Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2736,2,Mod(1,2736)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2736, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2736.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2736.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(21.8470699930\) |
Analytic rank: | \(1\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 342) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 2736.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 2.00000 | 0.894427 | 0.447214 | − | 0.894427i | \(-0.352416\pi\) | ||||
0.447214 | + | 0.894427i | \(0.352416\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −2.00000 | −0.603023 | −0.301511 | − | 0.953463i | \(-0.597491\pi\) | ||||
−0.301511 | + | 0.953463i | \(0.597491\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −4.00000 | −1.10940 | −0.554700 | − | 0.832050i | \(-0.687167\pi\) | ||||
−0.554700 | + | 0.832050i | \(0.687167\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 1.00000 | 0.229416 | ||||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −8.00000 | −1.66812 | −0.834058 | − | 0.551677i | \(-0.813988\pi\) | ||||
−0.834058 | + | 0.551677i | \(0.813988\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −1.00000 | −0.200000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −2.00000 | −0.371391 | −0.185695 | − | 0.982607i | \(-0.559454\pi\) | ||||
−0.185695 | + | 0.982607i | \(0.559454\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 2.00000 | 0.359211 | 0.179605 | − | 0.983739i | \(-0.442518\pi\) | ||||
0.179605 | + | 0.983739i | \(0.442518\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −8.00000 | −1.31519 | −0.657596 | − | 0.753371i | \(-0.728427\pi\) | ||||
−0.657596 | + | 0.753371i | \(0.728427\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −2.00000 | −0.312348 | −0.156174 | − | 0.987730i | \(-0.549916\pi\) | ||||
−0.156174 | + | 0.987730i | \(0.549916\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −4.00000 | −0.609994 | −0.304997 | − | 0.952353i | \(-0.598656\pi\) | ||||
−0.304997 | + | 0.952353i | \(0.598656\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 4.00000 | 0.583460 | 0.291730 | − | 0.956501i | \(-0.405769\pi\) | ||||
0.291730 | + | 0.956501i | \(0.405769\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −7.00000 | −1.00000 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 2.00000 | 0.274721 | 0.137361 | − | 0.990521i | \(-0.456138\pi\) | ||||
0.137361 | + | 0.990521i | \(0.456138\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | −4.00000 | −0.539360 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −10.0000 | −1.28037 | −0.640184 | − | 0.768221i | \(-0.721142\pi\) | ||||
−0.640184 | + | 0.768221i | \(0.721142\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | −8.00000 | −0.992278 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 16.0000 | 1.89885 | 0.949425 | − | 0.313993i | \(-0.101667\pi\) | ||||
0.949425 | + | 0.313993i | \(0.101667\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 6.00000 | 0.702247 | 0.351123 | − | 0.936329i | \(-0.385800\pi\) | ||||
0.351123 | + | 0.936329i | \(0.385800\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −14.0000 | −1.57512 | −0.787562 | − | 0.616236i | \(-0.788657\pi\) | ||||
−0.787562 | + | 0.616236i | \(0.788657\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 6.00000 | 0.658586 | 0.329293 | − | 0.944228i | \(-0.393190\pi\) | ||||
0.329293 | + | 0.944228i | \(0.393190\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −18.0000 | −1.90800 | −0.953998 | − | 0.299813i | \(-0.903076\pi\) | ||||
−0.953998 | + | 0.299813i | \(0.903076\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 2.00000 | 0.205196 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 10.0000 | 1.01535 | 0.507673 | − | 0.861550i | \(-0.330506\pi\) | ||||
0.507673 | + | 0.861550i | \(0.330506\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 14.0000 | 1.39305 | 0.696526 | − | 0.717532i | \(-0.254728\pi\) | ||||
0.696526 | + | 0.717532i | \(0.254728\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −6.00000 | −0.591198 | −0.295599 | − | 0.955312i | \(-0.595519\pi\) | ||||
−0.295599 | + | 0.955312i | \(0.595519\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | −8.00000 | −0.773389 | −0.386695 | − | 0.922208i | \(-0.626383\pi\) | ||||
