Properties

Label 2736.1.bk.b
Level 27362736
Weight 11
Character orbit 2736.bk
Analytic conductor 1.3651.365
Analytic rank 00
Dimension 22
Projective image D6D_{6}
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2736,1,Mod(847,2736)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2736, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 0, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2736.847");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2736=243219 2736 = 2^{4} \cdot 3^{2} \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2736.bk (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.365441874561.36544187456
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D6D_{6}
Projective field: Galois closure of 6.2.225194688.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+(ζ62+ζ6)q7ζ6q13+q19+ζ6q25+(ζ62+ζ6)q31q37+(ζ6+1)q43+(ζ62ζ61)q49+ζ6q61+2ζ62q97+O(q100) q + (\zeta_{6}^{2} + \zeta_{6}) q^{7} - \zeta_{6} q^{13} + q^{19} + \zeta_{6} q^{25} + (\zeta_{6}^{2} + \zeta_{6}) q^{31} - q^{37} + (\zeta_{6} + 1) q^{43} + (\zeta_{6}^{2} - \zeta_{6} - 1) q^{49} + \zeta_{6} q^{61} + \cdots - 2 \zeta_{6}^{2} q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq13+2q19+q252q37+3q434q49+q613q67q733q79+3q91+2q97+O(q100) 2 q - q^{13} + 2 q^{19} + q^{25} - 2 q^{37} + 3 q^{43} - 4 q^{49} + q^{61} - 3 q^{67} - q^{73} - 3 q^{79} + 3 q^{91} + 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2736Z)×\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times.

nn 10091009 12171217 17111711 20532053
χ(n)\chi(n) ζ6-\zeta_{6} 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
847.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 0 0 1.73205i 0 0 0
2287.1 0 0 0 0 0 1.73205i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
76.g odd 6 1 inner
228.m even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2736.1.bk.b yes 2
3.b odd 2 1 CM 2736.1.bk.b yes 2
4.b odd 2 1 2736.1.bk.a 2
12.b even 2 1 2736.1.bk.a 2
19.c even 3 1 2736.1.bk.a 2
57.h odd 6 1 2736.1.bk.a 2
76.g odd 6 1 inner 2736.1.bk.b yes 2
228.m even 6 1 inner 2736.1.bk.b yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2736.1.bk.a 2 4.b odd 2 1
2736.1.bk.a 2 12.b even 2 1
2736.1.bk.a 2 19.c even 3 1
2736.1.bk.a 2 57.h odd 6 1
2736.1.bk.b yes 2 1.a even 1 1 trivial
2736.1.bk.b yes 2 3.b odd 2 1 CM
2736.1.bk.b yes 2 76.g odd 6 1 inner
2736.1.bk.b yes 2 228.m even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T4323T43+3 T_{43}^{2} - 3T_{43} + 3 acting on S1new(2736,[χ])S_{1}^{\mathrm{new}}(2736, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+3 T^{2} + 3 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 (T1)2 (T - 1)^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2+3 T^{2} + 3 Copy content Toggle raw display
3737 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T23T+3 T^{2} - 3T + 3 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
6767 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
7979 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
show more
show less