Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2736,1,Mod(721,2736)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2736, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2736.721");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 2736.o (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 76) |
Projective image: | |
Projective field: | Galois closure of 3.1.76.1 |
Artin image: | |
Artin field: | Galois closure of 6.2.2495232.1 |
Stark unit: | Root of |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.b | odd | 2 | 1 | CM by |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2736.1.o.b | 1 | |
3.b | odd | 2 | 1 | 304.1.e.a | 1 | ||
4.b | odd | 2 | 1 | 684.1.h.a | 1 | ||
12.b | even | 2 | 1 | 76.1.c.a | ✓ | 1 | |
19.b | odd | 2 | 1 | CM | 2736.1.o.b | 1 | |
24.f | even | 2 | 1 | 1216.1.e.a | 1 | ||
24.h | odd | 2 | 1 | 1216.1.e.b | 1 | ||
57.d | even | 2 | 1 | 304.1.e.a | 1 | ||
60.h | even | 2 | 1 | 1900.1.e.a | 1 | ||
60.l | odd | 4 | 2 | 1900.1.g.a | 2 | ||
76.d | even | 2 | 1 | 684.1.h.a | 1 | ||
84.h | odd | 2 | 1 | 3724.1.e.c | 1 | ||
84.j | odd | 6 | 2 | 3724.1.bc.b | 2 | ||
84.n | even | 6 | 2 | 3724.1.bc.c | 2 | ||
228.b | odd | 2 | 1 | 76.1.c.a | ✓ | 1 | |
228.m | even | 6 | 2 | 1444.1.h.a | 2 | ||
228.n | odd | 6 | 2 | 1444.1.h.a | 2 | ||
228.u | odd | 18 | 6 | 1444.1.j.a | 6 | ||
228.v | even | 18 | 6 | 1444.1.j.a | 6 | ||
456.l | odd | 2 | 1 | 1216.1.e.a | 1 | ||
456.p | even | 2 | 1 | 1216.1.e.b | 1 | ||
1140.p | odd | 2 | 1 | 1900.1.e.a | 1 | ||
1140.w | even | 4 | 2 | 1900.1.g.a | 2 | ||
1596.p | even | 2 | 1 | 3724.1.e.c | 1 | ||
1596.bl | even | 6 | 2 | 3724.1.bc.b | 2 | ||
1596.cb | odd | 6 | 2 | 3724.1.bc.c | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
76.1.c.a | ✓ | 1 | 12.b | even | 2 | 1 | |
76.1.c.a | ✓ | 1 | 228.b | odd | 2 | 1 | |
304.1.e.a | 1 | 3.b | odd | 2 | 1 | ||
304.1.e.a | 1 | 57.d | even | 2 | 1 | ||
684.1.h.a | 1 | 4.b | odd | 2 | 1 | ||
684.1.h.a | 1 | 76.d | even | 2 | 1 | ||
1216.1.e.a | 1 | 24.f | even | 2 | 1 | ||
1216.1.e.a | 1 | 456.l | odd | 2 | 1 | ||
1216.1.e.b | 1 | 24.h | odd | 2 | 1 | ||
1216.1.e.b | 1 | 456.p | even | 2 | 1 | ||
1444.1.h.a | 2 | 228.m | even | 6 | 2 | ||
1444.1.h.a | 2 | 228.n | odd | 6 | 2 | ||
1444.1.j.a | 6 | 228.u | odd | 18 | 6 | ||
1444.1.j.a | 6 | 228.v | even | 18 | 6 | ||
1900.1.e.a | 1 | 60.h | even | 2 | 1 | ||
1900.1.e.a | 1 | 1140.p | odd | 2 | 1 | ||
1900.1.g.a | 2 | 60.l | odd | 4 | 2 | ||
1900.1.g.a | 2 | 1140.w | even | 4 | 2 | ||
2736.1.o.b | 1 | 1.a | even | 1 | 1 | trivial | |
2736.1.o.b | 1 | 19.b | odd | 2 | 1 | CM | |
3724.1.e.c | 1 | 84.h | odd | 2 | 1 | ||
3724.1.e.c | 1 | 1596.p | even | 2 | 1 | ||
3724.1.bc.b | 2 | 84.j | odd | 6 | 2 | ||
3724.1.bc.b | 2 | 1596.bl | even | 6 | 2 | ||
3724.1.bc.c | 2 | 84.n | even | 6 | 2 | ||
3724.1.bc.c | 2 | 1596.cb | odd | 6 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .