Properties

Label 2700.2.j.i
Level 27002700
Weight 22
Character orbit 2700.j
Analytic conductor 21.56021.560
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2700,2,Mod(593,2700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2700, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2700.593");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2700=223352 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2700.j (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 21.559608545721.5596085457
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(i)\Q(i)
Coefficient field: 8.0.12745506816.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+23x4+1 x^{8} + 23x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 540)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β51)q7+(β7β3β1)q11+(β6+2β21)q13+(β7+2β4+2β1)q17+(β6β53β2)q19++(2β54β22)q97+O(q100) q + (\beta_{5} - 1) q^{7} + (\beta_{7} - \beta_{3} - \beta_1) q^{11} + (\beta_{6} + 2 \beta_{2} - 1) q^{13} + (\beta_{7} + 2 \beta_{4} + \cdots - 2 \beta_1) q^{17} + ( - \beta_{6} - \beta_{5} - 3 \beta_{2}) q^{19}+ \cdots + ( - 2 \beta_{5} - 4 \beta_{2} - 2) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q4q712q13+32q3124q3712q4324q61+56q67+28q7372q9124q97+O(q100) 8 q - 4 q^{7} - 12 q^{13} + 32 q^{31} - 24 q^{37} - 12 q^{43} - 24 q^{61} + 56 q^{67} + 28 q^{73} - 72 q^{91} - 24 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+23x4+1 x^{8} + 23x^{4} + 1 : Copy content Toggle raw display

β1\beta_{1}== (ν5+19ν)/5 ( \nu^{5} + 19\nu ) / 5 Copy content Toggle raw display
β2\beta_{2}== (ν6+24ν2)/5 ( \nu^{6} + 24\nu^{2} ) / 5 Copy content Toggle raw display
β3\beta_{3}== (ν7+24ν3+5ν)/5 ( \nu^{7} + 24\nu^{3} + 5\nu ) / 5 Copy content Toggle raw display
β4\beta_{4}== (ν7+ν524ν3+24ν)/5 ( -\nu^{7} + \nu^{5} - 24\nu^{3} + 24\nu ) / 5 Copy content Toggle raw display
β5\beta_{5}== (3ν6ν467ν29)/5 ( -3\nu^{6} - \nu^{4} - 67\nu^{2} - 9 ) / 5 Copy content Toggle raw display
β6\beta_{6}== (3ν6+ν467ν2+9)/5 ( -3\nu^{6} + \nu^{4} - 67\nu^{2} + 9 ) / 5 Copy content Toggle raw display
β7\beta_{7}== (4ν791ν3)/5 ( -4\nu^{7} - 91\nu^{3} ) / 5 Copy content Toggle raw display
ν\nu== (β4+β3β1)/2 ( \beta_{4} + \beta_{3} - \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β6+β5+6β2)/2 ( \beta_{6} + \beta_{5} + 6\beta_{2} ) / 2 Copy content Toggle raw display
ν3\nu^{3}== β72β4+2β3+2β1 \beta_{7} - 2\beta_{4} + 2\beta_{3} + 2\beta_1 Copy content Toggle raw display
ν4\nu^{4}== (5β65β518)/2 ( 5\beta_{6} - 5\beta_{5} - 18 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (19β419β3+29β1)/2 ( -19\beta_{4} - 19\beta_{3} + 29\beta_1 ) / 2 Copy content Toggle raw display
ν6\nu^{6}== 12β612β567β2 -12\beta_{6} - 12\beta_{5} - 67\beta_{2} Copy content Toggle raw display
ν7\nu^{7}== (48β7+91β491β391β1)/2 ( -48\beta_{7} + 91\beta_{4} - 91\beta_{3} - 91\beta_1 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2700Z)×\left(\mathbb{Z}/2700\mathbb{Z}\right)^\times.

