Properties

Label 273.2.j.c.100.7
Level $273$
Weight $2$
Character 273.100
Analytic conductor $2.180$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [273,2,Mod(100,273)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(273, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("273.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 18 x^{18} - 4 x^{17} + 211 x^{16} - 59 x^{15} + 1458 x^{14} - 526 x^{13} + 7324 x^{12} + \cdots + 1369 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 100.7
Root \(-0.707433 + 1.22531i\) of defining polynomial
Character \(\chi\) \(=\) 273.100
Dual form 273.2.j.c.172.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707433 + 1.22531i) q^{2} +1.00000 q^{3} +(-0.000924008 + 0.00160043i) q^{4} +(-1.42962 + 2.47618i) q^{5} +(0.707433 + 1.22531i) q^{6} +(-1.85598 + 1.88556i) q^{7} +2.82712 q^{8} +1.00000 q^{9} -4.04546 q^{10} +2.30705 q^{11} +(-0.000924008 + 0.00160043i) q^{12} +(-3.12586 + 1.79694i) q^{13} +(-3.62338 - 0.940248i) q^{14} +(-1.42962 + 2.47618i) q^{15} +(2.00185 + 3.46730i) q^{16} +(3.72581 - 6.45329i) q^{17} +(0.707433 + 1.22531i) q^{18} +0.565673 q^{19} +(-0.00264197 - 0.00457603i) q^{20} +(-1.85598 + 1.88556i) q^{21} +(1.63208 + 2.82685i) q^{22} +(0.398944 + 0.690991i) q^{23} +2.82712 q^{24} +(-1.58765 - 2.74989i) q^{25} +(-4.41315 - 2.55894i) q^{26} +1.00000 q^{27} +(-0.00130276 - 0.00471264i) q^{28} +(3.00672 - 5.20778i) q^{29} -4.04546 q^{30} +(-3.80370 - 6.58820i) q^{31} +(-0.00522698 + 0.00905339i) q^{32} +2.30705 q^{33} +10.5431 q^{34} +(-2.01563 - 7.29139i) q^{35} +(-0.000924008 + 0.00160043i) q^{36} +(-1.15073 - 1.99313i) q^{37} +(0.400176 + 0.693125i) q^{38} +(-3.12586 + 1.79694i) q^{39} +(-4.04172 + 7.00046i) q^{40} +(-5.68100 + 9.83978i) q^{41} +(-3.62338 - 0.940248i) q^{42} +(-3.76945 - 6.52888i) q^{43} +(-0.00213173 + 0.00369227i) q^{44} +(-1.42962 + 2.47618i) q^{45} +(-0.564452 + 0.977660i) q^{46} +(0.134822 - 0.233518i) q^{47} +(2.00185 + 3.46730i) q^{48} +(-0.110659 - 6.99913i) q^{49} +(2.24632 - 3.89073i) q^{50} +(3.72581 - 6.45329i) q^{51} +(1.24483e-5 - 0.00666311i) q^{52} +(2.35993 + 4.08751i) q^{53} +(0.707433 + 1.22531i) q^{54} +(-3.29821 + 5.71267i) q^{55} +(-5.24708 + 5.33070i) q^{56} +0.565673 q^{57} +8.50820 q^{58} +(2.91090 - 5.04183i) q^{59} +(-0.00264197 - 0.00457603i) q^{60} -2.93403 q^{61} +(5.38172 - 9.32142i) q^{62} +(-1.85598 + 1.88556i) q^{63} +7.99259 q^{64} +(0.0192600 - 10.3091i) q^{65} +(1.63208 + 2.82685i) q^{66} +3.17468 q^{67} +(0.00688536 + 0.0119258i) q^{68} +(0.398944 + 0.690991i) q^{69} +(7.50830 - 7.62794i) q^{70} +(-3.01045 - 5.21425i) q^{71} +2.82712 q^{72} +(5.31799 + 9.21103i) q^{73} +(1.62813 - 2.82001i) q^{74} +(-1.58765 - 2.74989i) q^{75} +(-0.000522686 + 0.000905319i) q^{76} +(-4.28184 + 4.35007i) q^{77} +(-4.41315 - 2.55894i) q^{78} +(-2.01404 + 3.48841i) q^{79} -11.4476 q^{80} +1.00000 q^{81} -16.0757 q^{82} +16.2573 q^{83} +(-0.00130276 - 0.00471264i) q^{84} +(10.6530 + 18.4516i) q^{85} +(5.33327 - 9.23749i) q^{86} +(3.00672 - 5.20778i) q^{87} +6.52230 q^{88} +(0.709194 + 1.22836i) q^{89} -4.04546 q^{90} +(2.41331 - 9.22908i) q^{91} -0.00147451 q^{92} +(-3.80370 - 6.58820i) q^{93} +0.381509 q^{94} +(-0.808700 + 1.40071i) q^{95} +(-0.00522698 + 0.00905339i) q^{96} +(-5.23049 - 9.05948i) q^{97} +(8.49782 - 5.08701i) q^{98} +2.30705 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 20 q^{3} - 16 q^{4} - 9 q^{7} - 12 q^{8} + 20 q^{9} + 8 q^{10} + 16 q^{11} - 16 q^{12} - 5 q^{13} - 9 q^{14} - 20 q^{16} - 14 q^{19} + 12 q^{20} - 9 q^{21} - 9 q^{22} - 14 q^{23} - 12 q^{24} - 32 q^{25}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707433 + 1.22531i 0.500231 + 0.866425i 1.00000 0.000266697i \(8.48923e-5\pi\)
−0.499769 + 0.866159i \(0.666582\pi\)
\(3\) 1.00000 0.577350
\(4\) −0.000924008 0.00160043i −0.000462004 0.000800215i
\(5\) −1.42962 + 2.47618i −0.639347 + 1.10738i 0.346229 + 0.938150i \(0.387462\pi\)
−0.985576 + 0.169232i \(0.945871\pi\)
\(6\) 0.707433 + 1.22531i 0.288808 + 0.500231i
\(7\) −1.85598 + 1.88556i −0.701495 + 0.712674i
\(8\) 2.82712 0.999537
\(9\) 1.00000 0.333333
\(10\) −4.04546 −1.27929
\(11\) 2.30705 0.695601 0.347801 0.937569i \(-0.386929\pi\)
0.347801 + 0.937569i \(0.386929\pi\)
\(12\) −0.000924008 0.00160043i −0.000266738 0.000462004i
\(13\) −3.12586 + 1.79694i −0.866958 + 0.498381i
\(14\) −3.62338 0.940248i −0.968389 0.251292i
\(15\) −1.42962 + 2.47618i −0.369127 + 0.639347i
\(16\) 2.00185 + 3.46730i 0.500462 + 0.866825i
\(17\) 3.72581 6.45329i 0.903642 1.56515i 0.0809118 0.996721i \(-0.474217\pi\)
0.822730 0.568432i \(-0.192450\pi\)
\(18\) 0.707433 + 1.22531i 0.166744 + 0.288808i
\(19\) 0.565673 0.129774 0.0648871 0.997893i \(-0.479331\pi\)
0.0648871 + 0.997893i \(0.479331\pi\)
\(20\) −0.00264197 0.00457603i −0.000590762 0.00102323i
\(21\) −1.85598 + 1.88556i −0.405009 + 0.411463i
\(22\) 1.63208 + 2.82685i 0.347961 + 0.602686i
\(23\) 0.398944 + 0.690991i 0.0831855 + 0.144082i 0.904617 0.426226i \(-0.140157\pi\)
−0.821431 + 0.570308i \(0.806824\pi\)
\(24\) 2.82712 0.577083
\(25\) −1.58765 2.74989i −0.317530 0.549979i
\(26\) −4.41315 2.55894i −0.865489 0.501849i
\(27\) 1.00000 0.192450
\(28\) −0.00130276 0.00471264i −0.000246198 0.000890605i
\(29\) 3.00672 5.20778i 0.558333 0.967061i −0.439303 0.898339i \(-0.644775\pi\)
0.997636 0.0687221i \(-0.0218922\pi\)
\(30\) −4.04546 −0.738596
\(31\) −3.80370 6.58820i −0.683164 1.18328i −0.974010 0.226505i \(-0.927270\pi\)
0.290846 0.956770i \(-0.406063\pi\)
\(32\) −0.00522698 + 0.00905339i −0.000924008 + 0.00160043i
\(33\) 2.30705 0.401605
\(34\) 10.5431 1.80812
\(35\) −2.01563 7.29139i −0.340703 1.23247i
\(36\) −0.000924008 0.00160043i −0.000154001 0.000266738i
\(37\) −1.15073 1.99313i −0.189179 0.327668i 0.755798 0.654805i \(-0.227249\pi\)
−0.944977 + 0.327137i \(0.893916\pi\)
\(38\) 0.400176 + 0.693125i 0.0649171 + 0.112440i
\(39\) −3.12586 + 1.79694i −0.500538 + 0.287741i
\(40\) −4.04172 + 7.00046i −0.639052 + 1.10687i
\(41\) −5.68100 + 9.83978i −0.887223 + 1.53672i −0.0440794 + 0.999028i \(0.514035\pi\)
−0.843144 + 0.537688i \(0.819298\pi\)
\(42\) −3.62338 0.940248i −0.559099 0.145083i
\(43\) −3.76945 6.52888i −0.574835 0.995644i −0.996059 0.0886876i \(-0.971733\pi\)
0.421224 0.906957i \(-0.361601\pi\)
\(44\) −0.00213173 + 0.00369227i −0.000321371 + 0.000556630i
\(45\) −1.42962 + 2.47618i −0.213116 + 0.369127i
\(46\) −0.564452 + 0.977660i −0.0832240 + 0.144148i
\(47\) 0.134822 0.233518i 0.0196658 0.0340621i −0.856025 0.516934i \(-0.827073\pi\)
0.875691 + 0.482872i \(0.160406\pi\)
\(48\) 2.00185 + 3.46730i 0.288942 + 0.500462i
\(49\) −0.110659 6.99913i −0.0158084 0.999875i
\(50\) 2.24632 3.89073i 0.317677 0.550233i
\(51\) 3.72581 6.45329i 0.521718 0.903642i
\(52\) 1.24483e−5 0.00666311i 1.72627e−6 0.000924007i
\(53\) 2.35993 + 4.08751i 0.324161 + 0.561463i 0.981342 0.192269i \(-0.0615847\pi\)
−0.657181 + 0.753733i \(0.728251\pi\)
\(54\) 0.707433 + 1.22531i 0.0962695 + 0.166744i
\(55\) −3.29821 + 5.71267i −0.444731 + 0.770296i
\(56\) −5.24708 + 5.33070i −0.701171 + 0.712344i
\(57\) 0.565673 0.0749252
\(58\) 8.50820 1.11718
\(59\) 2.91090 5.04183i 0.378967 0.656390i −0.611945 0.790900i \(-0.709613\pi\)
0.990912 + 0.134510i \(0.0429460\pi\)
\(60\) −0.00264197 0.00457603i −0.000341077 0.000590762i
\(61\) −2.93403 −0.375664 −0.187832 0.982201i \(-0.560146\pi\)
−0.187832 + 0.982201i \(0.560146\pi\)
\(62\) 5.38172 9.32142i 0.683480 1.18382i
\(63\) −1.85598 + 1.88556i −0.233832 + 0.237558i
\(64\) 7.99259 0.999074
