\) 0 0
\(205\) 0 0
\(206\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(207\) 0.335463 0.0898869i 0.335463 0.0898869i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 1.20805 1.43969i 1.20805 1.43969i
\(215\) 0 0
\(216\) −1.00000 −1.00000
\(217\) 0 0
\(218\) 0.345975 0.0302689i 0.345975 0.0302689i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 1.05308 0.737376i 1.05308 0.737376i 0.0871557 0.996195i \(-0.472222\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(224\) −0.342020 + 0.592396i −0.342020 + 0.592396i
\(225\) 0 0
\(226\) 0 0
\(227\) −0.906308 0.422618i −0.906308 0.422618i −0.0871557 0.996195i \(-0.527778\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(228\) 0 0
\(229\) −0.223238 0.266044i −0.223238 0.266044i 0.642788 0.766044i \(-0.277778\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.832395 1.78508i 0.832395 1.78508i
\(233\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(240\) 0 0
\(241\) −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(242\) −0.707107 0.707107i −0.707107 0.707107i
\(243\) −0.573576 0.819152i −0.573576 0.819152i
\(244\) 1.87939i 1.87939i
\(245\) 0 0
\(246\) 0.439693 1.20805i 0.439693 1.20805i
\(247\) 0 0
\(248\) 0 0
\(249\) −1.32683 + 0.766044i −1.32683 + 0.766044i
\(250\) 0 0
\(251\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(252\) −0.681437 + 0.0596180i −0.681437 + 0.0596180i
\(253\) 0 0
\(254\) −1.85083 + 0.673648i −1.85083 + 0.673648i
\(255\) 0 0
\(256\) 0.766044 0.642788i 0.766044 0.642788i
\(257\) 0 0 −0.996195 0.0871557i \(-0.972222\pi\)
0.996195 + 0.0871557i \(0.0277778\pi\)
\(258\) 0.150958 + 1.72546i 0.150958 + 1.72546i
\(259\) 0 0
\(260\) 0 0
\(261\) 1.93969 0.342020i 1.93969 0.342020i
\(262\) 0 0
\(263\) −0.573576 0.819152i −0.573576 0.819152i 0.422618 0.906308i \(-0.361111\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0.112045 1.28068i 0.112045 1.28068i
\(268\) −0.112045 1.28068i −0.112045 1.28068i
\(269\) 0.684040 0.684040 0.342020 0.939693i \(-0.388889\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) −0.347296 −0.347296
\(277\) 0 0 −0.573576 0.819152i \(-0.694444\pi\)
0.573576 + 0.819152i \(0.305556\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.233956 + 0.642788i 0.233956 + 0.642788i 1.00000 \(0\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(282\) −1.38854 0.647489i −1.38854 0.647489i
\(283\) −1.96212 0.171663i −1.96212 0.171663i −0.965926 0.258819i \(-0.916667\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.227602 0.849421i 0.227602 0.849421i
\(288\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(289\) −0.866025 0.500000i −0.866025 0.500000i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.819152 0.573576i \(-0.805556\pi\)
0.819152 + 0.573576i \(0.194444\pi\)
\(294\) 0.524005 0.0923963i 0.524005 0.0923963i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) −1.39273 1.39273i −1.39273 1.39273i
\(299\) 0 0
\(300\) 0 0
\(301\) 0.205737 + 1.16679i 0.205737 + 1.16679i
\(302\) 0 0
\(303\) −1.67303 + 0.448288i −1.67303 + 0.448288i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −1.90250 0.509774i −1.90250 0.509774i −0.996195 0.0871557i \(-0.972222\pi\)
−0.906308 0.422618i \(-0.861111\pi\)
\(308\) 0 0
\(309\) 1.32683 + 1.11334i 1.32683 + 1.11334i
\(310\) 0 0
\(311\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(312\) 0 0
\(313\) 0 0 −0.906308 0.422618i \(-0.861111\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.819152 0.573576i \(-0.194444\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −1.76604 0.642788i −1.76604 0.642788i
