Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2736,2,Mod(1,2736)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2736, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2736.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2736.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(21.8470699930\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 57) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 2736.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 2.00000 | 0.894427 | 0.447214 | − | 0.894427i | \(-0.352416\pi\) | ||||
0.447214 | + | 0.894427i | \(0.352416\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 6.00000 | 1.66410 | 0.832050 | − | 0.554700i | \(-0.187167\pi\) | ||||
0.832050 | + | 0.554700i | \(0.187167\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 6.00000 | 1.45521 | 0.727607 | − | 0.685994i | \(-0.240633\pi\) | ||||
0.727607 | + | 0.685994i | \(0.240633\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 1.00000 | 0.229416 | ||||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 4.00000 | 0.834058 | 0.417029 | − | 0.908893i | \(-0.363071\pi\) | ||||
0.417029 | + | 0.908893i | \(0.363071\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −1.00000 | −0.200000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −2.00000 | −0.371391 | −0.185695 | − | 0.982607i | \(-0.559454\pi\) | ||||
−0.185695 | + | 0.982607i | \(0.559454\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −8.00000 | −1.43684 | −0.718421 | − | 0.695608i | \(-0.755135\pi\) | ||||
−0.718421 | + | 0.695608i | \(0.755135\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −10.0000 | −1.64399 | −0.821995 | − | 0.569495i | \(-0.807139\pi\) | ||||
−0.821995 | + | 0.569495i | \(0.807139\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 2.00000 | 0.312348 | 0.156174 | − | 0.987730i | \(-0.450084\pi\) | ||||
0.156174 | + | 0.987730i | \(0.450084\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 4.00000 | 0.609994 | 0.304997 | − | 0.952353i | \(-0.401344\pi\) | ||||
0.304997 | + | 0.952353i | \(0.401344\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 12.0000 | 1.75038 | 0.875190 | − | 0.483779i | \(-0.160736\pi\) | ||||
0.875190 | + | 0.483779i | \(0.160736\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −7.00000 | −1.00000 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 6.00000 | 0.824163 | 0.412082 | − | 0.911147i | \(-0.364802\pi\) | ||||
0.412082 | + | 0.911147i | \(0.364802\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −12.0000 | −1.56227 | −0.781133 | − | 0.624364i | \(-0.785358\pi\) | ||||
−0.781133 | + | 0.624364i | \(0.785358\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −2.00000 | −0.256074 | −0.128037 | − | 0.991769i | \(-0.540868\pi\) | ||||
−0.128037 | + | 0.991769i | \(0.540868\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 12.0000 | 1.48842 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 4.00000 | 0.488678 | 0.244339 | − | 0.969690i | \(-0.421429\pi\) | ||||
0.244339 | + | 0.969690i | \(0.421429\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 10.0000 | 1.17041 | 0.585206 | − | 0.810885i | \(-0.301014\pi\) | ||||
0.585206 | + | 0.810885i | \(0.301014\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 16.0000 | 1.75623 | 0.878114 | − | 0.478451i | \(-0.158802\pi\) | ||||
0.878114 | + | 0.478451i | \(0.158802\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 12.0000 | 1.30158 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 2.00000 | 0.212000 | 0.106000 | − | 0.994366i | \(-0.466196\pi\) | ||||
0.106000 | + | 0.994366i | \(0.466196\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 2.00000 | 0.205196 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 10.0000 | 1.01535 | 0.507673 | − | 0.861550i | \(-0.330506\pi\) | ||||
0.507673 | + | 0.861550i | \(0.330506\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 10.0000 | 0.995037 | 0.497519 | − | 0.867453i | \(-0.334245\pi\) | ||||
0.497519 | + | 0.867453i | \(0.334245\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −8.00000 | −0.788263 | −0.394132 | − | 0.919054i | \(-0.628955\pi\) | ||||
−0.394132 | + | 0.919054i | \(0.628955\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 4.00000 | 0.386695 | 0.193347 | − | 0.981130i | \(-0.438066\pi\) | ||||
0.193347 | + | 0.981130i | \(0.438066\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −10.0000 | −0.957826 | −0.478913 | − | 0.877862i | \(-0.658969\pi\) | ||||
−0.478913 | + | 0.877862i | \(0.658969\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −6.00000 | −0.564433 | −0.282216 | − | 0.959351i | \(-0.591070\pi\) | ||||
−0.282216 | + | 0.959351i | \(0.591070\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 8.00000 | 0.746004 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −11.0000 | −1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | −12.0000 | −1.07331 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 8.00000 | 0.709885 | 0.354943 | − | 0.934888i | \(-0.384500\pi\) | ||||
0.354943 | + | 0.934888i | \(0.384500\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 8.00000 | 0.698963 | 0.349482 | − | 0.936943i | \(-0.386358\pi\) | ||||
0.349482 | + | 0.936943i | \(0.386358\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −18.0000 | −1.53784 | −0.768922 | − | 0.639343i | \(-0.779207\pi\) | ||||
−0.768922 | + | 0.639343i | \(0.779207\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −4.00000 | −0.339276 | −0.169638 | − | 0.985506i | \(-0.554260\pi\) | ||||
−0.169638 | + | 0.985506i | \(0.554260\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −4.00000 | −0.332182 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −6.00000 | −0.491539 | −0.245770 | − | 0.969328i | \(-0.579041\pi\) | ||||
−0.245770 | + | 0.969328i | \(0.579041\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 8.00000 | 0.651031 | 0.325515 | − | 0.945537i | \(-0.394462\pi\) | ||||
0.325515 | + | 0.945537i | \(0.394462\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | −16.0000 | −1.28515 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −2.00000 | −0.159617 | −0.0798087 | − | 0.996810i | \(-0.525431\pi\) | ||||
−0.0798087 | + | 0.996810i | \(0.525431\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 4.00000 | 0.313304 | 0.156652 | − | 0.987654i | \(-0.449930\pi\) | ||||
0.156652 | + | 0.987654i | \(0.449930\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 24.0000 | 1.85718 | 0.928588 | − | 0.371113i | \(-0.121024\pi\) | ||||
0.928588 | + | 0.371113i | \(0.121024\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 23.0000 | 1.76923 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 22.0000 | 1.67263 | 0.836315 | − | 0.548250i | \(-0.184706\pi\) | ||||
0.836315 | + | 0.548250i | \(0.184706\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −4.00000 | −0.298974 | −0.149487 | − | 0.988764i | \(-0.547762\pi\) | ||||
−0.149487 | + | 0.988764i | \(0.547762\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 14.0000 | 1.04061 | 0.520306 | − | 0.853980i | \(-0.325818\pi\) | ||||
0.520306 | + | 0.853980i | \(0.325818\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | −20.0000 | −1.47043 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −12.0000 | −0.868290 | −0.434145 | − | 0.900843i | \(-0.642949\pi\) | ||||
−0.434145 | + | 0.900843i | \(0.642949\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −14.0000 | −1.00774 | −0.503871 | − | 0.863779i | \(-0.668091\pi\) | ||||
−0.503871 | + | 0.863779i | \(0.668091\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 2.00000 | 0.142494 | 0.0712470 | − | 0.997459i | \(-0.477302\pi\) | ||||
0.0712470 | + | 0.997459i | \(0.477302\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 8.00000 | 0.567105 | 0.283552 | − | 0.958957i | \(-0.408487\pi\) | ||||
0.283552 | + | 0.958957i | \(0.408487\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 4.00000 | 0.279372 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 4.00000 | 0.275371 | 0.137686 | − | 0.990476i | \(-0.456034\pi\) | ||||
0.137686 | + | 0.990476i | \(0.456034\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 8.00000 | 0.545595 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 36.0000 | 2.42162 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −16.0000 | −1.07144 | −0.535720 | − | 0.844396i | \(-0.679960\pi\) | ||||
−0.535720 | + | 0.844396i | \(0.679960\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | −12.0000 | −0.796468 | −0.398234 | − | 0.917284i | \(-0.630377\pi\) | ||||
−0.398234 | + | 0.917284i | \(0.630377\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 6.00000 | 0.396491 | 0.198246 | − | 0.980152i | \(-0.436476\pi\) | ||||
0.198246 | + | 0.980152i | \(0.436476\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −10.0000 | −0.655122 | −0.327561 | − | 0.944830i | \(-0.606227\pi\) | ||||