\(65\) 0.0192600 10.3091i 0.00238891 1.27869i
\(66\) 1.63208 + 2.82685i 0.200895 + 0.347961i
\(67\) 3.17468 0.387849 0.193924 0.981016i \(-0.437878\pi\)
0.193924 + 0.981016i \(0.437878\pi\)
\(68\) 0.00688536 + 0.0119258i 0.000834973 + 0.00144621i
\(69\) 0.398944 + 0.690991i 0.0480272 + 0.0831855i
\(70\) 7.50830 7.62794i 0.897413 0.911714i
\(71\) −3.01045 5.21425i −0.357275 0.618818i 0.630230 0.776409i \(-0.282961\pi\)
−0.987505 + 0.157591i \(0.949627\pi\)
\(72\) 2.82712 0.333179
\(73\) 5.31799 + 9.21103i 0.622424 + 1.07807i 0.989033 + 0.147694i \(0.0471852\pi\)
−0.366609 + 0.930375i \(0.619481\pi\)
\(74\) 1.62813 2.82001i 0.189267 0.327819i
\(75\) −1.58765 2.74989i −0.183326 0.317530i
\(76\) −0.000522686 0 0.000905319i −5.99562e−5 0 0.000103847i
\(77\) −4.28184 + 4.35007i −0.487961 + 0.495737i
\(78\) −4.41315 2.55894i −0.499691 0.289743i
\(79\) −2.01404 + 3.48841i −0.226597 + 0.392477i −0.956797 0.290756i \(-0.906093\pi\)
0.730201 + 0.683233i \(0.239427\pi\)
\(80\) −11.4476 −1.27988
\(81\) 1.00000 0.111111
\(82\) −16.0757 −1.77527
\(83\) 16.2573 1.78447 0.892237 0.451567i \(-0.149135\pi\)
0.892237 + 0.451567i \(0.149135\pi\)
\(84\) −0.00130276 0.00471264i −0.000142143 0.000514191i
\(85\) 10.6530 + 18.4516i 1.15548 + 2.00135i
\(86\) 5.33327 9.23749i 0.575101 0.996104i
\(87\) 3.00672 5.20778i 0.322354 0.558333i
\(88\) 6.52230 0.695279
\(89\) 0.709194 + 1.22836i 0.0751745 + 0.130206i 0.901162 0.433482i \(-0.142715\pi\)
−0.825988 + 0.563688i \(0.809382\pi\)
\(90\) −4.04546 −0.426429
\(91\) 2.41331 9.22908i 0.252984 0.967471i
\(92\) −0.00147451 −0.000153728
\(93\) −3.80370 6.58820i −0.394425 0.683164i
\(94\) 0.381509 0.0393497
\(95\) −0.808700 + 1.40071i −0.0829708 + 0.143710i
\(96\) −0.00522698 + 0.00905339i −0.000533476 + 0.000924008i
\(97\) −5.23049 9.05948i −0.531076 0.919851i −0.999342 0.0362635i \(-0.988454\pi\)
0.468266 0.883588i \(-0.344879\pi\)
\(98\) 8.49782 5.08701i 0.858409 0.513865i
\(99\) 2.30705 0.231867
\(100\) 0.00586801 0.000586801
\(101\) −9.47483 −0.942781 −0.471391 0.881925i \(-0.656248\pi\)
−0.471391 + 0.881925i \(0.656248\pi\)
\(102\) 10.5431 1.04392
\(103\) −10.1433 + 17.5686i −0.999444 + 1.73109i −0.470857 + 0.882210i \(0.656055\pi\)
−0.528588 + 0.848879i \(0.677278\pi\)
\(104\) −8.83718 + 5.08016i −0.866557 + 0.498151i
\(105\) −2.01563 7.29139i −0.196705 0.711567i
\(106\) −3.33898 + 5.78329i −0.324311 + 0.561723i
\(107\) 6.68305 + 11.5754i 0.646075 + 1.11903i 0.984052 + 0.177880i \(0.0569239\pi\)
−0.337978 + 0.941154i \(0.609743\pi\)
\(108\) −0.000924008 0.00160043i −8.89127e−5 0.000154001i
\(109\) −0.471097 0.815964i −0.0451229 0.0781551i 0.842582 0.538568i \(-0.181035\pi\)
−0.887705 + 0.460413i \(0.847701\pi\)
\(110\) −9.33306 −0.889872
\(111\) −1.15073 1.99313i −0.109223 0.189179i
\(112\) −10.2532 2.66065i −0.968835 0.251408i
\(113\) −1.28957 2.23360i −0.121313 0.210120i 0.798973 0.601367i \(-0.205377\pi\)
−0.920286 + 0.391247i \(0.872044\pi\)
\(114\) 0.400176 + 0.693125i 0.0374799 + 0.0649171i
\(115\) −2.28136 −0.212738
\(116\) 0.00555646 + 0.00962407i 0.000515904 + 0.000893572i
\(117\) −3.12586 + 1.79694i −0.288986 + 0.166127i
\(118\) 8.23707 0.758284
\(119\) 5.25302 + 19.0024i 0.481544 + 1.74195i
\(120\) −4.04172 + 7.00046i −0.368957 + 0.639052i
\(121\) −5.67753 −0.516139
\(122\) −2.07563 3.59510i −0.187919 0.325485i
\(123\) −5.68100 + 9.83978i −0.512239 + 0.887223i
\(124\) 0.0140586 0.00126250
\(125\) −5.21726 −0.466646
\(126\) −3.62338 0.940248i −0.322796 0.0837640i
\(127\) −2.06314 + 3.57347i −0.183074 + 0.317094i −0.942926 0.333003i \(-0.891938\pi\)
0.759852 + 0.650097i \(0.225272\pi\)
\(128\) 5.66468 + 9.81152i 0.500692 + 0.867224i
\(129\) −3.76945 6.52888i −0.331881 0.574835i
\(130\) 12.6455 7.26944i 1.10909 0.637572i
\(131\) 3.77229 6.53379i 0.329586 0.570860i −0.652844 0.757493i \(-0.726424\pi\)
0.982430 + 0.186633i \(0.0597574\pi\)
\(132\) −0.00213173 + 0.00369227i −0.000185543 + 0.000321371i
\(133\) −1.04988 + 1.06661i −0.0910360 + 0.0924867i
\(134\) 2.24588 + 3.88997i 0.194014 + 0.336042i
\(135\) −1.42962 + 2.47618i −0.123042 + 0.213116i
\(136\) 10.5333 18.2442i 0.903224 1.56443i
\(137\) −8.34991 + 14.4625i −0.713381 + 1.23561i 0.250199 + 0.968194i \(0.419504\pi\)
−0.963581 + 0.267418i \(0.913829\pi\)
\(138\) −0.564452 + 0.977660i −0.0480494 + 0.0832240i
\(139\) −5.17295 8.95981i −0.438764 0.759961i 0.558831 0.829282i \(-0.311250\pi\)
−0.997594 + 0.0693207i \(0.977917\pi\)
\(140\) 0.0135318 + 0.00351144i 0.00114365 + 0.000296770i
\(141\) 0.134822 0.233518i 0.0113540 0.0196658i
\(142\) 4.25939 7.37747i 0.357440 0.619104i
\(143\) −7.21151 + 4.14562i −0.603057 + 0.346675i
\(144\) 2.00185 + 3.46730i 0.166821 + 0.288942i
\(145\) 8.59695 + 14.8903i 0.713938 + 1.23658i
\(146\) −7.52425 + 13.0324i −0.622711 + 1.07857i
\(147\) −0.110659 6.99913i −0.00912699 0.577278i
\(148\) 0.00425315 0.000349606
\(149\) −12.2446 −1.00312 −0.501558 0.865124i \(-0.667240\pi\)
−0.501558 + 0.865124i \(0.667240\pi\)
\(150\) 2.24632 3.89073i 0.183411 0.317677i
\(151\) −9.04334 15.6635i −0.735936 1.27468i −0.954311 0.298814i \(-0.903409\pi\)
0.218375 0.975865i \(-0.429924\pi\)
\(152\) 1.59922 0.129714
\(153\) 3.72581 6.45329i 0.301214 0.521718i
\(154\) −8.35931 2.16920i −0.673612 0.174799i
\(155\) 21.7514 1.74712
\(156\) 1.24483e−5 0.00666311i 9.96661e−7 0.000533475i
\(157\) 10.9151 + 18.9055i 0.871120 + 1.50882i 0.860839 + 0.508877i \(0.169939\pi\)
0.0102810 + 0.999947i \(0.496727\pi\)
\(158\) −5.69918 −0.453403
\(159\) 2.35993 + 4.08751i 0.187154 + 0.324161i
\(160\) −0.0149452 0.0258859i −0.00118152 0.00204646i
\(161\) −2.04334 0.530235i −0.161037 0.0417884i
\(162\) 0.707433 + 1.22531i 0.0555812 + 0.0962695i
\(163\) −11.3743 −0.890905 −0.445452 0.895306i \(-0.646957\pi\)
−0.445452 + 0.895306i \(0.646957\pi\)
\(164\) −0.0104986 0.0181841i −0.000819802 0.00141994i
\(165\) −3.29821 + 5.71267i −0.256765 + 0.444731i
\(166\) 11.5010 + 19.9203i 0.892649 + 1.54611i
\(167\) 0.262814 0.455207i 0.0203372 0.0352250i −0.855678 0.517509i \(-0.826859\pi\)
0.876015 + 0.482284i \(0.160193\pi\)
\(168\) −5.24708 + 5.33070i −0.404821 + 0.411272i
\(169\) 6.54202 11.2340i 0.503232 0.864151i
\(170\) −15.0726 + 26.1065i −1.15602 + 2.00228i
\(171\) 0.565673 0.0432581
\(172\) 0.0139320 0.00106231
\(173\) −9.14517 −0.695295 −0.347647 0.937625i \(-0.613019\pi\)
−0.347647 + 0.937625i \(0.613019\pi\)
\(174\) 8.50820 0.645005
\(175\) 8.13174 + 2.11014i 0.614702 + 0.159512i
\(176\) 4.61836 + 7.99923i 0.348122 + 0.602964i
\(177\) 2.91090 5.04183i 0.218797 0.378967i
\(178\) −1.00342 + 1.73797i −0.0752092 + 0.130266i
\(179\) −1.72286 −0.128773 −0.0643863 0.997925i \(-0.520509\pi\)
−0.0643863 + 0.997925i \(0.520509\pi\)
\(180\) −0.00264197 0.00457603i −0.000196921 0.000341077i
\(181\) −3.97723 −0.295625 −0.147813 0.989015i \(-0.547223\pi\)
−0.147813 + 0.989015i \(0.547223\pi\)
\(182\) 13.0157 3.57190i 0.964791 0.264767i
\(183\) −2.93403 −0.216890
\(184\) 1.12786 + 1.95351i 0.0831471 + 0.144015i
\(185\) 6.58046 0.483805
\(186\) 5.38172 9.32142i 0.394607 0.683480i
\(187\) 8.59562 14.8881i 0.628574 1.08872i
\(188\) 0.000249153 0 0.000431545i 1.81713e−5 0 3.14737e-5i
\(189\) −1.85598 + 1.88556i −0.135003 + 0.137154i
\(190\) −2.28840 −0.166018
\(191\) 25.1534 1.82004 0.910019 0.414565i \(-0.136066\pi\)
0.910019 + 0.414565i \(0.136066\pi\)
\(192\) 7.99259 0.576816
\(193\) −18.1553 −1.30685 −0.653425 0.756992i \(-0.726668\pi\)
−0.653425 + 0.756992i \(0.726668\pi\)
\(194\) 7.40045 12.8180i 0.531322 0.920276i