\(322\) −0.236661 + 0.0207051i −0.236661 + 0.0207051i
\(323\) 0 0
\(324\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(325\) 0 0
\(326\) 1.11334 1.32683i 1.11334 1.32683i
\(327\) −0.146774 0.314757i −0.146774 0.314757i
\(328\) −0.737376 + 1.05308i −0.737376 + 1.05308i
\(329\) −0.984808 0.358441i −0.984808 0.358441i
\(330\) 0 0
\(331\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(332\) 1.47988 0.396534i 1.47988 0.396534i
\(333\) 0 0
\(334\) 0.300767 0.173648i 0.300767 0.173648i
\(335\) 0 0
\(336\) 0.673648 + 0.118782i 0.673648 + 0.118782i
\(337\) 0 0 0.0871557 0.996195i \(-0.472222\pi\)
−0.0871557 + 0.996195i \(0.527778\pi\)
\(338\) −0.0871557 + 0.996195i −0.0871557 + 0.996195i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 1.01230 0.271245i 1.01230 0.271245i
\(344\) 0.300767 1.70574i 0.300767 1.70574i
\(345\) 0 0
\(346\) 0 0
\(347\) 0.573576 0.819152i 0.573576 0.819152i −0.422618 0.906308i \(-0.638889\pi\)
0.996195 + 0.0871557i \(0.0277778\pi\)
\(348\) −1.96212 0.171663i −1.96212 0.171663i
\(349\) −0.984808 + 1.17365i −0.984808 + 1.17365i 1.00000i \(0.5\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.996195 0.0871557i \(-0.0277778\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −0.439693 + 1.20805i −0.439693 + 1.20805i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(360\) 0 0
\(361\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(362\) 1.70330 + 0.794263i 1.70330 + 0.794263i
\(363\) −0.422618 + 0.906308i −0.422618 + 0.906308i
\(364\) 0 0
\(365\) 0 0
\(366\) 1.76604 0.642788i 1.76604 0.642788i
\(367\) 0 0 −0.906308 0.422618i \(-0.861111\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(368\) 0.335463 + 0.0898869i 0.335463 + 0.0898869i
\(369\) −1.28558 −1.28558
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.422618 0.906308i \(-0.638889\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(377\) 0 0
\(378\) 0.289088 + 0.619951i 0.289088 + 0.619951i
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 1.26604 + 1.50881i 1.26604 + 1.50881i
\(382\) 0 0
\(383\) −0.906308 + 0.422618i −0.906308 + 0.422618i −0.819152 0.573576i \(-0.805556\pi\)
−0.0871557 + 0.996195i \(0.527778\pi\)
\(384\) −0.866025 0.500000i −0.866025 0.500000i
\(385\) 0 0
\(386\) 0 0
\(387\) 1.56977 0.731996i 1.56977 0.731996i
\(388\) 0 0
\(389\) −1.20805 + 0.439693i −1.20805 + 0.439693i −0.866025 0.500000i \(-0.833333\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.530064 0.0463746i −0.530064 0.0463746i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.70574 0.300767i 1.70574 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(402\) −1.16513 + 0.543308i −1.16513 + 0.543308i
\(403\) 0 0
\(404\) 1.73205 1.73205
\(405\) 0 0
\(406\) −1.34730 −1.34730
\(407\) 0 0
\(408\) 0 0
\(409\) 0.984808 0.173648i 0.984808 0.173648i 0.342020 0.939693i \(-0.388889\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −0.993464 1.41881i −0.993464 1.41881i
\(413\) 0 0
\(414\) 0.118782 + 0.326352i 0.118782 + 0.326352i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(420\) 0 0
\(421\) −0.939693 + 0.342020i −0.939693 + 0.342020i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(422\) 0 0
\(423\) −0.133530 + 1.52626i −0.133530 + 1.52626i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.16513 0.543308i 1.16513 0.543308i
\(428\) 1.53950 + 1.07797i 1.53950 + 1.07797i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) −0.0871557 0.996195i −0.0871557 0.996195i
\(433\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(440\) 0 0
