Properties

Label 2736.1.o.b
Level 27362736
Weight 11
Character orbit 2736.o
Self dual yes
Analytic conductor 1.3651.365
Analytic rank 00
Dimension 11
Projective image D3D_{3}
CM discriminant -19
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2736,1,Mod(721,2736)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2736, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2736.721");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2736=243219 2736 = 2^{4} \cdot 3^{2} \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2736.o (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.365441874561.36544187456
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 76)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.76.1
Artin image: D6D_6
Artin field: Galois closure of 6.2.2495232.1
Stark unit: Root of x660054x5+23219151x43560164724x3+23219151x260054x+1x^{6} - 60054x^{5} + 23219151x^{4} - 3560164724x^{3} + 23219151x^{2} - 60054x + 1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+q5+q7q11+q17q19+2q23+q35+q43q47q55q61q73q77+2q83+q85q95+O(q100) q + q^{5} + q^{7} - q^{11} + q^{17} - q^{19} + 2 q^{23} + q^{35} + q^{43} - q^{47} - q^{55} - q^{61} - q^{73} - q^{77} + 2 q^{83} + q^{85} - q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2736Z)×\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times.

nn 10091009 12171217 17111711 20532053
χ(n)\chi(n) 1-1 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
721.1
0
0 0 0 1.00000 0 1.00000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by Q(19)\Q(\sqrt{-19})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2736.1.o.b 1
3.b odd 2 1 304.1.e.a 1
4.b odd 2 1 684.1.h.a 1
12.b even 2 1 76.1.c.a 1
19.b odd 2 1 CM 2736.1.o.b 1
24.f even 2 1 1216.1.e.a 1
24.h odd 2 1 1216.1.e.b 1
57.d even 2 1 304.1.e.a 1
60.h even 2 1 1900.1.e.a 1
60.l odd 4 2 1900.1.g.a 2
76.d even 2 1 684.1.h.a 1
84.h odd 2 1 3724.1.e.c 1
84.j odd 6 2 3724.1.bc.b 2
84.n even 6 2 3724.1.bc.c 2
228.b odd 2 1 76.1.c.a 1
228.m even 6 2 1444.1.h.a 2
228.n odd 6 2 1444.1.h.a 2
228.u odd 18 6 1444.1.j.a 6
228.v even 18 6 1444.1.j.a 6
456.l odd 2 1 1216.1.e.a 1
456.p even 2 1 1216.1.e.b 1
1140.p odd 2 1 1900.1.e.a 1
1140.w even 4 2 1900.1.g.a 2
1596.p even 2 1 3724.1.e.c 1
1596.bl even 6 2 3724.1.bc.b 2
1596.cb odd 6 2 3724.1.bc.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
76.1.c.a 1 12.b even 2 1
76.1.c.a 1 228.b odd 2 1
304.1.e.a 1 3.b odd 2 1
304.1.e.a 1 57.d even 2 1
684.1.h.a 1 4.b odd 2 1
684.1.h.a 1 76.d even 2 1
1216.1.e.a 1 24.f even 2 1
1216.1.e.a 1 456.l odd 2 1
1216.1.e.b 1 24.h odd 2 1
1216.1.e.b 1 456.p even 2 1
1444.1.h.a 2 228.m even 6 2
1444.1.h.a 2 228.n odd 6 2
1444.1.j.a 6 228.u odd 18 6
1444.1.j.a 6 228.v even 18 6
1900.1.e.a 1 60.h even 2 1
1900.1.e.a 1 1140.p odd 2 1
1900.1.g.a 2 60.l odd 4 2
1900.1.g.a 2 1140.w even 4 2
2736.1.o.b 1 1.a even 1 1 trivial
2736.1.o.b 1 19.b odd 2 1 CM
3724.1.e.c 1 84.h odd 2 1
3724.1.e.c 1 1596.p even 2 1
3724.1.bc.b 2 84.j odd 6 2
3724.1.bc.b 2 1596.bl even 6 2
3724.1.bc.c 2 84.n even 6 2
3724.1.bc.c 2 1596.cb odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T51 T_{5} - 1 acting on S1new(2736,[χ])S_{1}^{\mathrm{new}}(2736, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T1 T - 1 Copy content Toggle raw display
77 T1 T - 1 Copy content Toggle raw display
1111 T+1 T + 1 Copy content Toggle raw display
1313 T T Copy content Toggle raw display
1717 T1 T - 1 Copy content Toggle raw display
1919 T+1 T + 1 Copy content Toggle raw display
2323 T2 T - 2 Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T T Copy content Toggle raw display
3737 T T Copy content Toggle raw display
4141 T T Copy content Toggle raw display
4343 T1 T - 1 Copy content Toggle raw display
4747 T+1 T + 1 Copy content Toggle raw display
5353 T T Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T+1 T + 1 Copy content Toggle raw display
6767 T T Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T+1 T + 1 Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T2 T - 2 Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T T Copy content Toggle raw display
show more
show less