−0.327561 | + | 0.944830i | \(0.606227\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 24.0000 | 1.56559 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −12.0000 | −0.776215 | −0.388108 | − | 0.921614i | \(-0.626871\pi\) | ||||
−0.388108 | + | 0.921614i | \(0.626871\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −6.00000 | −0.386494 | −0.193247 | − | 0.981150i | \(-0.561902\pi\) | ||||
−0.193247 | + | 0.981150i | \(0.561902\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | −14.0000 | −0.894427 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 6.00000 | 0.381771 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −24.0000 | −1.51487 | −0.757433 | − | 0.652913i | \(-0.773547\pi\) | ||||
−0.757433 | + | 0.652913i | \(0.773547\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −14.0000 | −0.873296 | −0.436648 | − | 0.899632i | \(-0.643834\pi\) | ||||
−0.436648 | + | 0.899632i | \(0.643834\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 12.0000 | 0.739952 | 0.369976 | − | 0.929041i | \(-0.379366\pi\) | ||||
0.369976 | + | 0.929041i | \(0.379366\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 12.0000 | 0.737154 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 6.00000 | 0.365826 | 0.182913 | − | 0.983129i | \(-0.441447\pi\) | ||||
0.182913 | + | 0.983129i | \(0.441447\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 22.0000 | 1.32185 | 0.660926 | − | 0.750451i | \(-0.270164\pi\) | ||||
0.660926 | + | 0.750451i | \(0.270164\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 10.0000 | 0.596550 | 0.298275 | − | 0.954480i | \(-0.403589\pi\) | ||||
0.298275 | + | 0.954480i | \(0.403589\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 20.0000 | 1.18888 | 0.594438 | − | 0.804141i | \(-0.297374\pi\) | ||||
0.594438 | + | 0.804141i | \(0.297374\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 19.0000 | 1.11765 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 14.0000 | 0.817889 | 0.408944 | − | 0.912559i | \(-0.365897\pi\) | ||||
0.408944 | + | 0.912559i | \(0.365897\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | −24.0000 | −1.39733 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 24.0000 | 1.38796 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | −4.00000 | −0.229039 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 12.0000 | 0.684876 | 0.342438 | − | 0.939540i | \(-0.388747\pi\) | ||||
0.342438 | + | 0.939540i | \(0.388747\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 4.00000 | 0.226819 | 0.113410 | − | 0.993548i | \(-0.463823\pi\) | ||||
0.113410 | + | 0.993548i | \(0.463823\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −22.0000 | −1.24351 | −0.621757 | − | 0.783210i | \(-0.713581\pi\) | ||||
−0.621757 | + | 0.783210i | \(0.713581\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 6.00000 | 0.336994 | 0.168497 | − | 0.985702i | \(-0.446109\pi\) | ||||
0.168497 | + | 0.985702i | \(0.446109\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 6.00000 | 0.333849 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | −6.00000 | −0.332820 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −12.0000 | −0.659580 | −0.329790 | − | 0.944054i | \(-0.606978\pi\) | ||||
−0.329790 | + | 0.944054i | \(0.606978\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 8.00000 | 0.437087 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −22.0000 | −1.19842 | −0.599208 | − | 0.800593i | \(-0.704518\pi\) | ||||
−0.599208 | + | 0.800593i | \(0.704518\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −2.00000 | −0.107058 | −0.0535288 | − | 0.998566i | \(-0.517047\pi\) | ||||
−0.0535288 | + | 0.998566i | \(0.517047\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 22.0000 | 1.17094 | 0.585471 | − | 0.810693i | \(-0.300910\pi\) | ||||
0.585471 | + | 0.810693i | \(0.300910\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −20.0000 | −1.05556 | −0.527780 | − | 0.849381i | \(-0.676975\pi\) | ||||
−0.527780 | + | 0.849381i | \(0.676975\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 1.00000 | 0.0526316 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 20.0000 | 1.04685 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −32.0000 | −1.67039 | −0.835193 | − | 0.549957i | \(-0.814644\pi\) | ||||
−0.835193 | + | 0.549957i | \(0.814644\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −10.0000 | −0.517780 | −0.258890 | − | 0.965907i | \(-0.583357\pi\) | ||||