\(441\) −0.266044 0.460802i −0.266044 0.460802i
\(442\) 0 0
\(443\) −0.647489 + 1.38854i −0.647489 + 1.38854i 0.258819 + 0.965926i \(0.416667\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0.826352 + 0.984808i 0.826352 + 0.984808i
\(447\) −0.832395 + 1.78508i −0.832395 + 1.78508i
\(448\) −0.619951 0.289088i −0.619951 0.289088i
\(449\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0.342020 0.939693i 0.342020 0.939693i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.996195 0.0871557i \(-0.0277778\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(458\) 0.245576 0.245576i 0.245576 0.245576i
\(459\) 0 0
\(460\) 0 0
\(461\) −0.439693 + 0.524005i −0.439693 + 0.524005i −0.939693 0.342020i \(-0.888889\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(462\) 0 0
\(463\) 0.993464 1.41881i 0.993464 1.41881i 0.0871557 0.996195i \(-0.472222\pi\)
0.906308 0.422618i \(-0.138889\pi\)
\(464\) 1.85083 + 0.673648i 1.85083 + 0.673648i
\(465\) 0 0
\(466\) 0 0
\(467\) −0.965926 + 0.258819i −0.965926 + 0.258819i −0.707107 0.707107i \(-0.750000\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(468\) 0 0
\(469\) −0.761570 + 0.439693i −0.761570 + 0.439693i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 1.07797 1.53950i 1.07797 1.53950i
\(483\) 0.100399 + 0.215307i 0.100399 + 0.215307i
\(484\) 0.642788 0.766044i 0.642788 0.766044i
\(485\) 0 0
\(486\) 0.766044 0.642788i 0.766044 0.642788i
\(487\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(488\) −1.87223 + 0.163799i −1.87223 + 0.163799i
\(489\) −1.62760 0.592396i −1.62760 0.592396i
\(490\) 0 0
\(491\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(492\) 1.24177 + 0.332731i 1.24177 + 0.332731i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −0.878770 1.25501i −0.878770 1.25501i
\(499\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(500\) 0 0
\(501\) −0.266044 0.223238i −0.266044 0.223238i
\(502\) 0 0
\(503\) 1.81535 + 0.486421i 1.81535 + 0.486421i 0.996195 0.0871557i \(-0.0277778\pi\)
0.819152 + 0.573576i \(0.194444\pi\)
\(504\) −0.118782 0.673648i −0.118782 0.673648i
\(505\) 0 0
\(506\) 0 0
\(507\) 0.965926 0.258819i 0.965926 0.258819i
\(508\) −0.832395 1.78508i −0.832395 1.78508i
\(509\) −0.118782 0.673648i −0.118782 0.673648i −0.984808 0.173648i \(-0.944444\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) −1.70574 + 0.300767i −1.70574 + 0.300767i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.70574 + 0.984808i 1.70574 + 0.984808i 0.939693 + 0.342020i \(0.111111\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(522\) 0.509774 + 1.90250i 0.509774 + 1.90250i
\(523\) 0.177043 0.660732i 0.177043 0.660732i −0.819152 0.573576i \(-0.805556\pi\)
0.996195 0.0871557i \(-0.0277778\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0.766044 0.642788i 0.766044 0.642788i
\(527\) 0 0
\(528\) 0 0
\(529\) −0.300767 0.826352i −0.300767 0.826352i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 1.28558 1.28558
\(535\) 0 0
\(536\) 1.26604 0.223238i 1.26604 0.223238i
\(537\) 0 0
\(538\) 0.0596180 + 0.681437i 0.0596180 + 0.681437i
\(539\) 0 0
\(540\) 0 0
\(541\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(542\) 0 0
\(543\) 0.163799 1.87223i 0.163799 1.87223i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.737376 1.05308i −0.737376 1.05308i −0.996195 0.0871557i \(-0.972222\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(548\) 0 0
\(549\) −1.20805 1.43969i −1.20805 1.43969i
\(550\) 0 0
\(551\) 0 0