\(195\) 0.0192600 10.3091i 0.00137924 0.738254i
\(196\) 0.0113039 + 0.00629015i 0.000807418 + 0.000449296i
\(197\) 0.782504 1.35534i 0.0557511 0.0965638i −0.836803 0.547504i \(-0.815578\pi\)
0.892554 + 0.450940i \(0.148911\pi\)
\(198\) 1.63208 + 2.82685i 0.115987 + 0.200895i
\(199\) 7.55805 13.0909i 0.535776 0.927991i −0.463349 0.886176i \(-0.653352\pi\)
0.999125 0.0418157i \(-0.0133142\pi\)
\(200\) −4.48848 7.77427i −0.317383 0.549724i
\(201\) 3.17468 0.223925
\(202\) −6.70281 11.6096i −0.471608 0.816850i
\(203\) 4.23917 + 15.3349i 0.297531 + 1.07630i
\(204\) 0.00688536 + 0.0119258i 0.000482072 + 0.000834973i
\(205\) −16.2434 28.1344i −1.13449 1.96499i
\(206\) −28.7027 −1.99981
\(207\) 0.398944 + 0.690991i 0.0277285 + 0.0480272i
\(208\) −12.4880 7.24110i −0.865888 0.502080i
\(209\) 1.30503 0.0902711
\(210\) 7.50830 7.62794i 0.518122 0.526378i
\(211\) −8.28852 + 14.3561i −0.570606 + 0.988318i 0.425898 + 0.904771i \(0.359958\pi\)
−0.996504 + 0.0835467i \(0.973375\pi\)
\(212\) −0.00872237 −0.000599055
\(213\) −3.01045 5.21425i −0.206273 0.357275i
\(214\) −9.45562 + 16.3776i −0.646373 + 1.11955i
\(215\) 21.5556 1.47008
\(216\) 2.82712 0.192361
\(217\) 19.4820 + 5.05548i 1.32253 + 0.343189i
\(218\) 0.666539 1.15448i 0.0451437 0.0781912i
\(219\) 5.31799 + 9.21103i 0.359356 + 0.622424i
\(220\) −0.00609515 0.0105571i −0.000410935 0.000711760i
\(221\) −0.0501943 + 26.8672i −0.00337644 + 1.80728i
\(222\) 1.62813 2.82001i 0.109273 0.189267i
\(223\) 3.10234 5.37341i 0.207748 0.359830i −0.743257 0.669006i \(-0.766720\pi\)
0.951005 + 0.309176i \(0.100053\pi\)
\(224\) −0.00736952 0.0266587i −0.000492397 0.00178121i
\(225\) −1.58765 2.74989i −0.105843 0.183326i
\(226\) 1.82457 3.16025i 0.121369 0.210217i
\(227\) 0.770318 1.33423i 0.0511278 0.0885560i −0.839329 0.543624i \(-0.817052\pi\)
0.890457 + 0.455068i \(0.150385\pi\)
\(228\) −0.000522686 0 0.000905319i −3.46157e−5 0 5.99562e-5i
\(229\) 10.6720 18.4845i 0.705227 1.22149i −0.261383 0.965235i \(-0.584179\pi\)
0.966610 0.256253i \(-0.0824880\pi\)
\(230\) −1.61391 2.79537i −0.106418 0.184321i
\(231\) −4.28184 + 4.35007i −0.281724 + 0.286214i
\(232\) 8.50034 14.7230i 0.558075 0.966614i
\(233\) −4.31457 + 7.47305i −0.282657 + 0.489576i −0.972038 0.234823i \(-0.924549\pi\)
0.689381 + 0.724399i \(0.257882\pi\)
\(234\) −4.41315 2.55894i −0.288496 0.167283i
\(235\) 0.385489 + 0.667686i 0.0251465 + 0.0435550i
\(236\) 0.00537939 + 0.00931738i 0.000350169 + 0.000606510i
\(237\) −2.01404 + 3.48841i −0.130826 + 0.226597i
\(238\) −19.5677 + 19.8795i −1.26839 + 1.28860i
\(239\) 20.3222 1.31454 0.657268 0.753657i \(-0.271712\pi\)
0.657268 + 0.753657i \(0.271712\pi\)
\(240\) −11.4476 −0.738936
\(241\) −13.0577 + 22.6166i −0.841119 + 1.45686i 0.0478310 + 0.998855i \(0.484769\pi\)
−0.888950 + 0.458005i \(0.848564\pi\)
\(242\) −4.01647 6.95674i −0.258189 0.447196i
\(243\) 1.00000 0.0641500
\(244\) 0.00271107 0.00469571i 0.000173558 0.000300612i
\(245\) 17.4893 + 9.73211i 1.11735 + 0.621762i
\(246\) −16.0757 −1.02495
\(247\) −1.76821 + 1.01648i −0.112509 + 0.0646770i
\(248\) −10.7535 18.6256i −0.682848 1.18273i
\(249\) 16.2573 1.03027
\(250\) −3.69087 6.39277i −0.233431 0.404314i
\(251\) −11.2757 19.5301i −0.711718 1.23273i −0.964212 0.265133i \(-0.914584\pi\)
0.252494 0.967599i \(-0.418749\pi\)
\(252\) −0.00130276 0.00471264i −8.20661e−5 0.000296868i
\(253\) 0.920383 + 1.59415i 0.0578640 + 0.100223i
\(254\) −5.83814 −0.366318
\(255\) 10.6530 + 18.4516i 0.667118 + 1.15548i
\(256\) −0.0221762 + 0.0384103i −0.00138601 + 0.00240064i
\(257\) 0.536216 + 0.928754i 0.0334483 + 0.0579341i 0.882265 0.470753i \(-0.156018\pi\)
−0.848817 + 0.528687i \(0.822684\pi\)
\(258\) 5.33327 9.23749i 0.332035 0.575101i
\(259\) 5.89390 + 1.52944i 0.366229 + 0.0950345i
\(260\) 0.0164813 + 0.00955656i 0.00102212 + 0.000592673i
\(261\) 3.00672 5.20778i 0.186111 0.322354i
\(262\) 10.6746 0.659477
\(263\) 15.4691 0.953866 0.476933 0.878940i \(-0.341748\pi\)
0.476933 + 0.878940i \(0.341748\pi\)
\(264\) 6.52230 0.401420
\(265\) −13.4952 −0.829006
\(266\) −2.04965 0.531873i −0.125672 0.0326112i
\(267\) 0.709194 + 1.22836i 0.0434020 + 0.0751745i
\(268\) −0.00293343 + 0.00508085i −0.000179188 + 0.000310362i
\(269\) −1.11891 + 1.93801i −0.0682212 + 0.118163i −0.898118 0.439754i \(-0.855066\pi\)
0.829897 + 0.557916i \(0.188399\pi\)
\(270\) −4.04546 −0.246199
\(271\) −3.07220 5.32120i −0.186623 0.323240i 0.757499 0.652836i \(-0.226421\pi\)
−0.944122 + 0.329596i \(0.893088\pi\)
\(272\) 29.8340 1.80895
\(273\) 2.41331 9.22908i 0.146060 0.558569i
\(274\) −23.6280 −1.42742
\(275\) −3.66279 6.34414i −0.220874 0.382566i
\(276\) −0.00147451 −8.87551e−5
\(277\) 1.67414 2.89969i 0.100589 0.174226i −0.811338 0.584577i \(-0.801261\pi\)
0.911928 + 0.410351i \(0.134594\pi\)
\(278\) 7.31903 12.6769i 0.438966 0.760312i
\(279\) −3.80370 6.58820i −0.227721 0.394425i
\(280\) −5.69842 20.6136i −0.340546 1.23190i
\(281\) −14.2117 −0.847800 −0.423900 0.905709i \(-0.639339\pi\)
−0.423900 + 0.905709i \(0.639339\pi\)
\(282\) 0.381509 0.0227186
\(283\) 14.6283 0.869565 0.434782 0.900536i \(-0.356825\pi\)
0.434782 + 0.900536i \(0.356825\pi\)
\(284\) 0.0111267 0.000660249
\(285\) −0.808700 + 1.40071i −0.0479032 + 0.0829708i
\(286\) −10.1813 5.90359i −0.602035 0.349087i
\(287\) −8.00964 28.9743i −0.472794 1.71030i
\(288\) −0.00522698 + 0.00905339i −0.000308003 + 0.000533476i
\(289\) −19.2633 33.3651i −1.13314 1.96265i
\(290\) −12.1635 + 21.0679i −0.714267 + 1.23715i
\(291\) −5.23049 9.05948i −0.306617 0.531076i
\(292\) −0.0196555 −0.00115025
\(293\) −10.7723 18.6582i −0.629324 1.09002i −0.987688 0.156439i \(-0.949998\pi\)
0.358363 0.933582i \(-0.383335\pi\)
\(294\) 8.49782 5.08701i 0.495603 0.296680i
\(295\) 8.32299 + 14.4158i 0.484583 + 0.839323i
\(296\) −3.25326 5.63481i −0.189092 0.327517i
\(297\) 2.30705 0.133868
\(298\) −8.66223 15.0034i −0.501790 0.869125i
\(299\) −2.48871 1.44306i −0.143926 0.0834546i
\(300\) 0.00586801 0.000338790
\(301\) 19.3066 + 5.00997i 1.11281 + 0.288770i
\(302\) 12.7951 22.1618i 0.736276 1.27527i
\(303\) −9.47483 −0.544315
\(304\) 1.13239 + 1.96136i 0.0649470 + 0.112492i
\(305\) 4.19456 7.26519i 0.240180 0.416004i
\(306\) 10.5431 0.602706
\(307\) 18.6457 1.06416 0.532082 0.846693i \(-0.321410\pi\)
0.532082 + 0.846693i \(0.321410\pi\)
\(308\) −0.00300553 0.0108723i −0.000171256 0.000619506i
\(309\) −10.1433 + 17.5686i −0.577029 + 0.999444i
\(310\) 15.3877 + 26.6523i 0.873962 + 1.51375i
\(311\) −0.578424 1.00186i −0.0327994 0.0568103i 0.849160 0.528136i \(-0.177109\pi\)
−0.881959 + 0.471326i \(0.843776\pi\)
\(312\) −8.83718 + 5.08016i −0.500307 + 0.287607i
\(313\) −6.86004 + 11.8819i −0.387752 + 0.671607i −0.992147 0.125078i \(-0.960082\pi\)
0.604394 + 0.796685i \(0.293415\pi\)
\(314\) −15.4434 + 26.7488i −0.871523 + 1.50952i
\(315\) −2.01563 7.29139i −0.113568 0.410823i
\(316\) −0.00372197 0.00644664i −0.000209377 0.000362652i
\(317\) −2.13847 + 3.70393i −0.120108 + 0.208034i −0.919810 0.392364i \(-0.871658\pi\)
0.799702 + 0.600397i \(0.204991\pi\)
\(318\) −3.33898 + 5.78329i −0.187241 + 0.324311i
\(319\) 6.93664 12.0146i 0.388377 0.672689i
\(320\) −11.4264 + 19.7911i −0.638756 + 1.10636i
\(321\) 6.68305 + 11.5754i 0.373011 + 0.646075i
\(322\) −0.795822 2.87883i −0.0443494 0.160431i
\(323\) 2.10759 3.65045i 0.117269 0.203117i
\(324\) −0.000924008 0.00160043i −5.13338e−5 8.89127e-5i
\(325\) 9.90417 + 5.74287i 0.549384 + 0.318557i
\(326\) −8.04657 13.9371i −0.445658 0.771902i
