Properties

Label 2700.1.g.b
Level $2700$
Weight $1$
Character orbit 2700.g
Self dual yes
Analytic conductor $1.347$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -3
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2700,1,Mod(701,2700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2700, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2700.701");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2700.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.34747553411\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 108)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.108.1
Artin image: $D_6$
Artin field: Galois closure of 6.2.1458000.2
Stark unit: Root of $x^{6} - 21066x^{5} + 5624655x^{4} - 432569180x^{3} + 5624655x^{2} - 21066x + 1$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{7} + q^{13} - q^{19} + 2 q^{31} + q^{37} - 2 q^{43} - q^{61} + q^{67} + q^{73} - q^{79} + q^{91} + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2700\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1351\) \(2377\)
\(\chi(n)\) \(1\) \(0\) \(0\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
701.1
0
0 0 0 0 0 1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2700.1.g.b 1
3.b odd 2 1 CM 2700.1.g.b 1
5.b even 2 1 108.1.c.a 1
5.c odd 4 2 2700.1.b.b 2
15.d odd 2 1 108.1.c.a 1
15.e even 4 2 2700.1.b.b 2
20.d odd 2 1 432.1.e.a 1
40.e odd 2 1 1728.1.e.b 1
40.f even 2 1 1728.1.e.a 1
45.h odd 6 2 324.1.g.a 2
45.j even 6 2 324.1.g.a 2
60.h even 2 1 432.1.e.a 1
120.i odd 2 1 1728.1.e.a 1
120.m even 2 1 1728.1.e.b 1
135.n odd 18 6 2916.1.k.c 6
135.p even 18 6 2916.1.k.c 6
180.n even 6 2 1296.1.q.a 2
180.p odd 6 2 1296.1.q.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
108.1.c.a 1 5.b even 2 1
108.1.c.a 1 15.d odd 2 1
324.1.g.a 2 45.h odd 6 2
324.1.g.a 2 45.j even 6 2
432.1.e.a 1 20.d odd 2 1
432.1.e.a 1 60.h even 2 1
1296.1.q.a 2 180.n even 6 2
1296.1.q.a 2 180.p odd 6 2
1728.1.e.a 1 40.f even 2 1
1728.1.e.a 1 120.i odd 2 1
1728.1.e.b 1 40.e odd 2 1
1728.1.e.b 1 120.m even 2 1
2700.1.b.b 2 5.c odd 4 2
2700.1.b.b 2 15.e even 4 2
2700.1.g.b 1 1.a even 1 1 trivial
2700.1.g.b 1 3.b odd 2 1 CM
2916.1.k.c 6 135.n odd 18 6
2916.1.k.c 6 135.p even 18 6

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} - 1 \) acting on \(S_{1}^{\mathrm{new}}(2700, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 1 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 1 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T + 1 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T - 2 \) Copy content Toggle raw display
$37$ \( T - 1 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T + 2 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T + 1 \) Copy content Toggle raw display
$67$ \( T - 1 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T - 1 \) Copy content Toggle raw display
$79$ \( T + 1 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T - 1 \) Copy content Toggle raw display
show more
show less