\(552\) −0.0302689 0.345975i −0.0302689 0.345975i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −0.619951 + 0.289088i −0.619951 + 0.289088i
\(563\) 1.25501 + 0.878770i 1.25501 + 0.878770i 0.996195 0.0871557i \(-0.0277778\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(564\) 0.524005 1.43969i 0.524005 1.43969i
\(565\) 0 0
\(566\) 1.96962i 1.96962i
\(567\) 0.483690 0.483690i 0.483690 0.483690i
\(568\) 0 0
\(569\) 1.32683 + 1.11334i 1.32683 + 1.11334i 0.984808 + 0.173648i \(0.0555556\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(570\) 0 0
\(571\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0.866025 + 0.152704i 0.866025 + 0.152704i
\(575\) 0 0
\(576\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(577\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(578\) 0.422618 0.906308i 0.422618 0.906308i
\(579\) 0 0
\(580\) 0 0
\(581\) −0.673648 0.802823i −0.673648 0.802823i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.53950 1.07797i 1.53950 1.07797i 0.573576 0.819152i \(-0.305556\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(588\) 0.137715 + 0.513958i 0.137715 + 0.513958i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.26604 1.50881i 1.26604 1.50881i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(600\) 0 0
\(601\) −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i \(0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(602\) −1.14442 + 0.306647i −1.14442 + 0.306647i
\(603\) 0.909039 + 0.909039i 0.909039 + 0.909039i
\(604\) 0 0
\(605\) 0 0
\(606\) −0.592396 1.62760i −0.592396 1.62760i
\(607\) −0.171663 + 1.96212i −0.171663 + 1.96212i 0.0871557 + 0.996195i \(0.472222\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(608\) 0 0
\(609\) 0.460802 + 1.26604i 0.460802 + 1.26604i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(614\) 0.342020 1.93969i 0.342020 1.93969i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.573576 0.819152i \(-0.305556\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(618\) −0.993464 + 1.41881i −0.993464 + 1.41881i
\(619\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(620\) 0 0
\(621\) 0.266044 0.223238i 0.266044 0.223238i
\(622\) 0 0
\(623\) 0.876039 0.0766435i 0.876039 0.0766435i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.673648 0.118782i −0.673648 0.118782i −0.173648 0.984808i \(-0.555556\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) 0.486421 1.81535i 0.486421 1.81535i
\(643\) 0.832395 + 1.78508i 0.832395 + 1.78508i 0.573576 + 0.819152i \(0.305556\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(644\) −0.0412527 0.233956i −0.0412527 0.233956i
\(645\) 0 0
\(646\) 0 0
\(647\) 0.245576 + 0.245576i 0.245576 + 0.245576i 0.819152 0.573576i \(-0.194444\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(648\) −0.906308 + 0.422618i −0.906308 + 0.422618i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 1.41881 + 0.993464i 1.41881 + 0.993464i
\(653\) 0 0 0.906308 0.422618i \(-0.138889\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(654\) 0.300767 0.173648i 0.300767 0.173648i
\(655\) 0 0
\(656\) −1.11334 0.642788i −1.11334 0.642788i
\(657\) 0 0
\(658\) 0.271245 1.01230i 0.271245 1.01230i
\(659\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(660\) 0 0
\(661\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0.524005 + 1.43969i 0.524005 + 1.43969i
\(665\) 0 0
\(666\) 0 0
\(667\) 0.177043 + 0.660732i 0.177043 + 0.660732i
\(668\) 0.199201 + 0.284489i 0.199201 + 0.284489i
\(669\) 0.642788 1.11334i 0.642788 1.11334i
\(670\) 0 0
\(671\) 0 0
\(672\) −0.0596180 + 0.681437i −0.0596180 + 0.681437i
\(673\) 0 0 −0.0871557 0.996195i \(-0.527778\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −1.00000 −1.00000
\(677\) 0 0 −0.0871557 0.996195i \(-0.527778\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −1.00000 −1.00000
\(682\) 0 0
\(683\) −0.258819 0.965926i −0.258819 0.965926i −0.965926 0.258819i \(-0.916667\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.358441 + 0.984808i 0.358441 + 0.984808i
\(687\) −0.314757 0.146774i −0.314757 0.146774i
\(688\) 1.72546 + 0.150958i 1.72546 + 0.150958i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(695\) 0 0
\(696\) 1.96962i 1.96962i
\(697\) 0 0
\(698\) −1.25501 0.878770i −1.25501 0.878770i
\(699\) 0 0
\(700\) 0 0
\(701\) 1.28558i 1.28558i 0.766044 + 0.642788i \(0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −0.500715 1.07379i −0.500715 1.07379i
\(708\) 0 0
\(709\) −1.50881 0.266044i −1.50881 0.266044i −0.642788 0.766044i \(-0.722222\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1.24177 0.332731i −1.24177 0.332731i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(720\) 0 0
\(721\) −0.592396 + 1.02606i −0.592396 + 1.02606i
\(722\) −0.819152 + 0.573576i −0.819152 + 0.573576i
\(723\) −1.81535 0.486421i −1.81535 0.486421i
\(724\) −0.642788 + 1.76604i −0.642788 + 1.76604i
\(725\) 0 0
\(726\) −0.939693 0.342020i −0.939693 0.342020i
\(727\) −0.681437 + 0.0596180i −0.681437 + 0.0596180i −0.422618 0.906308i \(-0.638889\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(728\) 0 0
\(729\) −0.866025 0.500000i −0.866025 0.500000i
\(730\) 0 0
\(731\) 0 0
\(732\) 0.794263 + 1.70330i 0.794263 + 1.70330i
\(733\) 0 0 0.573576 0.819152i \(-0.305556\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(737\) 0 0
\(738\) −0.112045 1.28068i −0.112045 1.28068i
\(739\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −0.133530 + 1.52626i −0.133530 + 1.52626i 0.573576 + 0.819152i \(0.305556\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −0.878770 + 1.25501i −0.878770 + 1.25501i
\(748\) 0 0
\(749\) 0.223238 1.26604i 0.223238 1.26604i
\(750\) 0 0
\(751\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(752\) −0.878770 + 1.25501i −0.878770 + 1.25501i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −0.592396 + 0.342020i −0.592396 + 0.342020i
\(757\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.439693 1.20805i 0.439693 1.20805i −0.500000 0.866025i \(-0.666667\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(762\) −1.39273 + 1.39273i −1.39273 + 1.39273i
\(763\) 0.194602 0.136262i 0.194602 0.136262i
\(764\) 0 0
\(765\) 0 0
\(766\) −0.500000 0.866025i −0.500000 0.866025i
\(767\) 0 0
\(768\) 0.422618 0.906308i 0.422618 0.906308i
\(769\) 1.20805 + 1.43969i 1.20805 + 1.43969i 0.866025 + 0.500000i \(0.166667\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(774\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −0.543308 1.16513i −0.543308 1.16513i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 1.61341 1.12973i 1.61341 1.12973i
\(784\) 0.532089i 0.532089i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.573576 0.819152i \(-0.305556\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(788\) 0 0
\(789\) −0.866025 0.500000i −0.866025 0.500000i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.996195 0.0871557i \(-0.972222\pi\)
0.996195 + 0.0871557i \(0.0277778\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −0.439693 1.20805i −0.439693 1.20805i
\(802\) 0.448288 + 1.67303i 0.448288 + 1.67303i
\(803\) 0 0
\(804\) −0.642788 1.11334i −0.642788 1.11334i
\(805\) 0 0
\(806\) 0 0
\(807\) 0.619951 0.289088i 0.619951 0.289088i
\(808\) 0.150958 + 1.72546i 0.150958 + 1.72546i
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) −0.117425 1.34217i −0.117425 1.34217i
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(819\) 0 0
\(820\) 0 0
\(821\) 0.673648 + 1.85083i 0.673648 + 1.85083i 0.500000 + 0.866025i \(0.333333\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(822\) 0 0
\(823\) −0.681437 0.0596180i −0.681437 0.0596180i −0.258819 0.965926i \(-0.583333\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(824\) 1.32683 1.11334i 1.32683 1.11334i
\(825\) 0 0
\(826\) 0 0
\(827\) −0.0898869 + 0.335463i −0.0898869 + 0.335463i −0.996195 0.0871557i \(-0.972222\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(828\) −0.314757 + 0.146774i −0.314757 + 0.146774i
\(829\) −0.300767 0.173648i −0.300767 0.173648i 0.342020 0.939693i \(-0.388889\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(840\) 0 0
\(841\) 0.500000 + 2.83564i 0.500000 + 2.83564i
\(842\) −0.422618 0.906308i −0.422618 0.906308i
\(843\) 0.483690 + 0.483690i 0.483690 + 0.483690i
\(844\) 0 0
\(845\) 0 0
\(846\) −1.53209 −1.53209
\(847\) −0.660732 0.177043i −0.660732 0.177043i
\(848\) 0 0
\(849\) −1.85083 + 0.673648i −1.85083 + 0.673648i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.906308 0.422618i \(-0.861111\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(854\) 0.642788 + 1.11334i 0.642788 + 1.11334i
\(855\) 0 0
\(856\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(857\) 0 0 0.819152 0.573576i \(-0.194444\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(858\) 0 0
\(859\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(860\) 0 0
\(861\) −0.152704 0.866025i −0.152704 0.866025i
\(862\) 0 0
\(863\) 1.32893 1.32893i 1.32893 1.32893i 0.422618 0.906308i \(-0.361111\pi\)
0.906308 0.422618i \(-0.138889\pi\)
\(864\) 0.984808 0.173648i 0.984808 0.173648i
\(865\) 0 0
\(866\) 0 0
\(867\) −0.996195 0.0871557i −0.996195 0.0871557i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −0.335463 + 0.0898869i −0.335463 + 0.0898869i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.0871557 0.996195i \(-0.472222\pi\)
−0.0871557 + 0.996195i \(0.527778\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.70574 0.984808i 1.70574 0.984808i 0.766044 0.642788i \(-0.222222\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(882\) 0.435862 0.305194i 0.435862 0.305194i
\(883\) 1.24177 0.332731i 1.24177 0.332731i 0.422618 0.906308i \(-0.361111\pi\)
0.819152 + 0.573576i \(0.194444\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.43969 0.524005i −1.43969 0.524005i
\(887\) −0.573576 + 0.819152i −0.573576 + 0.819152i −0.996195 0.0871557i \(-0.972222\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(888\) 0 0
\(889\) −0.866025 + 1.03209i −0.866025 + 1.03209i
\(890\) 0 0
\(891\) 0 0
\(892\) −0.909039 + 0.909039i −0.909039 + 0.909039i
\(893\) 0 0
\(894\) −1.85083 0.673648i −1.85083 0.673648i
\(895\) 0 0
\(896\) 0.233956 0.642788i 0.233956 0.642788i
\(897\) 0 0
\(898\) 1.41881 0.993464i 1.41881 0.993464i
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0.679569 + 0.970525i 0.679569 + 0.970525i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0.289088 0.619951i 0.289088 0.619951i −0.707107 0.707107i \(-0.750000\pi\)
0.996195 + 0.0871557i \(0.0277778\pi\)
\(908\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(909\) −1.32683 + 1.11334i −1.32683 + 1.11334i
\(910\) 0 0
\(911\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) −1.93969 + 0.342020i −1.93969 + 0.342020i
\(922\) −0.560333 0.392349i −0.560333 0.392349i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(927\) 1.67303 + 0.448288i 1.67303 + 0.448288i
\(928\) −0.509774 + 1.90250i −0.509774 + 1.90250i
\(929\) −1.62760 + 0.592396i −1.62760 + 0.592396i −0.984808 0.173648i \(-0.944444\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) −0.342020 0.939693i −0.342020 0.939693i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(938\) −0.504395 0.720350i −0.504395 0.720350i
\(939\) 0 0
\(940\) 0 0
\(941\) −1.26604 + 0.223238i −1.26604 + 0.223238i −0.766044 0.642788i \(-0.777778\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(942\) 0 0
\(943\) −0.0389129 0.444777i −0.0389129 0.444777i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0.133530 + 1.52626i 0.133530 + 1.52626i 0.707107 + 0.707107i \(0.250000\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(962\) 0 0
\(963\) −1.87223 + 0.163799i −1.87223 + 0.163799i
\(964\) 1.62760 + 0.939693i 1.62760 + 0.939693i
\(965\) 0 0
\(966\) −0.205737 + 0.118782i −0.205737 + 0.118782i
\(967\) 1.78508 0.832395i 1.78508 0.832395i 0.819152 0.573576i \(-0.194444\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(968\) 0.819152 + 0.573576i 0.819152 + 0.573576i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −0.326352 1.85083i −0.326352 1.85083i
\(977\) 0 0 −0.422618 0.906308i \(-0.638889\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(978\) 0.448288 1.67303i 0.448288 1.67303i
\(979\) 0 0
\(980\) 0 0
\(981\) −0.266044 0.223238i −0.266044 0.223238i
\(982\) 0 0
\(983\) 0.794263 1.70330i 0.794263 1.70330i 0.0871557 0.996195i \(-0.472222\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(984\) −0.223238 + 1.26604i −0.223238 + 1.26604i
\(985\) 0 0
\(986\) 0 0
\(987\) −1.04402 + 0.0913401i −1.04402 + 0.0913401i
\(988\) 0 0
\(989\) 0.300767 + 0.520945i 0.300767 + 0.520945i
\(990\) 0 0
\(991\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 1.17365 0.984808i 1.17365 0.984808i
\(997\) 0 0 0.996195 0.0871557i \(-0.0277778\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2700.1.ca.a.1307.2 yes 24
4.3 odd 2 inner 2700.1.ca.a.1307.1 yes 24
5.2 odd 4 inner 2700.1.ca.a.443.1 24
5.3 odd 4 inner 2700.1.ca.a.443.2 yes 24
5.4 even 2 inner 2700.1.ca.a.1307.1 yes 24
20.3 even 4 inner 2700.1.ca.a.443.1 24
20.7 even 4 inner 2700.1.ca.a.443.2 yes 24
20.19 odd 2 CM 2700.1.ca.a.1307.2 yes 24
27.5 odd 18 inner 2700.1.ca.a.707.1 yes 24
108.59 even 18 inner 2700.1.ca.a.707.2 yes 24
135.32 even 36 inner 2700.1.ca.a.2543.2 yes 24
135.59 odd 18 inner 2700.1.ca.a.707.2 yes 24
135.113 even 36 inner 2700.1.ca.a.2543.1 yes 24
540.59 even 18 inner 2700.1.ca.a.707.1 yes 24
540.167 odd 36 inner 2700.1.ca.a.2543.1 yes 24
540.383 odd 36 inner 2700.1.ca.a.2543.2 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2700.1.ca.a.443.1 24 5.2 odd 4 inner
2700.1.ca.a.443.1 24 20.3 even 4 inner
2700.1.ca.a.443.2 yes 24 5.3 odd 4 inner
2700.1.ca.a.443.2 yes 24 20.7 even 4 inner
2700.1.ca.a.707.1 yes 24 27.5 odd 18 inner
2700.1.ca.a.707.1 yes 24 540.59 even 18 inner
2700.1.ca.a.707.2 yes 24 108.59 even 18 inner
2700.1.ca.a.707.2 yes 24 135.59 odd 18 inner
2700.1.ca.a.1307.1 yes 24 4.3 odd 2 inner
2700.1.ca.a.1307.1 yes 24 5.4 even 2 inner
2700.1.ca.a.1307.2 yes 24 1.1 even 1 trivial
2700.1.ca.a.1307.2 yes 24 20.19 odd 2 CM
2700.1.ca.a.2543.1 yes 24 135.113 even 36 inner
2700.1.ca.a.2543.1 yes 24 540.167 odd 36 inner
2700.1.ca.a.2543.2 yes 24 135.32 even 36 inner
2700.1.ca.a.2543.2 yes 24 540.383 odd 36 inner