\(327\) −0.471097 0.815964i −0.0260517 0.0451229i
\(328\) −16.0609 + 27.8182i −0.886813 + 1.53601i
\(329\) 0.190085 + 0.687619i 0.0104797 + 0.0379097i
\(330\) −9.33306 −0.513768
\(331\) 11.6611 0.640954 0.320477 0.947256i \(-0.396157\pi\)
0.320477 + 0.947256i \(0.396157\pi\)
\(332\) −0.0150219 + 0.0260187i −0.000824434 + 0.00142796i
\(333\) −1.15073 1.99313i −0.0630598 0.109223i
\(334\) 0.743693 0.0406931
\(335\) −4.53860 + 7.86109i −0.247970 + 0.429497i
\(336\) −10.2532 2.66065i −0.559357 0.145150i
\(337\) −16.2903 −0.887387 −0.443693 0.896179i \(-0.646332\pi\)
−0.443693 + 0.896179i \(0.646332\pi\)
\(338\) 18.3931 + 0.0687259i 1.00045 + 0.00373820i
\(339\) −1.28957 2.23360i −0.0700400 0.121313i
\(340\) −0.0393739 −0.00213535
\(341\) −8.77531 15.1993i −0.475210 0.823087i
\(342\) 0.400176 + 0.693125i 0.0216390 + 0.0374799i
\(343\) 13.4026 + 12.7816i 0.723674 + 0.690142i
\(344\) −10.6567 18.4579i −0.574570 0.995184i
\(345\) −2.28136 −0.122824
\(346\) −6.46960 11.2057i −0.347808 0.602421i
\(347\) −12.8556 + 22.2666i −0.690126 + 1.19533i 0.281670 + 0.959511i \(0.409112\pi\)
−0.971796 + 0.235822i \(0.924222\pi\)
\(348\) 0.00555646 + 0.00962407i 0.000297857 + 0.000515904i
\(349\) −0.908371 + 1.57334i −0.0486240 + 0.0842192i −0.889313 0.457299i \(-0.848817\pi\)
0.840689 + 0.541518i \(0.182150\pi\)
\(350\) 3.16708 + 11.4567i 0.169288 + 0.612386i
\(351\) −3.12586 + 1.79694i −0.166846 + 0.0959135i
\(352\) −0.0120589 + 0.0208866i −0.000642741 + 0.00111326i
\(353\) −0.0624143 −0.00332198 −0.00166099 0.999999i \(-0.500529\pi\)
−0.00166099 + 0.999999i \(0.500529\pi\)
\(354\) 8.23707 0.437796
\(355\) 17.2152 0.913691
\(356\) −0.00262121 −0.000138924
\(357\) 5.25302 + 19.0024i 0.278019 + 1.00572i
\(358\) −1.21881 2.11104i −0.0644160 0.111572i
\(359\) −6.71414 + 11.6292i −0.354359 + 0.613767i −0.987008 0.160671i \(-0.948634\pi\)
0.632649 + 0.774438i \(0.281967\pi\)
\(360\) −4.04172 + 7.00046i −0.213017 + 0.368957i
\(361\) −18.6800 −0.983159
\(362\) −2.81363 4.87334i −0.147881 0.256137i
\(363\) −5.67753 −0.297993
\(364\) 0.0125406 + 0.0123901i 0.000657305 + 0.000649417i
\(365\) −30.4109 −1.59178
\(366\) −2.07563 3.59510i −0.108495 0.187919i
\(367\) 21.3432 1.11410 0.557052 0.830477i \(-0.311932\pi\)
0.557052 + 0.830477i \(0.311932\pi\)
\(368\) −1.59725 + 2.76652i −0.0832623 + 0.144215i
\(369\) −5.68100 + 9.83978i −0.295741 + 0.512239i
\(370\) 4.65524 + 8.06311i 0.242014 + 0.419181i
\(371\) −12.0872 3.13657i −0.627538 0.162843i
\(372\) 0.0140586 0.000728904
\(373\) 28.7677 1.48953 0.744767 0.667325i \(-0.232561\pi\)
0.744767 + 0.667325i \(0.232561\pi\)
\(374\) 24.3233 1.25773
\(375\) −5.21726 −0.269418
\(376\) 0.381157 0.660183i 0.0196567 0.0340463i
\(377\) −0.0405066 + 21.6817i −0.00208620 + 1.11666i
\(378\) −3.62338 0.940248i −0.186366 0.0483611i
\(379\) 9.71923 16.8342i 0.499244 0.864715i −0.500756 0.865588i \(-0.666945\pi\)
1.00000 0.000873266i \(0.000277969\pi\)
\(380\) −0.00149449 0.00258853i −7.66657e−5 0.000132789i
\(381\) −2.06314 + 3.57347i −0.105698 + 0.183074i
\(382\) 17.7944 + 30.8208i 0.910440 + 1.57693i
\(383\) 30.2612 1.54627 0.773137 0.634239i \(-0.218687\pi\)
0.773137 + 0.634239i \(0.218687\pi\)
\(384\) 5.66468 + 9.81152i 0.289075 + 0.500692i
\(385\) −4.65015 16.8216i −0.236994 0.857307i
\(386\) −12.8437 22.2459i −0.653726 1.13229i
\(387\) −3.76945 6.52888i −0.191612 0.331881i
\(388\) 0.0193321 0.000981438
\(389\) 0.308324 + 0.534034i 0.0156327 + 0.0270766i 0.873736 0.486401i \(-0.161690\pi\)
−0.858103 + 0.513477i \(0.828357\pi\)
\(390\) 12.6455 7.26944i 0.640332 0.368102i
\(391\) 5.94556 0.300680
\(392\) −0.312846 19.7874i −0.0158011 0.999413i
\(393\) 3.77229 6.53379i 0.190287 0.329586i
\(394\) 2.21428 0.111554
\(395\) −5.75863 9.97424i −0.289748 0.501858i
\(396\) −0.00213173 + 0.00369227i −0.000107124 + 0.000185543i
\(397\) 29.5775 1.48445 0.742227 0.670149i \(-0.233770\pi\)
0.742227 + 0.670149i \(0.233770\pi\)
\(398\) 21.3873 1.07205
\(399\) −1.04988 + 1.06661i −0.0525597 + 0.0533972i
\(400\) 6.35647 11.0097i 0.317823 0.550486i
\(401\) 9.92368 + 17.1883i 0.495565 + 0.858344i 0.999987 0.00511344i \(-0.00162767\pi\)
−0.504422 + 0.863457i \(0.668294\pi\)
\(402\) 2.24588 + 3.88997i 0.112014 + 0.194014i
\(403\) 23.7284 + 13.7588i 1.18200 + 0.685374i
\(404\) 0.00875483 0.0151638i 0.000435569 0.000754427i
\(405\) −1.42962 + 2.47618i −0.0710386 + 0.123042i
\(406\) −15.7911 + 16.0427i −0.783698 + 0.796186i
\(407\) −2.65480 4.59824i −0.131593 0.227926i
\(408\) 10.5333 18.2442i 0.521477 0.903224i
\(409\) −11.7662 + 20.3796i −0.581800 + 1.00771i 0.413466 + 0.910519i \(0.364318\pi\)
−0.995266 + 0.0971875i \(0.969015\pi\)
\(410\) 22.9822 39.8064i 1.13501 1.96590i
\(411\) −8.34991 + 14.4625i −0.411871 + 0.713381i
\(412\) −0.0187449 0.0324671i −0.000923495 0.00159954i
\(413\) 4.10408 + 14.8462i 0.201949 + 0.730535i
\(414\) −0.564452 + 0.977660i −0.0277413 + 0.0480494i
\(415\) −23.2419 + 40.2561i −1.14090 + 1.97610i
\(416\) 7.04182e−5 0.0376922i 3.45253e−6 0.00184801i
\(417\) −5.17295 8.95981i −0.253320 0.438764i
\(418\) 0.923225 + 1.59907i 0.0451564 + 0.0782132i
\(419\) 17.6833 30.6285i 0.863888 1.49630i −0.00425910 0.999991i \(-0.501356\pi\)
0.868147 0.496307i \(-0.165311\pi\)
\(420\) 0.0135318 + 0.00351144i 0.000660285 + 0.000171341i
\(421\) −10.1261 −0.493514 −0.246757 0.969077i \(-0.579365\pi\)
−0.246757 + 0.969077i \(0.579365\pi\)
\(422\) −23.4543 −1.14174
\(423\) 0.134822 0.233518i 0.00655525 0.0113540i
\(424\) 6.67179 + 11.5559i 0.324011 + 0.561203i
\(425\) −23.6612 −1.14773
\(426\) 4.25939 7.37747i 0.206368 0.357440i
\(427\) 5.44551 5.53228i 0.263527 0.267726i
\(428\) −0.0247008 −0.00119396
\(429\) −7.21151 + 4.14562i −0.348175 + 0.200153i
\(430\) 15.2491 + 26.4123i 0.735379 + 1.27371i
\(431\) −6.24300 −0.300715 −0.150357 0.988632i \(-0.548042\pi\)
−0.150357 + 0.988632i \(0.548042\pi\)
\(432\) 2.00185 + 3.46730i 0.0963139 + 0.166821i
\(433\) 16.9222 + 29.3101i 0.813229 + 1.40855i 0.910593 + 0.413305i \(0.135626\pi\)
−0.0973634 + 0.995249i \(0.531041\pi\)
\(434\) 7.58769 + 27.4479i 0.364221 + 1.31754i
\(435\) 8.59695 + 14.8903i 0.412192 + 0.713938i
\(436\) 0.00174119 8.33878e−5
\(437\) 0.225672 + 0.390875i 0.0107953 + 0.0186981i
\(438\) −7.52425 + 13.0324i −0.359522 + 0.622711i
\(439\) −4.43741 7.68582i −0.211786 0.366824i 0.740488 0.672070i \(-0.234595\pi\)
−0.952274 + 0.305246i \(0.901261\pi\)
\(440\) −9.32444 + 16.1504i −0.444525 + 0.769940i
\(441\) −0.110659 6.99913i −0.00526947 0.333292i
\(442\) −32.9561 + 18.9452i −1.56756 + 0.901132i
\(443\) 5.95160 10.3085i 0.282769 0.489770i −0.689297 0.724479i \(-0.742080\pi\)
0.972066 + 0.234709i \(0.0754136\pi\)
\(444\) 0.00425315 0.000201845
\(445\) −4.05553 −0.192250
\(446\) 8.77879 0.415688
\(447\) −12.2446 −0.579149
\(448\) −14.8341 + 15.0705i −0.700846 + 0.712014i
\(449\) 2.97292 + 5.14925i 0.140301 + 0.243008i 0.927610 0.373550i \(-0.121860\pi\)
−0.787309 + 0.616558i \(0.788526\pi\)
\(450\) 2.24632 3.89073i 0.105892 0.183411i
\(451\) −13.1063 + 22.7009i −0.617154 + 1.06894i
\(452\) 0.00476630 0.000224188
\(453\) −9.04334 15.6635i −0.424893 0.735936i
\(454\) 2.17980 0.102303
\(455\) 19.4028 + 19.1699i 0.909615 + 0.898700i
\(456\) 1.59922 0.0748905
\(457\) −6.05613 10.4895i −0.283294 0.490679i 0.688900 0.724856i \(-0.258094\pi\)
−0.972194 + 0.234177i \(0.924761\pi\)
\(458\) 30.1990 1.41110
\(459\) 3.72581 6.45329i 0.173906 0.301214i
\(460\) 0.00210800 0.00365115i 9.82858e−5 0.000170236i
\(461\) −2.55673 4.42839i −0.119079 0.206251i 0.800324 0.599568i \(-0.204661\pi\)
−0.919403 + 0.393317i \(0.871327\pi\)
\(462\) −8.35931 2.16920i −0.388910 0.100920i
\(463\) −38.9344 −1.80944 −0.904718 0.426010i \(-0.859919\pi\)
−0.904718 + 0.426010i \(0.859919\pi\)
\(464\) 24.0759 1.11770
\(465\) 21.7514 1.00870
\(466\) −12.2091 −0.565575
\(467\) 7.02626 12.1698i 0.325136 0.563153i −0.656404 0.754410i \(-0.727923\pi\)
0.981540 + 0.191257i \(0.0612564\pi\)
\(468\) 1.24483e−5 0.00666311i 5.75423e−7 0.000308002i
\(469\) −5.89215 + 5.98604i −0.272074 + 0.276410i
\(470\) −0.545415 + 0.944687i −0.0251581 + 0.0435752i
\(471\) 10.9151 + 18.9055i 0.502941 + 0.871120i
\(472\) 8.22946 14.2538i 0.378792 0.656087i
\(473\) −8.69630 15.0624i −0.399856 0.692571i
\(474\) −5.69918 −0.261772
\(475\) −0.898091 1.55554i −0.0412073 0.0713731i
\(476\) −0.0352659 0.00915132i −0.00161641 0.000419450i
\(477\) 2.35993 + 4.08751i 0.108054 + 0.187154i
\(478\) 14.3766 + 24.9011i 0.657572 + 1.13895i
\(479\) −32.2735 −1.47462 −0.737308 0.675557i \(-0.763903\pi\)
−0.737308 + 0.675557i \(0.763903\pi\)
\(480\) −0.0149452 0.0258859i −0.000682153 0.00118152i
\(481\) 7.17856 + 4.16244i 0.327314 + 0.189791i
\(482\) −36.9497 −1.68301
\(483\) −2.04334 0.530235i −0.0929750 0.0241265i
\(484\) 0.00524608 0.00908648i 0.000238458 0.000413022i
\(485\) 29.9106 1.35817
\(486\) 0.707433 + 1.22531i 0.0320898 + 0.0555812i
\(487\) 6.14080 10.6362i 0.278266 0.481971i −0.692688 0.721238i \(-0.743574\pi\)
0.970954 + 0.239266i \(0.0769069\pi\)
\(488\) −8.29485 −0.375490
\(489\) −11.3743 −0.514364
\(490\) 0.447665 + 28.3147i 0.0202235 + 1.27913i
\(491\) −10.8531 + 18.7981i −0.489792 + 0.848345i −0.999931 0.0117472i \(-0.996261\pi\)
0.510139 + 0.860092i \(0.329594\pi\)
\(492\) −0.0104986 0.0181841i −0.000473313 0.000819802i
\(493\) −22.4049 38.8064i −1.00907 1.74775i
\(494\) −2.49640 1.44752i −0.112318 0.0651270i
\(495\) −3.29821 + 5.71267i −0.148244 + 0.256765i
\(496\) 15.2288 26.3771i 0.683795 1.18437i
\(497\) 15.4191 + 4.00118i 0.691642 + 0.179478i
\(498\) 11.5010 + 19.9203i 0.515371 + 0.892649i
\(499\) −4.93997 + 8.55628i −0.221143 + 0.383032i −0.955155 0.296105i \(-0.904312\pi\)
0.734012 + 0.679136i \(0.237646\pi\)
\(500\) 0.00482079 0.00834986i 0.000215592 0.000373417i
\(501\) 0.262814 0.455207i 0.0117417 0.0203372i
\(502\) 15.9537 27.6326i 0.712047 1.23330i
\(503\) −17.2279 29.8396i −0.768155 1.33048i −0.938562 0.345110i \(-0.887842\pi\)
0.170407 0.985374i \(-0.445492\pi\)
\(504\) −5.24708 + 5.33070i −0.233724 + 0.237448i
\(505\) 13.5455 23.4614i 0.602765 1.04402i
\(506\) −1.30222 + 2.25551i −0.0578907 + 0.100270i
\(507\) 6.54202 11.2340i 0.290541 0.498918i
\(508\) −0.00381272 0.00660383i −0.000169162 0.000292998i
\(509\) −5.43324 9.41065i −0.240824 0.417120i 0.720125 0.693844i \(-0.244084\pi\)
−0.960949 + 0.276725i \(0.910751\pi\)
\(510\) −15.0726 + 26.1065i −0.667426 + 1.15602i
\(511\) −27.2380 7.06813i −1.20494 0.312676i
\(512\) 22.5960 0.998610
\(513\) 0.565673 0.0249751
\(514\) −0.758675 + 1.31406i −0.0334637 + 0.0579608i
\(515\) −29.0021 50.2331i −1.27798 2.21353i
\(516\) 0.0139320 0.000613322
\(517\) 0.311040 0.538737i 0.0136795 0.0236936i
\(518\) 2.29551 + 8.30383i 0.100859 + 0.364849i
\(519\) −9.14517 −0.401429
\(520\) 0.0544503 29.1452i 0.00238780 1.27810i
\(521\) 19.0141 + 32.9334i 0.833024 + 1.44284i 0.895630 + 0.444801i \(0.146726\pi\)
−0.0626059 + 0.998038i \(0.519941\pi\)
\(522\) 8.50820 0.372394
\(523\) −13.6142 23.5805i −0.595307 1.03110i −0.993503 0.113802i \(-0.963697\pi\)
0.398196 0.917300i \(-0.369636\pi\)
\(524\) 0.00697125 + 0.0120746i 0.000304540 + 0.000527479i
\(525\) 8.13174 + 2.11014i 0.354898 + 0.0920942i
\(526\) 10.9434 + 18.9545i 0.477153 + 0.826453i
\(527\) −56.6874 −2.46934
\(528\) 4.61836 + 7.99923i 0.200988 + 0.348122i
\(529\) 11.1817 19.3673i 0.486160 0.842054i
\(530\) −9.54698 16.5359i −0.414694 0.718272i
\(531\) 2.91090 5.04183i 0.126322 0.218797i
\(532\) −0.000736936 0.00266581i −3.19502e−5 0.000115578i
\(533\) 0.0765348 40.9662i 0.00331509 1.77444i
\(534\) −1.00342 + 1.73797i −0.0434220 + 0.0752092i
\(535\) −38.2170 −1.65226
\(536\) 8.97520 0.387670
\(537\) −1.72286 −0.0743469
\(538\) −3.16622 −0.136505
\(539\) −0.255295 16.1473i −0.0109963 0.695514i
\(540\) −0.00264197 0.00457603i −0.000113692 0.000196921i
\(541\) −19.4083 + 33.6162i −0.834430 + 1.44528i 0.0600635 + 0.998195i \(0.480870\pi\)
−0.894494 + 0.447081i \(0.852464\pi\)
\(542\) 4.34675 7.52879i 0.186709 0.323389i
\(543\) −3.97723 −0.170679
\(544\) 0.0389495 + 0.0674625i 0.00166994 + 0.00289243i
\(545\) 2.69397 0.115397
\(546\) 13.0157 3.57190i 0.557023 0.152863i
\(547\) −8.34899 −0.356977 −0.178489 0.983942i \(-0.557121\pi\)
−0.178489 + 0.983942i \(0.557121\pi\)
\(548\) −0.0154308 0.0267269i −0.000659170 0.00114172i
\(549\) −2.93403 −0.125221
\(550\) 5.18236 8.97611i 0.220976 0.382742i
\(551\) 1.70082 2.94590i 0.0724572 0.125500i
\(552\) 1.12786 + 1.95351i 0.0480050 + 0.0831471i
\(553\) −2.83959 10.2720i −0.120752 0.436810i
\(554\) 4.73736 0.201271
\(555\) 6.58046 0.279325
\(556\) 0.0191194 0.000810843
\(557\) 20.3402 0.861842 0.430921 0.902390i \(-0.358189\pi\)
0.430921 + 0.902390i \(0.358189\pi\)
\(558\) 5.38172 9.32142i 0.227827 0.394607i
\(559\) 23.5148 + 13.6349i 0.994569 + 0.576695i
\(560\) 21.2465 21.5850i 0.897827 0.912134i
\(561\) 8.59562 14.8881i 0.362908 0.628574i
\(562\) −10.0538 17.4138i −0.424096 0.734555i
\(563\) 1.82692 3.16432i 0.0769955 0.133360i −0.824957 0.565196i \(-0.808801\pi\)
0.901952 + 0.431836i \(0.142134\pi\)
\(564\) 0.000249153 0 0.000431545i 1.04912e−5 0 1.81713e-5i
\(565\) 7.37442 0.310244
\(566\) 10.3486 + 17.9243i 0.434983 + 0.753413i
\(567\) −1.85598 + 1.88556i −0.0779439 + 0.0791860i
\(568\) −8.51090 14.7413i −0.357109 0.618532i
\(569\) −2.69407 4.66627i −0.112941 0.195620i 0.804014 0.594611i \(-0.202694\pi\)
−0.916955 + 0.398991i \(0.869361\pi\)
\(570\) −2.28840 −0.0958507
\(571\) −3.46902 6.00851i −0.145174 0.251448i 0.784264 0.620427i \(-0.213041\pi\)
−0.929438 + 0.368979i \(0.879707\pi\)
\(572\) 2.87188e−5 0.0153721i 1.20079e−6 0.000642740i
\(573\) 25.1534 1.05080
\(574\) 29.8363 30.3117i 1.24534 1.26519i
\(575\) 1.26677 2.19411i 0.0528279 0.0915005i
\(576\) 7.99259 0.333025
\(577\) −4.66974 8.08823i −0.194404 0.336718i 0.752301 0.658820i \(-0.228944\pi\)
−0.946705 + 0.322102i \(0.895611\pi\)
\(578\) 27.2550 47.2071i 1.13366 1.96356i
\(579\) −18.1553 −0.754510
\(580\) −0.0317746 −0.00131937
\(581\) −30.1733 + 30.6541i −1.25180 + 1.27175i
\(582\) 7.40045 12.8180i 0.306759 0.531322i
\(583\) 5.44446 + 9.43009i 0.225487 + 0.390554i
\(584\) 15.0346 + 26.0407i 0.622136 + 1.07757i
\(585\) 0.0192600 10.3091i 0.000796302 0.426231i
\(586\) 15.2414 26.3988i 0.629615 1.09053i
\(587\) −11.8226 + 20.4774i −0.487972 + 0.845192i −0.999904 0.0138340i \(-0.995596\pi\)
0.511933 + 0.859026i \(0.328930\pi\)
\(588\) 0.0113039 + 0.00629015i 0.000466163 + 0.000259401i
\(589\) −2.15165 3.72676i −0.0886571 0.153559i
\(590\) −11.7759 + 20.3965i −0.484807 + 0.839710i
\(591\) 0.782504 1.35534i 0.0321879 0.0557511i
\(592\) 4.60718 7.97987i 0.189354 0.327971i
\(593\) 6.02330 10.4327i 0.247347 0.428418i −0.715442 0.698673i \(-0.753774\pi\)
0.962789 + 0.270254i \(0.0871078\pi\)
\(594\) 1.63208 + 2.82685i 0.0669652 + 0.115987i
\(595\) −54.5633 14.1589i −2.23688 0.580458i
\(596\) 0.0113141 0.0195966i 0.000463444 0.000802708i
\(597\) 7.55805 13.0909i 0.309330 0.535776i
\(598\) 0.00760434 4.07032i 0.000310964 0.166448i
\(599\) 3.07545 + 5.32684i 0.125660 + 0.217649i 0.921991 0.387212i \(-0.126562\pi\)
−0.796331 + 0.604861i \(0.793229\pi\)
\(600\) −4.48848 7.77427i −0.183241 0.317383i
\(601\) 2.33860 4.05057i 0.0953934 0.165226i −0.814379 0.580333i \(-0.802922\pi\)
0.909773 + 0.415107i \(0.136256\pi\)
\(602\) 7.51937 + 27.2008i 0.306467 + 1.10862i
\(603\) 3.17468 0.129283
\(604\) 0.0334245 0.00136002
\(605\) 8.11673 14.0586i 0.329992 0.571563i
\(606\) −6.70281 11.6096i −0.272283 0.471608i
\(607\) −15.3001 −0.621011 −0.310505 0.950572i \(-0.600498\pi\)
−0.310505 + 0.950572i \(0.600498\pi\)
\(608\) −0.00295676 + 0.00512126i −0.000119912 + 0.000207694i
\(609\) 4.23917 + 15.3349i 0.171780 + 0.621401i
\(610\) 11.8695 0.480582
\(611\) −0.00181633 + 0.972211i −7.34807e−5 + 0.0393315i
\(612\) 0.00688536 + 0.0119258i 0.000278324 + 0.000482072i
\(613\) 11.5283 0.465622 0.232811 0.972522i \(-0.425208\pi\)
0.232811 + 0.972522i \(0.425208\pi\)
\(614\) 13.1906 + 22.8467i 0.532328 + 0.922019i
\(615\) −16.2434 28.1344i −0.654997 1.13449i
\(616\) −12.1053 + 12.2982i −0.487735 + 0.495508i
\(617\) 10.2940 + 17.8298i 0.414423 + 0.717801i 0.995368 0.0961418i \(-0.0306502\pi\)
−0.580945 + 0.813943i \(0.697317\pi\)
\(618\) −28.7027 −1.15459
\(619\) −9.83404 17.0331i −0.395263 0.684616i 0.597871 0.801592i \(-0.296013\pi\)
−0.993135 + 0.116976i \(0.962680\pi\)
\(620\) −0.0200985 + 0.0348116i −0.000807175 + 0.00139807i
\(621\) 0.398944 + 0.690991i 0.0160091 + 0.0277285i
\(622\) 0.818393 1.41750i 0.0328146 0.0568365i
\(623\) −3.63240 0.942589i −0.145529 0.0377640i
\(624\) −12.4880 7.24110i −0.499921 0.289876i
\(625\) 15.3970 26.6684i 0.615879 1.06673i
\(626\) −19.4121 −0.775863
\(627\) 1.30503 0.0521180
\(628\) −0.0403426 −0.00160984
\(629\) −17.1496 −0.683801
\(630\) 7.50830 7.62794i 0.299138 0.303905i
\(631\) 21.7095 + 37.6019i 0.864241 + 1.49691i 0.867799 + 0.496916i \(0.165534\pi\)
−0.00355775 + 0.999994i \(0.501132\pi\)
\(632\) −5.69392 + 9.86215i −0.226492 + 0.392295i
\(633\) −8.28852 + 14.3561i −0.329439 + 0.570606i
\(634\) −6.05129 −0.240328
\(635\) −5.89904 10.2174i −0.234096 0.405467i
\(636\) −0.00872237 −0.000345864
\(637\) 12.9229 + 21.6794i 0.512024 + 0.858971i
\(638\) 19.6288 0.777113
\(639\) −3.01045 5.21425i −0.119092 0.206273i
\(640\) −32.3935 −1.28046
\(641\) −13.4905 + 23.3663i −0.532844 + 0.922912i 0.466421 + 0.884563i \(0.345543\pi\)
−0.999264 + 0.0383494i \(0.987790\pi\)
\(642\) −9.45562 + 16.3776i −0.373184 + 0.646373i
\(643\) −2.55705 4.42895i −0.100840 0.174661i 0.811191 0.584782i \(-0.198820\pi\)
−0.912031 + 0.410121i \(0.865486\pi\)
\(644\) 0.00273666 0.00278027i 0.000107840 0.000109558i
\(645\) 21.5556 0.848750
\(646\) 5.96392 0.234647
\(647\) 19.5448 0.768384 0.384192 0.923253i \(-0.374480\pi\)
0.384192 + 0.923253i \(0.374480\pi\)
\(648\) 2.82712 0.111060
\(649\) 6.71559 11.6317i 0.263610 0.456586i
\(650\) −0.0302625 + 16.1984i −0.00118699 + 0.635353i
\(651\) 19.4820 + 5.05548i 0.763561 + 0.198140i
\(652\) 0.0105100 0.0182038i 0.000411602 0.000712915i
\(653\) −7.68131 13.3044i −0.300593 0.520642i 0.675677 0.737197i \(-0.263851\pi\)
−0.976270 + 0.216555i \(0.930518\pi\)
\(654\) 0.666539 1.15448i 0.0260637 0.0451437i
\(655\) 10.7859 + 18.6817i 0.421440 + 0.729956i
\(656\) −45.4900 −1.77608
\(657\) 5.31799 + 9.21103i 0.207475 + 0.359356i
\(658\) −0.708075 + 0.719358i −0.0276036 + 0.0280435i
\(659\) −8.71206 15.0897i −0.339374 0.587813i 0.644941 0.764232i \(-0.276882\pi\)
−0.984315 + 0.176420i \(0.943548\pi\)
\(660\) −0.00609515 0.0105571i −0.000237253 0.000410935i
\(661\) 16.7166 0.650202 0.325101 0.945679i \(-0.394602\pi\)
0.325101 + 0.945679i \(0.394602\pi\)
\(662\) 8.24948 + 14.2885i 0.320625 + 0.555339i
\(663\) −0.0501943 + 26.8672i −0.00194939 + 1.04343i
\(664\) 45.9614 1.78365
\(665\) −1.14019 4.12454i −0.0442145 0.159943i
\(666\) 1.62813 2.82001i 0.0630889 0.109273i
\(667\) 4.79804 0.185781
\(668\) 0.000485684 0 0.000841230i 1.87917e−5 0 3.25482e-5i
\(669\) 3.10234 5.37341i 0.119943 0.207748i
\(670\) −12.8430 −0.496170
\(671\) −6.76895 −0.261312
\(672\) −0.00736952 0.0266587i −0.000284285 0.00102838i
\(673\) −15.0178 + 26.0116i −0.578894 + 1.00267i 0.416713 + 0.909038i \(0.363182\pi\)
−0.995607 + 0.0936354i \(0.970151\pi\)
\(674\) −11.5243 19.9606i −0.443898 0.768854i
\(675\) −1.58765 2.74989i −0.0611087 0.105843i
\(676\) 0.0119343 + 0.0208503i 0.000459011 + 0.000801935i
\(677\) 1.91898 3.32377i 0.0737525 0.127743i −0.826791 0.562510i \(-0.809836\pi\)
0.900543 + 0.434767i \(0.143169\pi\)
\(678\) 1.82457 3.16025i 0.0700723 0.121369i
\(679\) 26.7899 + 6.95184i 1.02810 + 0.266787i
\(680\) 30.1174 + 52.1648i 1.15495 + 2.00043i
\(681\) 0.770318 1.33423i 0.0295187 0.0511278i
\(682\) 12.4159 21.5050i 0.475429 0.823468i
\(683\) −13.9784 + 24.2113i −0.534868 + 0.926419i 0.464301 + 0.885677i \(0.346305\pi\)
−0.999170 + 0.0407419i \(0.987028\pi\)
\(684\) −0.000522686 0 0.000905319i −1.99854e−5 0 3.46157e-5i
\(685\) −23.8745 41.3518i −0.912197 1.57997i
\(686\) −6.17996 + 25.4645i −0.235952 + 0.972240i
\(687\) 10.6720 18.4845i 0.407163 0.705227i
\(688\) 15.0917 26.1396i 0.575366 0.996563i
\(689\) −14.7218 8.53636i −0.560857 0.325209i
\(690\) −1.61391 2.79537i −0.0614405 0.106418i
\(691\) 8.97353 + 15.5426i 0.341369 + 0.591269i 0.984687 0.174330i \(-0.0557760\pi\)
−0.643318 + 0.765599i \(0.722443\pi\)
\(692\) 0.00845022 0.0146362i 0.000321229 0.000556385i
\(693\) −4.28184 + 4.35007i −0.162654 + 0.165246i
\(694\) −36.3780 −1.38089
\(695\) 29.5815 1.12209
\(696\) 8.50034 14.7230i 0.322205 0.558075i
\(697\) 42.3327 + 73.3223i 1.60346 + 2.77728i
\(698\) −2.57045 −0.0972929
\(699\) −4.31457 + 7.47305i −0.163192 + 0.282657i
\(700\) −0.0108909 + 0.0110645i −0.000411638 + 0.000418198i
\(701\) 35.0636 1.32433 0.662167 0.749356i \(-0.269637\pi\)
0.662167 + 0.749356i \(0.269637\pi\)
\(702\) −4.41315 2.55894i −0.166564 0.0965808i
\(703\) −0.650938 1.12746i −0.0245506 0.0425229i
\(704\) 18.4393 0.694957
\(705\) 0.385489 + 0.667686i 0.0145183 + 0.0251465i
\(706\) −0.0441540 0.0764769i −0.00166176 0.00287825i
\(707\) 17.5851 17.8654i 0.661357 0.671896i
\(708\) 0.00537939 + 0.00931738i 0.000202170 + 0.000350169i
\(709\) −7.64503 −0.287115 −0.143558 0.989642i \(-0.545854\pi\)
−0.143558 + 0.989642i \(0.545854\pi\)
\(710\) 12.1786 + 21.0940i 0.457056 + 0.791645i
\(711\) −2.01404 + 3.48841i −0.0755322 + 0.130826i
\(712\) 2.00498 + 3.47272i 0.0751397 + 0.130146i
\(713\) 3.03492 5.25664i 0.113659 0.196863i
\(714\) −19.5677 + 19.8795i −0.732303 + 0.743973i
\(715\) 0.0444337 23.7837i 0.00166173 0.889460i
\(716\) 0.00159194 0.00275732i 5.94935e−5 0.000103046i
\(717\) 20.3222 0.758948
\(718\) −18.9992 −0.709045
\(719\) 27.9531 1.04247 0.521237 0.853412i \(-0.325471\pi\)
0.521237 + 0.853412i \(0.325471\pi\)
\(720\) −11.4476 −0.426625
\(721\) −14.3010 51.7328i −0.532596 1.92663i
\(722\) −13.2149 22.8888i −0.491806 0.851834i
\(723\) −13.0577 + 22.6166i −0.485620 + 0.841119i
\(724\) 0.00367499 0.00636528i 0.000136580 0.000236564i
\(725\) −19.0945 −0.709151
\(726\) −4.01647 6.95674i −0.149065 0.258189i
\(727\) −9.94798 −0.368950 −0.184475 0.982837i \(-0.559058\pi\)
−0.184475 + 0.982837i \(0.559058\pi\)
\(728\) 6.82272 26.0917i 0.252867 0.967023i
\(729\) 1.00000 0.0370370
\(730\) −21.5137 37.2628i −0.796258 1.37916i
\(731\) −56.1770 −2.07778
\(732\) 0.00271107 0.00469571i 0.000100204 0.000173558i
\(733\) −15.9308 + 27.5929i −0.588416 + 1.01917i 0.406024 + 0.913863i \(0.366915\pi\)
−0.994440 + 0.105304i \(0.966418\pi\)
\(734\) 15.0989 + 26.1520i 0.557310 + 0.965289i
\(735\) 17.4893 + 9.73211i 0.645103 + 0.358974i