−0.386695 | + | 0.922208i | \(0.626383\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 14.0000 | 1.31701 | 0.658505 | − | 0.752577i | \(-0.271189\pi\) | ||||
0.658505 | + | 0.752577i | \(0.271189\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | −16.0000 | −1.49201 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −7.00000 | −0.636364 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | −12.0000 | −1.07331 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 18.0000 | 1.59724 | 0.798621 | − | 0.601834i | \(-0.205563\pi\) | ||||
0.798621 | + | 0.601834i | \(0.205563\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −6.00000 | −0.524222 | −0.262111 | − | 0.965038i | \(-0.584419\pi\) | ||||
−0.262111 | + | 0.965038i | \(0.584419\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 16.0000 | 1.36697 | 0.683486 | − | 0.729964i | \(-0.260463\pi\) | ||||
0.683486 | + | 0.729964i | \(0.260463\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −12.0000 | −1.01783 | −0.508913 | − | 0.860818i | \(-0.669953\pi\) | ||||
−0.508913 | + | 0.860818i | \(0.669953\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 8.00000 | 0.668994 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −4.00000 | −0.332182 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 18.0000 | 1.47462 | 0.737309 | − | 0.675556i | \(-0.236096\pi\) | ||||
0.737309 | + | 0.675556i | \(0.236096\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −14.0000 | −1.13930 | −0.569652 | − | 0.821886i | \(-0.692922\pi\) | ||||
−0.569652 | + | 0.821886i | \(0.692922\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 4.00000 | 0.321288 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −14.0000 | −1.11732 | −0.558661 | − | 0.829396i | \(-0.688685\pi\) | ||||
−0.558661 | + | 0.829396i | \(0.688685\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 4.00000 | 0.313304 | 0.156652 | − | 0.987654i | \(-0.449930\pi\) | ||||
0.156652 | + | 0.987654i | \(0.449930\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −24.0000 | −1.85718 | −0.928588 | − | 0.371113i | \(-0.878976\pi\) | ||||
−0.928588 | + | 0.371113i | \(0.878976\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 3.00000 | 0.230769 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 18.0000 | 1.36851 | 0.684257 | − | 0.729241i | \(-0.260127\pi\) | ||||
0.684257 | + | 0.729241i | \(0.260127\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 12.0000 | 0.896922 | 0.448461 | − | 0.893802i | \(-0.351972\pi\) | ||||
0.448461 | + | 0.893802i | \(0.351972\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −8.00000 | −0.594635 | −0.297318 | − | 0.954779i | \(-0.596092\pi\) | ||||
−0.297318 | + | 0.954779i | \(0.596092\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | −16.0000 | −1.17634 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −4.00000 | −0.289430 | −0.144715 | − | 0.989473i | \(-0.546227\pi\) | ||||
−0.144715 | + | 0.989473i | \(0.546227\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 6.00000 | 0.431889 | 0.215945 | − | 0.976406i | \(-0.430717\pi\) | ||||
0.215945 | + | 0.976406i | \(0.430717\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −10.0000 | −0.712470 | −0.356235 | − | 0.934396i | \(-0.615940\pi\) | ||||
−0.356235 | + | 0.934396i | \(0.615940\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −20.0000 | −1.41776 | −0.708881 | − | 0.705328i | \(-0.750800\pi\) | ||||
−0.708881 | + | 0.705328i | \(0.750800\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | −4.00000 | −0.279372 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −2.00000 | −0.138343 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −12.0000 | −0.826114 | −0.413057 | − | 0.910705i | \(-0.635539\pi\) | ||||
−0.413057 | + | 0.910705i | \(0.635539\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | −8.00000 | −0.545595 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −2.00000 | −0.133930 | −0.0669650 | − | 0.997755i | \(-0.521332\pi\) | ||||
−0.0669650 | + | 0.997755i | \(0.521332\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 8.00000 | 0.530979 | 0.265489 | − | 0.964114i | \(-0.414466\pi\) | ||||
0.265489 | + | 0.964114i | \(0.414466\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −10.0000 | −0.660819 | −0.330409 | − | 0.943838i | \(-0.607187\pi\) | ||||
−0.330409 | + | 0.943838i | \(0.607187\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 24.0000 | 1.57229 | 0.786146 | − | 0.618041i | \(-0.212073\pi\) | ||||