−0.258890 | + | 0.965907i | \(0.583357\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −12.0000 | −0.618031 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −12.0000 | −0.616399 | −0.308199 | − | 0.951322i | \(-0.599726\pi\) | ||||
−0.308199 | + | 0.951322i | \(0.599726\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 8.00000 | 0.408781 | 0.204390 | − | 0.978889i | \(-0.434479\pi\) | ||||
0.204390 | + | 0.978889i | \(0.434479\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −30.0000 | −1.52106 | −0.760530 | − | 0.649303i | \(-0.775061\pi\) | ||||
−0.760530 | + | 0.649303i | \(0.775061\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 24.0000 | 1.21373 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 14.0000 | 0.702640 | 0.351320 | − | 0.936255i | \(-0.385733\pi\) | ||||
0.351320 | + | 0.936255i | \(0.385733\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −38.0000 | −1.89763 | −0.948815 | − | 0.315833i | \(-0.897716\pi\) | ||||
−0.948815 | + | 0.315833i | \(0.897716\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | −48.0000 | −2.39105 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −14.0000 | −0.692255 | −0.346128 | − | 0.938187i | \(-0.612504\pi\) | ||||
−0.346128 | + | 0.938187i | \(0.612504\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 32.0000 | 1.57082 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 8.00000 | 0.390826 | 0.195413 | − | 0.980721i | \(-0.437395\pi\) | ||||
0.195413 | + | 0.980721i | \(0.437395\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 14.0000 | 0.682318 | 0.341159 | − | 0.940006i | \(-0.389181\pi\) | ||||
0.341159 | + | 0.940006i | \(0.389181\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | −6.00000 | −0.291043 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −24.0000 | −1.15604 | −0.578020 | − | 0.816023i | \(-0.696174\pi\) | ||||
−0.578020 | + | 0.816023i | \(0.696174\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −14.0000 | −0.672797 | −0.336399 | − | 0.941720i | \(-0.609209\pi\) | ||||
−0.336399 | + | 0.941720i | \(0.609209\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 4.00000 | 0.191346 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 8.00000 | 0.381819 | 0.190910 | − | 0.981608i | \(-0.438856\pi\) | ||||
0.190910 | + | 0.981608i | \(0.438856\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 4.00000 | 0.189618 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 2.00000 | 0.0943858 | 0.0471929 | − | 0.998886i | \(-0.484972\pi\) | ||||
0.0471929 | + | 0.998886i | \(0.484972\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −6.00000 | −0.280668 | −0.140334 | − | 0.990104i | \(-0.544818\pi\) | ||||
−0.140334 | + | 0.990104i | \(0.544818\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 18.0000 | 0.838344 | 0.419172 | − | 0.907907i | \(-0.362320\pi\) | ||||
0.419172 | + | 0.907907i | \(0.362320\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −32.0000 | −1.48717 | −0.743583 | − | 0.668644i | \(-0.766875\pi\) | ||||
−0.743583 | + | 0.668644i | \(0.766875\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −32.0000 | −1.48078 | −0.740392 | − | 0.672176i | \(-0.765360\pi\) | ||||
−0.740392 | + | 0.672176i | \(0.765360\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | −1.00000 | −0.0458831 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 20.0000 | 0.913823 | 0.456912 | − | 0.889512i | \(-0.348956\pi\) | ||||
0.456912 | + | 0.889512i | \(0.348956\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −60.0000 | −2.73576 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 20.0000 | 0.908153 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −32.0000 | −1.45006 | −0.725029 | − | 0.688718i | \(-0.758174\pi\) | ||||
−0.725029 | + | 0.688718i | \(0.758174\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −32.0000 | −1.44414 | −0.722070 | − | 0.691820i | \(-0.756809\pi\) | ||||
−0.722070 | + | 0.691820i | \(0.756809\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −12.0000 | −0.540453 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −28.0000 | −1.25345 | −0.626726 | − | 0.779240i | \(-0.715605\pi\) | ||||
−0.626726 | + | 0.779240i | \(0.715605\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 12.0000 | 0.535054 | 0.267527 | − | 0.963550i | \(-0.413794\pi\) | ||||