\(736\) −0.00834108 −0.000307456
\(737\) 7.32414 0.269788
\(738\) −16.0757 −0.591755
\(739\) −18.1484 −0.667598 −0.333799 0.942644i \(-0.608331\pi\)
−0.333799 + 0.942644i \(0.608331\pi\)
\(740\) −0.00608040 + 0.0105316i −0.000223520 + 0.000387148i
\(741\) −1.76821 + 1.01648i −0.0649570 + 0.0373413i
\(742\) −4.70763 17.0295i −0.172823 0.625174i
\(743\) −12.8238 + 22.2115i −0.470460 + 0.814861i −0.999429 0.0337802i \(-0.989245\pi\)
0.528969 + 0.848641i \(0.322579\pi\)
\(744\) −10.7535 18.6256i −0.394243 0.682848i
\(745\) 17.5052 30.3198i 0.641340 1.11083i
\(746\) 20.3512 + 35.2493i 0.745111 + 1.29057i
\(747\) 16.2573 0.594825
\(748\) 0.0158849 + 0.0275134i 0.000580808 + 0.00100599i
\(749\) −34.2297 8.88242i −1.25072 0.324557i
\(750\) −3.69087 6.39277i −0.134771 0.233431i
\(751\) 25.2869 + 43.7983i 0.922734 + 1.59822i 0.795166 + 0.606392i \(0.207384\pi\)
0.127567 + 0.991830i \(0.459283\pi\)
\(752\) 1.07957 0.0393678
\(753\) −11.2757 19.5301i −0.410911 0.711718i
\(754\) −26.5955 + 15.2887i −0.968550 + 0.556782i
\(755\) 51.7143 1.88208
\(756\) −0.00130276 0.00471264i −4.73809e−5 0.000171397i
\(757\) 0.651718 1.12881i 0.0236871 0.0410272i −0.853939 0.520373i \(-0.825793\pi\)
0.877626 + 0.479346i \(0.159126\pi\)
\(758\) 27.5028 0.998948
\(759\) 0.920383 + 1.59415i 0.0334078 + 0.0578640i
\(760\) −2.28629 + 3.95997i −0.0829325 + 0.143643i
\(761\) 15.3520 0.556510 0.278255 0.960507i \(-0.410244\pi\)
0.278255 + 0.960507i \(0.410244\pi\)
\(762\) −5.83814 −0.211494
\(763\) 2.41289 + 0.626134i 0.0873526 + 0.0226676i
\(764\) −0.0232420 + 0.0402563i −0.000840866 + 0.00145642i
\(765\) 10.6530 + 18.4516i 0.385161 + 0.667118i
\(766\) 21.4078 + 37.0793i 0.773494 + 1.33973i
\(767\) −0.0392158 + 20.9908i −0.00141600 + 0.757933i
\(768\) −0.0221762 + 0.0384103i −0.000800214 + 0.00138601i
\(769\) −9.84042 + 17.0441i −0.354855 + 0.614626i −0.987093 0.160148i \(-0.948803\pi\)
0.632239 + 0.774774i \(0.282136\pi\)
\(770\) 17.3220 17.5980i 0.624241 0.634189i
\(771\) 0.536216 + 0.928754i 0.0193114 + 0.0334483i
\(772\) 0.0167757 0.0290563i 0.000603770 0.00104576i
\(773\) 9.18054 15.9012i 0.330201 0.571925i −0.652350 0.757918i \(-0.726217\pi\)
0.982551 + 0.185993i \(0.0595502\pi\)
\(774\) 5.33327 9.23749i 0.191700 0.332035i
\(775\) −12.0779 + 20.9195i −0.433851 + 0.751451i
\(776\) −14.7872 25.6122i −0.530831 0.919426i
\(777\) 5.89390 + 1.52944i 0.211442 + 0.0548682i
\(778\) −0.436238 + 0.755586i −0.0156399 + 0.0270891i
\(779\) −3.21359 + 5.56610i −0.115139 + 0.199426i
\(780\) 0.0164813 + 0.00955656i 0.000590124 + 0.000342180i
\(781\) −6.94525 12.0295i −0.248521 0.430450i
\(782\) 4.20609 + 7.28515i 0.150409 + 0.260517i
\(783\) 3.00672 5.20778i 0.107451 0.186111i
\(784\) 24.0465 14.3949i 0.858805 0.514102i
\(785\) −62.4180 −2.22779
\(786\) 10.6746 0.380749
\(787\) 1.61200 2.79206i 0.0574615 0.0995262i −0.835864 0.548937i \(-0.815033\pi\)
0.893325 + 0.449411i \(0.148366\pi\)
\(788\) 0.00144608 + 0.00250469i 5.15145e−5 + 8.92257e-5i
\(789\) 15.4691 0.550715
\(790\) 8.14769 14.1122i 0.289882 0.502090i
\(791\) 6.60502 + 1.71397i 0.234847 + 0.0609417i
\(792\) 6.52230 0.231760
\(793\) 9.17137 5.27227i 0.325685 0.187224i
\(794\) 20.9241 + 36.2417i 0.742570 + 1.28617i
\(795\) −13.4952 −0.478627
\(796\) 0.0139674 + 0.0241923i 0.000495062 + 0.000857472i
\(797\) −7.59673 13.1579i −0.269090 0.466078i 0.699537 0.714596i \(-0.253390\pi\)
−0.968627 + 0.248519i \(0.920056\pi\)
\(798\) −2.04965 0.531873i −0.0725567 0.0188281i
\(799\) −1.00464 1.74009i −0.0355416 0.0615599i
\(800\) 0.0331945 0.00117360
\(801\) 0.709194 + 1.22836i 0.0250582 + 0.0434020i
\(802\) −14.0407 + 24.3192i −0.495794 + 0.858740i
\(803\) 12.2689 + 21.2503i 0.432959 + 0.749906i
\(804\) −0.00293343 + 0.00508085i −0.000103454 + 0.000179188i
\(805\) 4.23416 4.30164i 0.149235 0.151613i
\(806\) −0.0725029 + 38.8081i −0.00255381 + 1.36696i
\(807\) −1.11891 + 1.93801i −0.0393875 + 0.0682212i
\(808\) −26.7865 −0.942345
\(809\) −29.0109 −1.01997 −0.509984 0.860184i \(-0.670349\pi\)
−0.509984 + 0.860184i \(0.670349\pi\)
\(810\) −4.04546 −0.142143
\(811\) −20.5902 −0.723020 −0.361510 0.932368i \(-0.617739\pi\)
−0.361510 + 0.932368i \(0.617739\pi\)
\(812\) −0.0284594 0.00738508i −0.000998730 0.000259165i
\(813\) −3.07220 5.32120i −0.107747 0.186623i
\(814\) 3.75618 6.50590i 0.131654 0.228032i
\(815\) 16.2610 28.1649i 0.569598 0.986572i
\(816\) 29.8340 1.04440
\(817\) −2.13227 3.69321i −0.0745988 0.129209i
\(818\) −33.2951 −1.16414
\(819\) 2.41331 9.22908i 0.0843279 0.322490i
\(820\) 0.0600361 0.00209655
\(821\) −0.143029 0.247733i −0.00499174 0.00864595i 0.863519 0.504317i \(-0.168256\pi\)
−0.868510 + 0.495671i \(0.834922\pi\)
\(822\) −23.6280 −0.824122
\(823\) −11.2907 + 19.5560i −0.393568 + 0.681681i −0.992917 0.118807i \(-0.962093\pi\)
0.599349 + 0.800488i \(0.295426\pi\)
\(824\) −28.6762 + 49.6686i −0.998982 + 1.73029i
\(825\) −3.66279 6.34414i −0.127522 0.220874i
\(826\) −15.2879 + 15.5315i −0.531933 + 0.540409i
\(827\) 27.6090 0.960060 0.480030 0.877252i \(-0.340626\pi\)
0.480030 + 0.877252i \(0.340626\pi\)
\(828\) −0.00147451 −5.12428e−5
\(829\) 30.1954 1.04873 0.524366 0.851493i \(-0.324303\pi\)
0.524366 + 0.851493i \(0.324303\pi\)
\(830\) −65.7683 −2.28285
\(831\) 1.67414 2.89969i 0.0580752 0.100589i
\(832\) −24.9837 + 14.3622i −0.866155 + 0.497920i
\(833\) −45.5797 25.3633i −1.57924 0.878786i
\(834\) 7.31903 12.6769i 0.253437 0.438966i
\(835\) 0.751450 + 1.30155i 0.0260050 + 0.0450420i
\(836\) −0.00120586 + 0.00208862i −4.17056e−5 + 7.22363e-5i
\(837\) −3.80370 6.58820i −0.131475 0.227721i
\(838\) 50.0392 1.72857
\(839\) 25.9928 + 45.0209i 0.897372 + 1.55429i 0.830841 + 0.556509i \(0.187860\pi\)
0.0665306 + 0.997784i \(0.478807\pi\)
\(840\) −5.69842 20.6136i −0.196614 0.711238i
\(841\) −3.58067 6.20190i −0.123471 0.213859i
\(842\) −7.16351 12.4076i −0.246871 0.427593i
\(843\) −14.2117 −0.489477
\(844\) −0.0153173 0.0265304i −0.000527244 0.000913214i
\(845\) 18.4647 + 32.2596i 0.635205 + 1.10976i
\(846\) 0.381509 0.0131166
\(847\) 10.5374 10.7053i 0.362069 0.367839i
\(848\) −9.44842 + 16.3651i −0.324460 + 0.561981i
\(849\) 14.6283 0.502044
\(850\) −16.7387 28.9923i −0.574132 0.994427i
\(851\) 0.918155 1.59029i 0.0314740 0.0545145i
\(852\) 0.0111267 0.000381195
\(853\) 11.5389 0.395085 0.197542 0.980294i \(-0.436704\pi\)
0.197542 + 0.980294i \(0.436704\pi\)
\(854\) 10.6311 + 2.75872i 0.363789 + 0.0944013i
\(855\) −0.808700 + 1.40071i −0.0276569 + 0.0479032i
\(856\) 18.8938 + 32.7250i 0.645776 + 1.11852i
\(857\) 3.43142 + 5.94339i 0.117215 + 0.203022i 0.918663 0.395042i \(-0.129270\pi\)
−0.801448 + 0.598064i \(0.795937\pi\)
\(858\) −10.1813 5.90359i −0.347585 0.201545i
\(859\) −6.60534 + 11.4408i −0.225371 + 0.390355i −0.956431 0.291959i \(-0.905693\pi\)
0.731059 + 0.682314i \(0.239026\pi\)
\(860\) −0.0199175 + 0.0344982i −0.000679182 + 0.00117638i
\(861\) −8.00964 28.9743i −0.272968 0.987442i
\(862\) −4.41650 7.64961i −0.150427 0.260547i
\(863\) 11.4551 19.8408i 0.389937 0.675390i −0.602504 0.798116i \(-0.705830\pi\)
0.992441 + 0.122726i \(0.0391635\pi\)
\(864\) −0.00522698 + 0.00905339i −0.000177825 + 0.000308003i
\(865\) 13.0742 22.6451i 0.444535 0.769957i
\(866\) −23.9427 + 41.4699i −0.813605 + 1.40920i
\(867\) −19.2633 33.3651i −0.654217 1.13314i
\(868\) −0.0260925 + 0.0265083i −0.000885637 + 0.000899750i
\(869\) −4.64648 + 8.04793i −0.157621 + 0.273007i
\(870\) −12.1635 + 21.0679i −0.412382 + 0.714267i
\(871\) −9.92361 + 5.70471i −0.336249 + 0.193297i