0.786146 | + | 0.618041i | \(0.212073\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 8.00000 | 0.521862 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 10.0000 | 0.644157 | 0.322078 | − | 0.946713i | \(-0.395619\pi\) | ||||
0.322078 | + | 0.946713i | \(0.395619\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | −14.0000 | −0.894427 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −4.00000 | −0.254514 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −26.0000 | −1.64111 | −0.820553 | − | 0.571571i | \(-0.806334\pi\) | ||||
−0.820553 | + | 0.571571i | \(0.806334\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 16.0000 | 1.00591 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −22.0000 | −1.37232 | −0.686161 | − | 0.727450i | \(-0.740706\pi\) | ||||
−0.686161 | + | 0.727450i | \(0.740706\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −24.0000 | −1.47990 | −0.739952 | − | 0.672660i | \(-0.765152\pi\) | ||||
−0.739952 | + | 0.672660i | \(0.765152\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 4.00000 | 0.245718 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −30.0000 | −1.82913 | −0.914566 | − | 0.404436i | \(-0.867468\pi\) | ||||
−0.914566 | + | 0.404436i | \(0.867468\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 20.0000 | 1.21491 | 0.607457 | − | 0.794353i | \(-0.292190\pi\) | ||||
0.607457 | + | 0.794353i | \(0.292190\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 2.00000 | 0.120605 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −26.0000 | −1.56219 | −0.781094 | − | 0.624413i | \(-0.785338\pi\) | ||||
−0.781094 | + | 0.624413i | \(0.785338\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 10.0000 | 0.596550 | 0.298275 | − | 0.954480i | \(-0.403589\pi\) | ||||
0.298275 | + | 0.954480i | \(0.403589\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −12.0000 | −0.713326 | −0.356663 | − | 0.934233i | \(-0.616086\pi\) | ||||
−0.356663 | + | 0.934233i | \(0.616086\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −17.0000 | −1.00000 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −6.00000 | −0.350524 | −0.175262 | − | 0.984522i | \(-0.556077\pi\) | ||||
−0.175262 | + | 0.984522i | \(0.556077\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 32.0000 | 1.85061 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | −20.0000 | −1.14520 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 12.0000 | 0.684876 | 0.342438 | − | 0.939540i | \(-0.388747\pi\) | ||||
0.342438 | + | 0.939540i | \(0.388747\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 20.0000 | 1.13410 | 0.567048 | − | 0.823685i | \(-0.308085\pi\) | ||||
0.567048 | + | 0.823685i | \(0.308085\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 26.0000 | 1.46961 | 0.734803 | − | 0.678280i | \(-0.237274\pi\) | ||||
0.734803 | + | 0.678280i | \(0.237274\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 18.0000 | 1.01098 | 0.505490 | − | 0.862832i | \(-0.331312\pi\) | ||||
0.505490 | + | 0.862832i | \(0.331312\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 4.00000 | 0.223957 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 4.00000 | 0.221880 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 28.0000 | 1.53902 | 0.769510 | − | 0.638635i | \(-0.220501\pi\) | ||||
0.769510 | + | 0.638635i | \(0.220501\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 22.0000 | 1.19842 | 0.599208 | − | 0.800593i | \(-0.295482\pi\) | ||||
0.599208 | + | 0.800593i | \(0.295482\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −4.00000 | −0.216612 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 14.0000 | 0.751559 | 0.375780 | − | 0.926709i | \(-0.377375\pi\) | ||||
0.375780 | + | 0.926709i | \(0.377375\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −14.0000 | −0.749403 | −0.374701 | − | 0.927146i | \(-0.622255\pi\) | ||||
−0.374701 | + | 0.927146i | \(0.622255\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −12.0000 | −0.638696 | −0.319348 | − | 0.947638i | \(-0.603464\pi\) | ||||
−0.319348 | + | 0.947638i | \(0.603464\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 32.0000 | 1.69838 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 12.0000 | 0.633336 | 0.316668 | − | 0.948536i | \(-0.397436\pi\) | ||||
