Properties

Label 2700.1.g.b
Level 27002700
Weight 11
Character orbit 2700.g
Self dual yes
Analytic conductor 1.3471.347
Analytic rank 00
Dimension 11
Projective image D3D_{3}
CM discriminant -3
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2700,1,Mod(701,2700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2700, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2700.701");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2700=223352 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2700.g (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.347475534111.34747553411
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 108)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.108.1
Artin image: D6D_6
Artin field: Galois closure of 6.2.1458000.2
Stark unit: Root of x621066x5+5624655x4432569180x3+5624655x221066x+1x^{6} - 21066x^{5} + 5624655x^{4} - 432569180x^{3} + 5624655x^{2} - 21066x + 1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+q7+q13q19+2q31+q372q43q61+q67+q73q79+q91+q97+O(q100) q + q^{7} + q^{13} - q^{19} + 2 q^{31} + q^{37} - 2 q^{43} - q^{61} + q^{67} + q^{73} - q^{79} + q^{91} + q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2700Z)×\left(\mathbb{Z}/2700\mathbb{Z}\right)^\times.

nn 10011001 13511351 23772377
χ(n)\chi(n) 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
701.1
0
0 0 0 0 0 1.00000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2700.1.g.b 1
3.b odd 2 1 CM 2700.1.g.b 1
5.b even 2 1 108.1.c.a 1
5.c odd 4 2 2700.1.b.b 2
15.d odd 2 1 108.1.c.a 1
15.e even 4 2 2700.1.b.b 2
20.d odd 2 1 432.1.e.a 1
40.e odd 2 1 1728.1.e.b 1
40.f even 2 1 1728.1.e.a 1
45.h odd 6 2 324.1.g.a 2
45.j even 6 2 324.1.g.a 2
60.h even 2 1 432.1.e.a 1
120.i odd 2 1 1728.1.e.a 1
120.m even 2 1 1728.1.e.b 1
135.n odd 18 6 2916.1.k.c 6
135.p even 18 6 2916.1.k.c 6
180.n even 6 2 1296.1.q.a 2
180.p odd 6 2 1296.1.q.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
108.1.c.a 1 5.b even 2 1
108.1.c.a 1 15.d odd 2 1
324.1.g.a 2 45.h odd 6 2
324.1.g.a 2 45.j even 6 2
432.1.e.a 1 20.d odd 2 1
432.1.e.a 1 60.h even 2 1
1296.1.q.a 2 180.n even 6 2
1296.1.q.a 2 180.p odd 6 2
1728.1.e.a 1 40.f even 2 1
1728.1.e.a 1 120.i odd 2 1
1728.1.e.b 1 40.e odd 2 1
1728.1.e.b 1 120.m even 2 1
2700.1.b.b 2 5.c odd 4 2
2700.1.b.b 2 15.e even 4 2
2700.1.g.b 1 1.a even 1 1 trivial
2700.1.g.b 1 3.b odd 2 1 CM
2916.1.k.c 6 135.n odd 18 6
2916.1.k.c 6 135.p even 18 6

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T71 T_{7} - 1 acting on S1new(2700,[χ])S_{1}^{\mathrm{new}}(2700, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T1 T - 1 Copy content Toggle raw display
1111 T T Copy content Toggle raw display
1313 T1 T - 1 Copy content Toggle raw display
1717 T T Copy content Toggle raw display
1919 T+1 T + 1 Copy content Toggle raw display
2323 T T Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T2 T - 2 Copy content Toggle raw display
3737 T1 T - 1 Copy content Toggle raw display
4141 T T Copy content Toggle raw display
4343 T+2 T + 2 Copy content Toggle raw display
4747 T T Copy content Toggle raw display
5353 T T Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T+1 T + 1 Copy content Toggle raw display
6767 T1 T - 1 Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T1 T - 1 Copy content Toggle raw display
7979 T+1 T + 1 Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T1 T - 1 Copy content Toggle raw display
show more
show less