0.267527 | + | 0.963550i | \(0.413794\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 20.0000 | 0.889988 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 22.0000 | 0.975133 | 0.487566 | − | 0.873086i | \(-0.337885\pi\) | ||||
0.487566 | + | 0.873086i | \(0.337885\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | −16.0000 | −0.705044 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −14.0000 | −0.613351 | −0.306676 | − | 0.951814i | \(-0.599217\pi\) | ||||
−0.306676 | + | 0.951814i | \(0.599217\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 28.0000 | 1.22435 | 0.612177 | − | 0.790721i | \(-0.290294\pi\) | ||||
0.612177 | + | 0.790721i | \(0.290294\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | −48.0000 | −2.09091 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −7.00000 | −0.304348 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 12.0000 | 0.519778 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 8.00000 | 0.345870 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 14.0000 | 0.601907 | 0.300954 | − | 0.953639i | \(-0.402695\pi\) | ||||
0.300954 | + | 0.953639i | \(0.402695\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | −20.0000 | −0.856706 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −4.00000 | −0.171028 | −0.0855138 | − | 0.996337i | \(-0.527253\pi\) | ||||
−0.0855138 | + | 0.996337i | \(0.527253\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −2.00000 | −0.0852029 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | −30.0000 | −1.27114 | −0.635570 | − | 0.772043i | \(-0.719235\pi\) | ||||
−0.635570 | + | 0.772043i | \(0.719235\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 24.0000 | 1.01509 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 20.0000 | 0.842900 | 0.421450 | − | 0.906852i | \(-0.361521\pi\) | ||||
0.421450 | + | 0.906852i | \(0.361521\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | −12.0000 | −0.504844 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −6.00000 | −0.251533 | −0.125767 | − | 0.992060i | \(-0.540139\pi\) | ||||
−0.125767 | + | 0.992060i | \(0.540139\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −44.0000 | −1.84134 | −0.920671 | − | 0.390339i | \(-0.872358\pi\) | ||||
−0.920671 | + | 0.390339i | \(0.872358\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | −4.00000 | −0.166812 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 18.0000 | 0.749350 | 0.374675 | − | 0.927156i | \(-0.377754\pi\) | ||||
0.374675 | + | 0.927156i | \(0.377754\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 8.00000 | 0.330195 | 0.165098 | − | 0.986277i | \(-0.447206\pi\) | ||||
0.165098 | + | 0.986277i | \(0.447206\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −8.00000 | −0.329634 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 30.0000 | 1.23195 | 0.615976 | − | 0.787765i | \(-0.288762\pi\) | ||||
0.615976 | + | 0.787765i | \(0.288762\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −24.0000 | −0.980613 | −0.490307 | − | 0.871550i | \(-0.663115\pi\) | ||||
−0.490307 | + | 0.871550i | \(0.663115\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 10.0000 | 0.407909 | 0.203954 | − | 0.978980i | \(-0.434621\pi\) | ||||
0.203954 | + | 0.978980i | \(0.434621\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | −22.0000 | −0.894427 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −24.0000 | −0.974130 | −0.487065 | − | 0.873366i | \(-0.661933\pi\) | ||||
−0.487065 | + | 0.873366i | \(0.661933\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 72.0000 | 2.91281 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 6.00000 | 0.242338 | 0.121169 | − | 0.992632i | \(-0.461336\pi\) | ||||
0.121169 | + | 0.992632i | \(0.461336\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −2.00000 | −0.0805170 | −0.0402585 | − | 0.999189i | \(-0.512818\pi\) | ||||
−0.0402585 | + | 0.999189i | \(0.512818\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 28.0000 | 1.12542 | 0.562708 | − | 0.826656i | \(-0.309760\pi\) | ||||
0.562708 | + | 0.826656i | \(0.309760\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −19.0000 | −0.760000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −60.0000 | −2.39236 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 32.0000 | 1.27390 | 0.636950 | − | 0.770905i | \(-0.280196\pi\) | ||||