\(872\) −1.33185 2.30683i −0.0451020 0.0781190i
\(873\) −5.23049 9.05948i −0.177025 0.306617i
\(874\) −0.319295 + 0.553036i −0.0108003 + 0.0187067i
\(875\) 9.68315 9.83745i 0.327350 0.332567i
\(876\) −0.0196555 −0.000664097
\(877\) −28.5019 −0.962440 −0.481220 0.876600i \(-0.659806\pi\)
−0.481220 + 0.876600i \(0.659806\pi\)
\(878\) 6.27834 10.8744i 0.211884 0.366993i
\(879\) −10.7723 18.6582i −0.363341 0.629324i
\(880\) −26.4101 −0.890283
\(881\) 15.9035 27.5457i 0.535804 0.928039i −0.463320 0.886191i \(-0.653342\pi\)
0.999124 0.0418483i \(-0.0133246\pi\)
\(882\) 8.49782 5.08701i 0.286136 0.171288i
\(883\) 11.0073 0.370427 0.185213 0.982698i \(-0.440702\pi\)
0.185213 + 0.982698i \(0.440702\pi\)
\(884\) −0.0429526 0.0249058i −0.00144465 0.000837673i
\(885\) 8.32299 + 14.4158i 0.279774 + 0.484583i
\(886\) 16.8414 0.565799
\(887\) 11.1025 + 19.2302i 0.372787 + 0.645686i 0.989993 0.141116i \(-0.0450690\pi\)
−0.617206 + 0.786801i \(0.711736\pi\)
\(888\) −3.25326 5.63481i −0.109172 0.189092i
\(889\) −2.90883 10.5225i −0.0975589 0.352912i
\(890\) −2.86901 4.96928i −0.0961696 0.166571i
\(891\) 2.30705 0.0772890
\(892\) 0.00573317 + 0.00993015i 0.000191961 + 0.000332486i
\(893\) 0.0762650 0.132095i 0.00255211 0.00442038i
\(894\) −8.66223 15.0034i −0.289708 0.501790i
\(895\) 2.46304 4.26611i 0.0823304 0.142600i
\(896\) −29.0137 7.52892i −0.969281 0.251523i
\(897\) −2.48871 1.44306i −0.0830957 0.0481825i
\(898\) −4.20628 + 7.28550i −0.140366 + 0.243120i
\(899\) −45.7465 −1.52573
\(900\) 0.00586801 0.000195600
\(901\) 35.1706 1.17170
\(902\) −37.0875 −1.23488
\(903\) 19.3066 + 5.00997i 0.642484 + 0.166721i
\(904\) −3.64577 6.31467i −0.121257 0.210023i
\(905\) 5.68595 9.84835i 0.189007 0.327370i
\(906\) 12.7951 22.1618i 0.425089 0.736276i
\(907\) 1.59043 0.0528092 0.0264046 0.999651i \(-0.491594\pi\)
0.0264046 + 0.999651i \(0.491594\pi\)
\(908\) 0.00142356 + 0.00246568i 4.72425e−5 + 8.18265e-5i
\(909\) −9.47483 −0.314260
\(910\) −9.76294 + 37.3358i −0.323638 + 1.23767i
\(911\) −2.61896 −0.0867699 −0.0433849 0.999058i \(-0.513814\pi\)
−0.0433849 + 0.999058i \(0.513814\pi\)
\(912\) 1.13239 + 1.96136i 0.0374972 + 0.0649470i
\(913\) 37.5065 1.24128
\(914\) 8.56862 14.8413i 0.283425 0.490906i
\(915\) 4.19456 7.26519i 0.138668 0.240180i
\(916\) 0.0197221 + 0.0341596i 0.000651635 + 0.00112867i
\(917\) 5.31855 + 19.2395i 0.175634 + 0.635343i
\(918\) 10.5431 0.347973
\(919\) 20.1784 0.665623 0.332811 0.942993i \(-0.392003\pi\)
0.332811 + 0.942993i \(0.392003\pi\)
\(920\) −6.44967 −0.212639
\(921\) 18.6457 0.614396
\(922\) 3.61743 6.26558i 0.119134 0.206346i
\(923\) 18.7799 + 10.8894i 0.618149 + 0.358430i
\(924\) −0.00300553 0.0108723i −9.88746e−5 0.000357672i
\(925\) −3.65392 + 6.32878i −0.120140 + 0.208089i
\(926\) −27.5435 47.7068i −0.905136 1.56774i
\(927\) −10.1433 + 17.5686i −0.333148 + 0.577029i
\(928\) 0.0314321 + 0.0544419i 0.00103181 + 0.00178714i
\(929\) −32.8102 −1.07647 −0.538234 0.842796i \(-0.680908\pi\)
−0.538234 + 0.842796i \(0.680908\pi\)
\(930\) 15.3877 + 26.6523i 0.504582 + 0.873962i
\(931\) −0.0625967 3.95921i −0.00205152 0.129758i
\(932\) −0.00797339 0.0138103i −0.000261177 0.000452372i
\(933\) −0.578424 1.00186i −0.0189368 0.0327994i
\(934\) 19.8824 0.650573
\(935\) 24.5770 + 42.5687i 0.803755 + 1.39214i
\(936\) −8.83718 + 5.08016i −0.288852 + 0.166050i
\(937\) 48.1088 1.57165 0.785823 0.618452i \(-0.212240\pi\)
0.785823 + 0.618452i \(0.212240\pi\)
\(938\) −11.5031 2.98499i −0.375589 0.0974633i
\(939\) −6.86004 + 11.8819i −0.223869 + 0.387752i
\(940\) −0.00142478 −4.64712e−5
\(941\) 5.25163 + 9.09609i 0.171198 + 0.296524i 0.938839 0.344356i \(-0.111903\pi\)
−0.767641 + 0.640880i \(0.778569\pi\)
\(942\) −15.4434 + 26.7488i −0.503174 + 0.871523i
\(943\) −9.06560 −0.295217
\(944\) 23.3087 0.758634
\(945\) −2.01563 7.29139i −0.0655684 0.237189i
\(946\) 12.3041 21.3113i 0.400041 0.692891i
\(947\) 0.314804 + 0.545257i 0.0102298 + 0.0177185i 0.871095 0.491115i \(-0.163410\pi\)
−0.860865 + 0.508833i \(0.830077\pi\)
\(948\) −0.00372197 0.00644664i −0.000120884 0.000209377i
\(949\) −33.1750 19.2363i −1.07690 0.624437i
\(950\) 1.27068 2.20088i 0.0412263 0.0714060i
\(951\) −2.13847 + 3.70393i −0.0693446 + 0.120108i
\(952\) 14.8509 + 53.7221i 0.481321 + 1.74114i
\(953\) 10.6206 + 18.3954i 0.344034 + 0.595885i 0.985178 0.171536i \(-0.0548730\pi\)
−0.641144 + 0.767421i \(0.721540\pi\)
\(954\) −3.33898 + 5.78329i −0.108104 + 0.187241i
\(955\) −35.9600 + 62.2845i −1.16364 + 2.01548i
\(956\) −0.0187779 + 0.0325243i −0.000607321 + 0.00105191i
\(957\) 6.93664 12.0146i 0.224230 0.388377i
\(958\) −22.8314 39.5451i −0.737648 1.27764i
\(959\) −11.7725 42.5864i −0.380155 1.37518i
\(960\) −11.4264 + 19.7911i −0.368786 + 0.638756i
\(961\) −13.4362 + 23.2722i −0.433427 + 0.750717i
\(962\) −0.0219343 + 11.7406i −0.000707190 + 0.378533i
\(963\) 6.68305 + 11.5754i 0.215358 + 0.373011i
\(964\) −0.0241308 0.0417958i −0.000777201 0.00134615i
\(965\) 25.9553 44.9559i 0.835531 1.44718i
\(966\) −0.795822 2.87883i −0.0256051 0.0926248i
\(967\) 15.0353 0.483502 0.241751 0.970338i \(-0.422278\pi\)
0.241751 + 0.970338i \(0.422278\pi\)
\(968\) −16.0511 −0.515900
\(969\) 2.10759 3.65045i 0.0677055 0.117269i
\(970\) 21.1597 + 36.6497i 0.679398 + 1.17675i
\(971\) −7.88140 −0.252926 −0.126463 0.991971i \(-0.540363\pi\)
−0.126463 + 0.991971i \(0.540363\pi\)
\(972\) −0.000924008 0.00160043i −2.96376e−5 5.13338e-5i
\(973\) 26.4951 + 6.87535i 0.849395 + 0.220414i
\(974\) 17.3768 0.556790
\(975\) 9.90417 + 5.74287i 0.317187 + 0.183919i
\(976\) −5.87348 10.1732i −0.188005 0.325635i
\(977\) 17.9482 0.574213 0.287107 0.957899i \(-0.407307\pi\)
0.287107 + 0.957899i \(0.407307\pi\)
\(978\) −8.04657 13.9371i −0.257301 0.445658i
\(979\) 1.63615 + 2.83389i 0.0522914 + 0.0905714i
\(980\) −0.0317358 + 0.0189979i −0.00101376 + 0.000606864i
\(981\) −0.471097 0.815964i −0.0150410 0.0260517i
\(982\) −30.7113 −0.980037
\(983\) 2.92791 + 5.07129i 0.0933858 + 0.161749i 0.908934 0.416941i \(-0.136898\pi\)
−0.815548 + 0.578689i \(0.803564\pi\)
\(984\) −16.0609 + 27.8182i −0.512002 + 0.886813i
\(985\) 2.23737 + 3.87525i 0.0712887 + 0.123476i
\(986\) 31.7000 54.9059i 1.00953 1.74856i
\(987\) 0.190085 + 0.687619i 0.00605048 + 0.0218872i
\(988\) 7.04166e−6 0.00376914i 2.24025e−7 0.000119912i
\(989\) 3.00760 5.20931i 0.0956360 0.165646i
\(990\) −9.33306 −0.296624
\(991\) 51.2028 1.62651 0.813255 0.581908i \(-0.197694\pi\)
0.813255 + 0.581908i \(0.197694\pi\)
\(992\) 0.0795274 0.00252500
\(993\) 11.6611 0.370055
\(994\) 6.00531 + 21.7238i 0.190477 + 0.689036i
\(995\) 21.6104 + 37.4302i 0.685094 + 1.18662i
\(996\) −0.0150219 + 0.0260187i −0.000475987 + 0.000824434i
\(997\) −2.52862 + 4.37970i −0.0800822 + 0.138707i −0.903285 0.429041i \(-0.858852\pi\)
0.823203 + 0.567747i \(0.192185\pi\)
\(998\) −13.9788 −0.442491
\(999\) −1.15073 1.99313i −0.0364076 0.0630598i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 273.2.j.c.100.7 20
3.2 odd 2 819.2.n.f.100.4 20
7.4 even 3 273.2.l.c.256.4 yes 20
13.3 even 3 273.2.l.c.16.4 yes 20
21.11 odd 6 819.2.s.f.802.7 20
39.29 odd 6 819.2.s.f.289.7 20
91.81 even 3 inner 273.2.j.c.172.7 yes 20
273.263 odd 6 819.2.n.f.172.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.j.c.100.7 20 1.1 even 1 trivial
273.2.j.c.172.7 yes 20 91.81 even 3 inner
273.2.l.c.16.4 yes 20 13.3 even 3
273.2.l.c.256.4 yes 20 7.4 even 3
819.2.n.f.100.4 20 3.2 odd 2
819.2.n.f.172.4 20 273.263 odd 6
819.2.s.f.289.7 20 39.29 odd 6
819.2.s.f.802.7 20 21.11 odd 6