Properties

Label 2700.2.j.i
Level $2700$
Weight $2$
Character orbit 2700.j
Analytic conductor $21.560$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2700,2,Mod(593,2700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2700, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2700.593");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2700.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.5596085457\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.12745506816.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 23x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 540)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{5} - 1) q^{7} + (\beta_{7} - \beta_{3} - \beta_1) q^{11} + (\beta_{6} + 2 \beta_{2} - 1) q^{13} + (\beta_{7} + 2 \beta_{4} + \cdots - 2 \beta_1) q^{17} + ( - \beta_{6} - \beta_{5} - 3 \beta_{2}) q^{19}+ \cdots + ( - 2 \beta_{5} - 4 \beta_{2} - 2) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{7} - 12 q^{13} + 32 q^{31} - 24 q^{37} - 12 q^{43} - 24 q^{61} + 56 q^{67} + 28 q^{73} - 72 q^{91} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 23x^{4} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{5} + 19\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} + 24\nu^{2} ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{7} + 24\nu^{3} + 5\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{7} + \nu^{5} - 24\nu^{3} + 24\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -3\nu^{6} - \nu^{4} - 67\nu^{2} - 9 ) / 5 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -3\nu^{6} + \nu^{4} - 67\nu^{2} + 9 ) / 5 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -4\nu^{7} - 91\nu^{3} ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} + \beta_{3} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{6} + \beta_{5} + 6\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} - 2\beta_{4} + 2\beta_{3} + 2\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 5\beta_{6} - 5\beta_{5} - 18 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -19\beta_{4} - 19\beta_{3} + 29\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -12\beta_{6} - 12\beta_{5} - 67\beta_{2} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -48\beta_{7} + 91\beta_{4} - 91\beta_{3} - 91\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2700\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1351\) \(2377\)
\(\chi(n)\) \(-1\) \(1\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
593.1
−0.323042 + 0.323042i
0.323042 0.323042i
−1.54779 + 1.54779i
1.54779 1.54779i
0.323042 + 0.323042i
−0.323042 0.323042i
1.54779 + 1.54779i
−1.54779 1.54779i
0 0 0 0 0 −2.79129 + 2.79129i 0 0 0
593.2 0 0 0 0 0 −2.79129 + 2.79129i 0 0 0
593.3 0 0 0 0 0 1.79129 1.79129i 0 0 0
593.4 0 0 0 0 0 1.79129 1.79129i 0 0 0
1457.1 0 0 0 0 0 −2.79129 2.79129i 0 0 0
1457.2 0 0 0 0 0 −2.79129 2.79129i 0 0 0
1457.3 0 0 0 0 0 1.79129 + 1.79129i 0 0 0
1457.4 0 0 0 0 0 1.79129 + 1.79129i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 593.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.c odd 4 1 inner
15.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2700.2.j.i 8
3.b odd 2 1 inner 2700.2.j.i 8
5.b even 2 1 540.2.j.b 8
5.c odd 4 1 540.2.j.b 8
5.c odd 4 1 inner 2700.2.j.i 8
15.d odd 2 1 540.2.j.b 8
15.e even 4 1 540.2.j.b 8
15.e even 4 1 inner 2700.2.j.i 8
20.d odd 2 1 2160.2.w.c 8
20.e even 4 1 2160.2.w.c 8
45.h odd 6 2 1620.2.x.c 16
45.j even 6 2 1620.2.x.c 16
45.k odd 12 2 1620.2.x.c 16
45.l even 12 2 1620.2.x.c 16
60.h even 2 1 2160.2.w.c 8
60.l odd 4 1 2160.2.w.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
540.2.j.b 8 5.b even 2 1
540.2.j.b 8 5.c odd 4 1
540.2.j.b 8 15.d odd 2 1
540.2.j.b 8 15.e even 4 1
1620.2.x.c 16 45.h odd 6 2
1620.2.x.c 16 45.j even 6 2
1620.2.x.c 16 45.k odd 12 2
1620.2.x.c 16 45.l even 12 2
2160.2.w.c 8 20.d odd 2 1
2160.2.w.c 8 20.e even 4 1
2160.2.w.c 8 60.h even 2 1
2160.2.w.c 8 60.l odd 4 1
2700.2.j.i 8 1.a even 1 1 trivial
2700.2.j.i 8 3.b odd 2 1 inner
2700.2.j.i 8 5.c odd 4 1 inner
2700.2.j.i 8 15.e even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2700, [\chi])\):

\( T_{7}^{4} + 2T_{7}^{3} + 2T_{7}^{2} - 20T_{7} + 100 \) Copy content Toggle raw display
\( T_{11}^{4} + 10T_{11}^{2} + 4 \) Copy content Toggle raw display
\( T_{13}^{4} + 6T_{13}^{3} + 18T_{13}^{2} - 36T_{13} + 36 \) Copy content Toggle raw display
\( T_{29}^{4} - 82T_{29}^{2} + 1156 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( (T^{4} + 2 T^{3} + \cdots + 100)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + 10 T^{2} + 4)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + 6 T^{3} + 18 T^{2} + \cdots + 36)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} + 2594 T^{4} + 390625 \) Copy content Toggle raw display
$19$ \( (T^{4} + 50 T^{2} + 289)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + 49)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} - 82 T^{2} + 1156)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 8 T - 5)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 6 T + 18)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} + 82 T^{2} + 1156)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 6 T^{3} + 18 T^{2} + \cdots + 36)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + 29808 T^{4} + 1679616 \) Copy content Toggle raw display
$53$ \( T^{8} + 32498 T^{4} + 104060401 \) Copy content Toggle raw display
$59$ \( (T^{4} - 250 T^{2} + 13924)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 6 T - 75)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - 14 T + 98)^{4} \) Copy content Toggle raw display
$71$ \( (T^{4} + 346 T^{2} + 28900)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} - 14 T^{3} + \cdots + 196)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + 186 T^{2} + 5625)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + 9)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} - 370 T^{2} + 24964)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 12 T^{3} + \cdots + 576)^{2} \) Copy content Toggle raw display
show more
show less