0.636950 | + | 0.770905i | \(0.280196\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 16.0000 | 0.634941 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −42.0000 | −1.66410 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −38.0000 | −1.50091 | −0.750455 | − | 0.660922i | \(-0.770166\pi\) | ||||
−0.750455 | + | 0.660922i | \(0.770166\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −20.0000 | −0.788723 | −0.394362 | − | 0.918955i | \(-0.629034\pi\) | ||||
−0.394362 | + | 0.918955i | \(0.629034\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 36.0000 | 1.41531 | 0.707653 | − | 0.706560i | \(-0.249754\pi\) | ||||
0.707653 | + | 0.706560i | \(0.249754\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −14.0000 | −0.547862 | −0.273931 | − | 0.961749i | \(-0.588324\pi\) | ||||
−0.273931 | + | 0.961749i | \(0.588324\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 16.0000 | 0.625172 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −44.0000 | −1.71400 | −0.856998 | − | 0.515319i | \(-0.827673\pi\) | ||||
−0.856998 | + | 0.515319i | \(0.827673\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 6.00000 | 0.233373 | 0.116686 | − | 0.993169i | \(-0.462773\pi\) | ||||
0.116686 | + | 0.993169i | \(0.462773\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | −8.00000 | −0.309761 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −46.0000 | −1.77317 | −0.886585 | − | 0.462566i | \(-0.846929\pi\) | ||||
−0.886585 | + | 0.462566i | \(0.846929\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 22.0000 | 0.845529 | 0.422764 | − | 0.906240i | \(-0.361060\pi\) | ||||
0.422764 | + | 0.906240i | \(0.361060\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 36.0000 | 1.37750 | 0.688751 | − | 0.724998i | \(-0.258159\pi\) | ||||
0.688751 | + | 0.724998i | \(0.258159\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | −36.0000 | −1.37549 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 36.0000 | 1.37149 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −20.0000 | −0.760836 | −0.380418 | − | 0.924815i | \(-0.624220\pi\) | ||||
−0.380418 | + | 0.924815i | \(0.624220\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | −8.00000 | −0.303457 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 12.0000 | 0.454532 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 18.0000 | 0.679851 | 0.339925 | − | 0.940452i | \(-0.389598\pi\) | ||||
0.339925 | + | 0.940452i | \(0.389598\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −10.0000 | −0.377157 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 38.0000 | 1.42712 | 0.713560 | − | 0.700594i | \(-0.247082\pi\) | ||||
0.713560 | + | 0.700594i | \(0.247082\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | −32.0000 | −1.19841 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −20.0000 | −0.745874 | −0.372937 | − | 0.927857i | \(-0.621649\pi\) | ||||
−0.372937 | + | 0.927857i | \(0.621649\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 2.00000 | 0.0742781 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −8.00000 | −0.296704 | −0.148352 | − | 0.988935i | \(-0.547397\pi\) | ||||
−0.148352 | + | 0.988935i | \(0.547397\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 24.0000 | 0.887672 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 46.0000 | 1.69905 | 0.849524 | − | 0.527549i | \(-0.176889\pi\) | ||||
0.849524 | + | 0.527549i | \(0.176889\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 36.0000 | 1.32428 | 0.662141 | − | 0.749380i | \(-0.269648\pi\) | ||||
0.662141 | + | 0.749380i | \(0.269648\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −12.0000 | −0.439646 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −16.0000 | −0.583848 | −0.291924 | − | 0.956441i | \(-0.594295\pi\) | ||||
−0.291924 | + | 0.956441i | \(0.594295\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 16.0000 | 0.582300 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 38.0000 | 1.38113 | 0.690567 | − | 0.723269i | \(-0.257361\pi\) | ||||
0.690567 | + | 0.723269i | \(0.257361\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −50.0000 | −1.81250 | −0.906249 | − | 0.422744i | \(-0.861067\pi\) | ||||
−0.906249 | + | 0.422744i | \(0.861067\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | −72.0000 | −2.59977 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 18.0000 | 0.649097 | 0.324548 | − | 0.945869i | \(-0.394788\pi\) | ||||
0.324548 | + | 0.945869i | \(0.394788\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −18.0000 | −0.647415 | −0.323708 | − | 0.946157i | \(-0.604929\pi\) | ||||