0.316668 | + | 0.948536i | \(0.397436\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 1.00000 | 0.0526316 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 12.0000 | 0.628109 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 20.0000 | 1.04399 | 0.521996 | − | 0.852948i | \(-0.325188\pi\) | ||||
0.521996 | + | 0.852948i | \(0.325188\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −16.0000 | −0.828449 | −0.414224 | − | 0.910175i | \(-0.635947\pi\) | ||||
−0.414224 | + | 0.910175i | \(0.635947\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 8.00000 | 0.412021 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −12.0000 | −0.616399 | −0.308199 | − | 0.951322i | \(-0.599726\pi\) | ||||
−0.308199 | + | 0.951322i | \(0.599726\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 8.00000 | 0.408781 | 0.204390 | − | 0.978889i | \(-0.434479\pi\) | ||||
0.204390 | + | 0.978889i | \(0.434479\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −30.0000 | −1.52106 | −0.760530 | − | 0.649303i | \(-0.775061\pi\) | ||||
−0.760530 | + | 0.649303i | \(0.775061\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | −28.0000 | −1.40883 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −22.0000 | −1.10415 | −0.552074 | − | 0.833795i | \(-0.686163\pi\) | ||||
−0.552074 | + | 0.833795i | \(0.686163\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 22.0000 | 1.09863 | 0.549314 | − | 0.835616i | \(-0.314889\pi\) | ||||
0.549314 | + | 0.835616i | \(0.314889\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | −8.00000 | −0.398508 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 16.0000 | 0.793091 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 10.0000 | 0.494468 | 0.247234 | − | 0.968956i | \(-0.420478\pi\) | ||||
0.247234 | + | 0.968956i | \(0.420478\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 12.0000 | 0.589057 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 6.00000 | 0.293119 | 0.146560 | − | 0.989202i | \(-0.453180\pi\) | ||||
0.146560 | + | 0.989202i | \(0.453180\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −4.00000 | −0.194948 | −0.0974740 | − | 0.995238i | \(-0.531076\pi\) | ||||
−0.0974740 | + | 0.995238i | \(0.531076\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 14.0000 | 0.672797 | 0.336399 | − | 0.941720i | \(-0.390791\pi\) | ||||
0.336399 | + | 0.941720i | \(0.390791\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | −8.00000 | −0.382692 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 22.0000 | 1.05000 | 0.525001 | − | 0.851101i | \(-0.324065\pi\) | ||||
0.525001 | + | 0.851101i | \(0.324065\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | −34.0000 | −1.61539 | −0.807694 | − | 0.589601i | \(-0.799285\pi\) | ||||
−0.807694 | + | 0.589601i | \(0.799285\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −36.0000 | −1.70656 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 34.0000 | 1.60456 | 0.802280 | − | 0.596948i | \(-0.203620\pi\) | ||||
0.802280 | + | 0.596948i | \(0.203620\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 4.00000 | 0.188353 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 26.0000 | 1.21623 | 0.608114 | − | 0.793849i | \(-0.291926\pi\) | ||||
0.608114 | + | 0.793849i | \(0.291926\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 2.00000 | 0.0931493 | 0.0465746 | − | 0.998915i | \(-0.485169\pi\) | ||||
0.0465746 | + | 0.998915i | \(0.485169\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −28.0000 | −1.30127 | −0.650635 | − | 0.759390i | \(-0.725497\pi\) | ||||
−0.650635 | + | 0.759390i | \(0.725497\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 14.0000 | 0.647843 | 0.323921 | − | 0.946084i | \(-0.394999\pi\) | ||||
0.323921 | + | 0.946084i | \(0.394999\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 8.00000 | 0.367840 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | −1.00000 | −0.0458831 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 20.0000 | 0.913823 | 0.456912 | − | 0.889512i | \(-0.348956\pi\) | ||||
0.456912 | + | 0.889512i | \(0.348956\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 32.0000 | 1.45907 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 20.0000 | 0.908153 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 14.0000 | 0.634401 | 0.317200 | − | 0.948359i | \(-0.397257\pi\) | ||||
0.317200 | + | 0.948359i | \(0.397257\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −38.0000 | −1.71492 | −0.857458 | − | 0.514554i | \(-0.827958\pi\) | ||||