nn 10011001 13511351 23772377
χ(n)\chi(n) 1-1 11 β2\beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
593.1
−0.323042 + 0.323042i
0.323042 0.323042i
−1.54779 + 1.54779i
1.54779 1.54779i
0.323042 + 0.323042i
−0.323042 0.323042i
1.54779 + 1.54779i
−1.54779 1.54779i
0 0 0 0 0 −2.79129 + 2.79129i 0 0 0
593.2 0 0 0 0 0 −2.79129 + 2.79129i 0 0 0
593.3 0 0 0 0 0 1.79129 1.79129i 0 0 0
593.4 0 0 0 0 0 1.79129 1.79129i 0 0 0
1457.1 0 0 0 0 0 −2.79129 2.79129i 0 0 0
1457.2 0 0 0 0 0 −2.79129 2.79129i 0 0 0
1457.3 0 0 0 0 0 1.79129 + 1.79129i 0 0 0
1457.4 0 0 0 0 0 1.79129 + 1.79129i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 593.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.c odd 4 1 inner
15.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2700.2.j.i 8
3.b odd 2 1 inner 2700.2.j.i 8
5.b even 2 1 540.2.j.b 8
5.c odd 4 1 540.2.j.b 8
5.c odd 4 1 inner 2700.2.j.i 8
15.d odd 2 1 540.2.j.b 8
15.e even 4 1 540.2.j.b 8
15.e even 4 1 inner 2700.2.j.i 8
20.d odd 2 1 2160.2.w.c 8
20.e even 4 1 2160.2.w.c 8
45.h odd 6 2 1620.2.x.c 16
45.j even 6 2 1620.2.x.c 16
45.k odd 12 2 1620.2.x.c 16
45.l even 12 2 1620.2.x.c 16
60.h even 2 1 2160.2.w.c 8
60.l odd 4 1 2160.2.w.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
540.2.j.b 8 5.b even 2 1
540.2.j.b 8 5.c odd 4 1
540.2.j.b 8 15.d odd 2 1
540.2.j.b 8 15.e even 4 1
1620.2.x.c 16 45.h odd 6 2
1620.2.x.c 16 45.j even 6 2
1620.2.x.c 16 45.k odd 12 2
1620.2.x.c 16 45.l even 12 2
2160.2.w.c 8 20.d odd 2 1
2160.2.w.c 8 20.e even 4 1
2160.2.w.c 8 60.h even 2 1
2160.2.w.c 8 60.l odd 4 1
2700.2.j.i 8 1.a even 1 1 trivial
2700.2.j.i 8 3.b odd 2 1 inner
2700.2.j.i 8 5.c odd 4 1 inner
2700.2.j.i 8 15.e even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2700,[χ])S_{2}^{\mathrm{new}}(2700, [\chi]):

T74+2T73+2T7220T7+100 T_{7}^{4} + 2T_{7}^{3} + 2T_{7}^{2} - 20T_{7} + 100 Copy content Toggle raw display
T114+10T112+4 T_{11}^{4} + 10T_{11}^{2} + 4 Copy content Toggle raw display
T134+6T133+18T13236T13+36 T_{13}^{4} + 6T_{13}^{3} + 18T_{13}^{2} - 36T_{13} + 36 Copy content Toggle raw display
T29482T292+1156 T_{29}^{4} - 82T_{29}^{2} + 1156 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 (T4+2T3++100)2 (T^{4} + 2 T^{3} + \cdots + 100)^{2} Copy content Toggle raw display
1111 (T4+10T2+4)2 (T^{4} + 10 T^{2} + 4)^{2} Copy content Toggle raw display
1313 (T4+6T3+18T2++36)2 (T^{4} + 6 T^{3} + 18 T^{2} + \cdots + 36)^{2} Copy content Toggle raw display
1717 T8+2594T4+390625 T^{8} + 2594 T^{4} + 390625 Copy content Toggle raw display
1919 (T4+50T2+289)2 (T^{4} + 50 T^{2} + 289)^{2} Copy content Toggle raw display
2323 (T4+49)2 (T^{4} + 49)^{2} Copy content Toggle raw display
2929 (T482T2+1156)2 (T^{4} - 82 T^{2} + 1156)^{2} Copy content Toggle raw display
3131 (T28T5)4 (T^{2} - 8 T - 5)^{4} Copy content Toggle raw display
3737 (T2+6T+18)4 (T^{2} + 6 T + 18)^{4} Copy content Toggle raw display
4141 (T4+82T2+1156)2 (T^{4} + 82 T^{2} + 1156)^{2} Copy content Toggle raw display
4343 (T4+6T3+18T2++36)2 (T^{4} + 6 T^{3} + 18 T^{2} + \cdots + 36)^{2} Copy content Toggle raw display
4747 T8+29808T4+1679616 T^{8} + 29808 T^{4} + 1679616 Copy content Toggle raw display
5353 T8+32498T4+104060401 T^{8} + 32498 T^{4} + 104060401 Copy content Toggle raw display
5959 (T4250T2+13924)2 (T^{4} - 250 T^{2} + 13924)^{2} Copy content Toggle raw display
6161 (T2+6T75)4 (T^{2} + 6 T - 75)^{4} Copy content Toggle raw display
6767 (T214T+98)4 (T^{2} - 14 T + 98)^{4} Copy content Toggle raw display
7171 (T4+346T2+28900)2 (T^{4} + 346 T^{2} + 28900)^{2} Copy content Toggle raw display
7373 (T414T3++196)2 (T^{4} - 14 T^{3} + \cdots + 196)^{2} Copy content Toggle raw display
7979 (T4+186T2+5625)2 (T^{4} + 186 T^{2} + 5625)^{2} Copy content Toggle raw display
8383 (T4+9)2 (T^{4} + 9)^{2} Copy content Toggle raw display
8989 (T4370T2+24964)2 (T^{4} - 370 T^{2} + 24964)^{2} Copy content Toggle raw display
9797 (T4+12T3++576)2 (T^{4} + 12 T^{3} + \cdots + 576)^{2} Copy content Toggle raw display
show more
show less