−0.857458 | + | 0.514554i | \(0.827958\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −28.0000 | −1.25345 | −0.626726 | − | 0.779240i | \(-0.715605\pi\) | ||||
−0.626726 | + | 0.779240i | \(0.715605\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −24.0000 | −1.07011 | −0.535054 | − | 0.844818i | \(-0.679709\pi\) | ||||
−0.535054 | + | 0.844818i | \(0.679709\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 28.0000 | 1.24598 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −18.0000 | −0.797836 | −0.398918 | − | 0.916987i | \(-0.630614\pi\) | ||||
−0.398918 | + | 0.916987i | \(0.630614\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | −12.0000 | −0.528783 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | −8.00000 | −0.351840 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 14.0000 | 0.613351 | 0.306676 | − | 0.951814i | \(-0.400783\pi\) | ||||
0.306676 | + | 0.951814i | \(0.400783\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 40.0000 | 1.74908 | 0.874539 | − | 0.484955i | \(-0.161164\pi\) | ||||
0.874539 | + | 0.484955i | \(0.161164\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 41.0000 | 1.78261 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 8.00000 | 0.346518 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | −16.0000 | −0.691740 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 14.0000 | 0.603023 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 2.00000 | 0.0859867 | 0.0429934 | − | 0.999075i | \(-0.486311\pi\) | ||||
0.0429934 | + | 0.999075i | \(0.486311\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −28.0000 | −1.19719 | −0.598597 | − | 0.801050i | \(-0.704275\pi\) | ||||
−0.598597 | + | 0.801050i | \(0.704275\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −2.00000 | −0.0852029 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 34.0000 | 1.44063 | 0.720313 | − | 0.693649i | \(-0.243998\pi\) | ||||
0.720313 | + | 0.693649i | \(0.243998\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 16.0000 | 0.676728 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 12.0000 | 0.505740 | 0.252870 | − | 0.967500i | \(-0.418626\pi\) | ||||
0.252870 | + | 0.967500i | \(0.418626\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 28.0000 | 1.17797 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 10.0000 | 0.419222 | 0.209611 | − | 0.977785i | \(-0.432780\pi\) | ||||
0.209611 | + | 0.977785i | \(0.432780\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 28.0000 | 1.17176 | 0.585882 | − | 0.810397i | \(-0.300748\pi\) | ||||
0.585882 | + | 0.810397i | \(0.300748\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 8.00000 | 0.333623 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 38.0000 | 1.58196 | 0.790980 | − | 0.611842i | \(-0.209571\pi\) | ||||
0.790980 | + | 0.611842i | \(0.209571\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −4.00000 | −0.165663 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −6.00000 | −0.247647 | −0.123823 | − | 0.992304i | \(-0.539516\pi\) | ||||
−0.123823 | + | 0.992304i | \(0.539516\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 2.00000 | 0.0824086 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 16.0000 | 0.657041 | 0.328521 | − | 0.944497i | \(-0.393450\pi\) | ||||
0.328521 | + | 0.944497i | \(0.393450\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −14.0000 | −0.571072 | −0.285536 | − | 0.958368i | \(-0.592172\pi\) | ||||
−0.285536 | + | 0.958368i | \(0.592172\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | −14.0000 | −0.569181 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 22.0000 | 0.892952 | 0.446476 | − | 0.894795i | \(-0.352679\pi\) | ||||
0.446476 | + | 0.894795i | \(0.352679\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −16.0000 | −0.647291 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 10.0000 | 0.403896 | 0.201948 | − | 0.979396i | \(-0.435273\pi\) | ||||
0.201948 | + | 0.979396i | \(0.435273\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −12.0000 | −0.483102 | −0.241551 | − | 0.970388i | \(-0.577656\pi\) | ||||
−0.241551 | + | 0.970388i | \(0.577656\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 44.0000 | 1.76851 | 0.884255 | − | 0.467005i | \(-0.154667\pi\) | ||||
0.884255 | + | 0.467005i | \(0.154667\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −19.0000 | −0.760000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 28.0000 | 1.11466 | 0.557331 | − | 0.830290i | \(-0.311825\pi\) | ||||
0.557331 | + | 0.830290i | \(0.311825\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 36.0000 | 1.42862 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 28.0000 | 1.10940 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 6.00000 | 0.236986 | 0.118493 | − | 0.992955i | \(-0.462194\pi\) | ||||
0.118493 | + | 0.992955i | \(0.462194\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −28.0000 | −1.10421 | −0.552106 | − | 0.833774i | \(-0.686176\pi\) | ||||
−0.552106 | + | 0.833774i | \(0.686176\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −32.0000 | −1.25805 | −0.629025 | − | 0.777385i | \(-0.716546\pi\) | ||||
−0.629025 | + | 0.777385i | \(0.716546\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −6.00000 | −0.234798 | −0.117399 | − | 0.993085i | \(-0.537456\pi\) | ||||
−0.117399 | + | 0.993085i | \(0.537456\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | −12.0000 | −0.468879 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 16.0000 | 0.623272 | 0.311636 | − | 0.950202i | \(-0.399123\pi\) | ||||
0.311636 | + | 0.950202i | \(0.399123\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −8.00000 | −0.311164 | −0.155582 | − | 0.987823i | \(-0.549725\pi\) | ||||
−0.155582 | + | 0.987823i | \(0.549725\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 16.0000 | 0.619522 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 20.0000 | 0.772091 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −10.0000 | −0.385472 | −0.192736 | − | 0.981251i | \(-0.561736\pi\) | ||||
−0.192736 | + | 0.981251i | \(0.561736\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −38.0000 | −1.46046 | −0.730229 | − | 0.683202i | \(-0.760587\pi\) | ||||
−0.730229 | + | 0.683202i | \(0.760587\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 44.0000 | 1.68361 | 0.841807 | − | 0.539779i | \(-0.181492\pi\) | ||||
0.841807 | + | 0.539779i | \(0.181492\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 32.0000 | 1.22266 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −8.00000 | −0.304776 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −36.0000 | −1.36950 | −0.684752 | − | 0.728776i | \(-0.740090\pi\) | ||||
−0.684752 | + | 0.728776i | \(0.740090\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | −24.0000 | −0.910372 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −34.0000 | −1.28416 | −0.642081 | − | 0.766637i | \(-0.721929\pi\) | ||||
−0.642081 | + | 0.766637i | \(0.721929\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −8.00000 | −0.301726 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −18.0000 | −0.676004 | −0.338002 | − | 0.941145i | \(-0.609751\pi\) | ||||
−0.338002 | + | 0.941145i | \(0.609751\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | −16.0000 | −0.599205 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 16.0000 | 0.598366 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 20.0000 | 0.745874 | 0.372937 | − | 0.927857i | \(-0.378351\pi\) | ||||
0.372937 | + | 0.927857i | \(0.378351\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 2.00000 | 0.0742781 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −16.0000 | −0.593407 | −0.296704 | − | 0.954970i | \(-0.595887\pi\) | ||||
−0.296704 | + | 0.954970i | \(0.595887\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 18.0000 | 0.664845 | 0.332423 | − | 0.943131i | \(-0.392134\pi\) | ||||
0.332423 | + | 0.943131i | \(0.392134\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 4.00000 | 0.147142 | 0.0735712 | − | 0.997290i | \(-0.476560\pi\) | ||||
0.0735712 | + | 0.997290i | \(0.476560\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 16.0000 | 0.586983 | 0.293492 | − | 0.955962i | \(-0.405183\pi\) | ||||
0.293492 | + | 0.955962i | \(0.405183\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 36.0000 | 1.31894 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 10.0000 | 0.364905 | 0.182453 | − | 0.983215i | \(-0.441596\pi\) | ||||
0.182453 | + | 0.983215i | \(0.441596\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | −28.0000 | −1.01902 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 34.0000 | 1.23575 | 0.617876 | − | 0.786276i | \(-0.287994\pi\) | ||||
0.617876 | + | 0.786276i | \(0.287994\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −24.0000 | −0.869999 | −0.435000 | − | 0.900431i | \(-0.643252\pi\) | ||||
−0.435000 | + | 0.900431i | \(0.643252\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −14.0000 | −0.504853 | −0.252426 | − | 0.967616i | \(-0.581229\pi\) | ||||
−0.252426 | + | 0.967616i | \(0.581229\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 6.00000 | 0.215805 | 0.107903 | − | 0.994161i | \(-0.465587\pi\) | ||||
0.107903 | + | 0.994161i | \(0.465587\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −2.00000 | −0.0718421 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −2.00000 | −0.0716574 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −32.0000 | −1.14505 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | −28.0000 | −0.999363 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 20.0000 | 0.712923 | 0.356462 | − | 0.934310i | \(-0.383983\pi\) | ||||
0.356462 | + | 0.934310i | \(0.383983\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 40.0000 | 1.42044 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 6.00000 | 0.212531 | 0.106265 | − | 0.994338i | \(-0.466111\pi\) | ||||
0.106265 | + | 0.994338i | \(0.466111\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −12.0000 | −0.423471 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −12.0000 | −0.421898 | −0.210949 | − | 0.977497i | \(-0.567655\pi\) | ||||
−0.210949 | + | 0.977497i | \(0.567655\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 36.0000 | 1.26413 | 0.632065 | − | 0.774915i | \(-0.282207\pi\) | ||||
0.632065 | + | 0.774915i | \(0.282207\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 8.00000 | 0.280228 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −4.00000 | −0.139942 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 6.00000 | 0.209401 | 0.104701 | − | 0.994504i | \(-0.466612\pi\) | ||||
0.104701 | + | 0.994504i | \(0.466612\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 4.00000 | 0.139431 | 0.0697156 | − | 0.997567i | \(-0.477791\pi\) | ||||
0.0697156 | + | 0.997567i | \(0.477791\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −20.0000 | −0.695468 | −0.347734 | − | 0.937593i | \(-0.613049\pi\) | ||||
−0.347734 | + | 0.937593i | \(0.613049\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −24.0000 | −0.833554 | −0.416777 | − | 0.909009i | \(-0.636840\pi\) | ||||
−0.416777 | + | 0.909009i | \(0.636840\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | −48.0000 | −1.66111 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 16.0000 | 0.552381 | 0.276191 | − | 0.961103i | \(-0.410928\pi\) | ||||
0.276191 | + | 0.961103i | \(0.410928\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −25.0000 | −0.862069 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 6.00000 | 0.206406 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 64.0000 | 2.19389 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | −42.0000 | −1.43805 | −0.719026 | − | 0.694983i | \(-0.755412\pi\) | ||||
−0.719026 | + | 0.694983i | \(0.755412\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −18.0000 | −0.614868 | −0.307434 | − | 0.951569i | \(-0.599470\pi\) | ||||
−0.307434 | + | 0.951569i | \(0.599470\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −28.0000 | −0.955348 | −0.477674 | − | 0.878537i | \(-0.658520\pi\) | ||||
−0.477674 | + | 0.878537i | \(0.658520\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −48.0000 | −1.63394 | −0.816970 | − | 0.576681i | \(-0.804348\pi\) | ||||
−0.816970 | + | 0.576681i | \(0.804348\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 36.0000 | 1.22404 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 28.0000 | 0.949835 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −8.00000 | −0.270141 | −0.135070 | − | 0.990836i | \(-0.543126\pi\) | ||||
−0.135070 | + | 0.990836i | \(0.543126\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 12.0000 | 0.404290 | 0.202145 | − | 0.979356i | \(-0.435209\pi\) | ||||
0.202145 | + | 0.979356i | \(0.435209\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −28.0000 | −0.942275 | −0.471138 | − | 0.882060i | \(-0.656156\pi\) | ||||
−0.471138 | + | 0.882060i | \(0.656156\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −16.0000 | −0.537227 | −0.268614 | − | 0.963248i | \(-0.586566\pi\) | ||||
−0.268614 | + | 0.963248i | \(0.586566\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 4.00000 | 0.133855 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 24.0000 | 0.802232 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −4.00000 | −0.133407 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 0 | 0 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | −16.0000 | −0.531858 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 40.0000 | 1.32818 | 0.664089 | − | 0.747653i | \(-0.268820\pi\) | ||||
0.664089 | + | 0.747653i | \(0.268820\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −48.0000 | −1.59031 | −0.795155 | − | 0.606406i | \(-0.792611\pi\) | ||||
−0.795155 | + | 0.606406i | \(0.792611\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | −12.0000 | −0.397142 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −20.0000 | −0.659739 | −0.329870 | − | 0.944027i | \(-0.607005\pi\) | ||||
−0.329870 | + | 0.944027i | \(0.607005\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −64.0000 | −2.10659 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 8.00000 | 0.263038 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 20.0000 | 0.656179 | 0.328089 | − | 0.944647i | \(-0.393595\pi\) | ||||
0.328089 | + | 0.944647i | \(0.393595\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −7.00000 | −0.229416 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 38.0000 | 1.24141 | 0.620703 | − | 0.784046i | \(-0.286847\pi\) | ||||
0.620703 | + | 0.784046i | \(0.286847\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 22.0000 | 0.717180 | 0.358590 | − | 0.933495i | \(-0.383258\pi\) | ||||
0.358590 | + | 0.933495i | \(0.383258\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 16.0000 | 0.521032 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 42.0000 | 1.36482 | 0.682408 | − | 0.730971i | \(-0.260933\pi\) | ||||
0.682408 | + | 0.730971i | \(0.260933\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −24.0000 | −0.779073 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 26.0000 | 0.842223 | 0.421111 | − | 0.907009i | \(-0.361640\pi\) | ||||
0.421111 | + | 0.907009i | \(0.361640\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | −8.00000 | −0.258874 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −27.0000 | −0.870968 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 12.0000 | 0.386294 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −48.0000 | −1.54358 | −0.771788 | − | 0.635880i | \(-0.780637\pi\) | ||||
−0.771788 | + | 0.635880i | \(0.780637\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 40.0000 | 1.28366 | 0.641831 | − | 0.766846i | \(-0.278175\pi\) | ||||
0.641831 | + | 0.766846i | \(0.278175\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −10.0000 | −0.319928 | −0.159964 | − | 0.987123i | \(-0.551138\pi\) | ||||
−0.159964 | + | 0.987123i | \(0.551138\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 36.0000 | 1.15056 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 24.0000 | 0.765481 | 0.382741 | − | 0.923856i | \(-0.374980\pi\) | ||||
0.382741 | + | 0.923856i | \(0.374980\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −20.0000 | −0.637253 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 32.0000 | 1.01754 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 26.0000 | 0.825917 | 0.412959 | − | 0.910750i | \(-0.364495\pi\) | ||||
0.412959 | + | 0.910750i | \(0.364495\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | −40.0000 | −1.26809 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 10.0000 | 0.316703 | 0.158352 | − | 0.987383i | \(-0.449382\pi\) | ||||
0.158352 | + | 0.987383i | \(0.449382\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 2736.2.a.r.1.1 | 1 | ||
3.2 | odd | 2 | 2736.2.a.f.1.1 | 1 | |||
4.3 | odd | 2 | 342.2.a.g.1.1 | yes | 1 | ||
12.11 | even | 2 | 342.2.a.a.1.1 | ✓ | 1 | ||
20.19 | odd | 2 | 8550.2.a.i.1.1 | 1 | |||
60.59 | even | 2 | 8550.2.a.y.1.1 | 1 | |||
76.75 | even | 2 | 6498.2.a.i.1.1 | 1 | |||
228.227 | odd | 2 | 6498.2.a.o.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
342.2.a.a.1.1 | ✓ | 1 | 12.11 | even | 2 | ||
342.2.a.g.1.1 | yes | 1 | 4.3 | odd | 2 | ||
2736.2.a.f.1.1 | 1 | 3.2 | odd | 2 | |||
2736.2.a.r.1.1 | 1 | 1.1 | even | 1 | trivial | ||
6498.2.a.i.1.1 | 1 | 76.75 | even | 2 | |||
6498.2.a.o.1.1 | 1 | 228.227 | odd | 2 | |||
8550.2.a.i.1.1 | 1 | 20.19 | odd | 2 | |||
8550.2.a.y.1.1 | 1 | 60.59 | even | 2 |