−0.323708 | + | 0.946157i | \(0.604929\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 8.00000 | 0.287368 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 2.00000 | 0.0716574 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | −4.00000 | −0.142766 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −44.0000 | −1.56843 | −0.784215 | − | 0.620489i | \(-0.786934\pi\) | ||||
−0.784215 | + | 0.620489i | \(0.786934\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −12.0000 | −0.426132 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 6.00000 | 0.212531 | 0.106265 | − | 0.994338i | \(-0.466111\pi\) | ||||
0.106265 | + | 0.994338i | \(0.466111\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 72.0000 | 2.54718 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −26.0000 | −0.914111 | −0.457056 | − | 0.889438i | \(-0.651096\pi\) | ||||
−0.457056 | + | 0.889438i | \(0.651096\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −44.0000 | −1.54505 | −0.772524 | − | 0.634985i | \(-0.781006\pi\) | ||||
−0.772524 | + | 0.634985i | \(0.781006\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 8.00000 | 0.280228 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 4.00000 | 0.139942 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 42.0000 | 1.46581 | 0.732905 | − | 0.680331i | \(-0.238164\pi\) | ||||
0.732905 | + | 0.680331i | \(0.238164\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 32.0000 | 1.11545 | 0.557725 | − | 0.830026i | \(-0.311674\pi\) | ||||
0.557725 | + | 0.830026i | \(0.311674\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −28.0000 | −0.973655 | −0.486828 | − | 0.873498i | \(-0.661846\pi\) | ||||
−0.486828 | + | 0.873498i | \(0.661846\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −10.0000 | −0.347314 | −0.173657 | − | 0.984806i | \(-0.555558\pi\) | ||||
−0.173657 | + | 0.984806i | \(0.555558\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −42.0000 | −1.45521 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 48.0000 | 1.66111 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −25.0000 | −0.862069 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 46.0000 | 1.58245 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −40.0000 | −1.37118 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 22.0000 | 0.753266 | 0.376633 | − | 0.926363i | \(-0.377082\pi\) | ||||
0.376633 | + | 0.926363i | \(0.377082\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −30.0000 | −1.02478 | −0.512390 | − | 0.858753i | \(-0.671240\pi\) | ||||
−0.512390 | + | 0.858753i | \(0.671240\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 28.0000 | 0.955348 | 0.477674 | − | 0.878537i | \(-0.341480\pi\) | ||||
0.477674 | + | 0.878537i | \(0.341480\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −40.0000 | −1.36162 | −0.680808 | − | 0.732462i | \(-0.738371\pi\) | ||||
−0.680808 | + | 0.732462i | \(0.738371\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 44.0000 | 1.49604 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 24.0000 | 0.813209 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −34.0000 | −1.14810 | −0.574049 | − | 0.818821i | \(-0.694628\pi\) | ||||
−0.574049 | + | 0.818821i | \(0.694628\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 38.0000 | 1.28025 | 0.640126 | − | 0.768270i | \(-0.278882\pi\) | ||||
0.640126 | + | 0.768270i | \(0.278882\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 36.0000 | 1.21150 | 0.605748 | − | 0.795656i | \(-0.292874\pi\) | ||||
0.605748 | + | 0.795656i | \(0.292874\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −40.0000 | −1.34307 | −0.671534 | − | 0.740973i | \(-0.734364\pi\) | ||||
−0.671534 | + | 0.740973i | \(0.734364\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 12.0000 | 0.401565 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | −8.00000 | −0.267411 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 16.0000 | 0.533630 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 36.0000 | 1.19933 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 28.0000 | 0.930751 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −4.00000 | −0.132818 | −0.0664089 | − | 0.997792i | \(-0.521154\pi\) | ||||
−0.0664089 | + | 0.997792i | \(0.521154\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −16.0000 | −0.530104 | −0.265052 | − | 0.964234i | \(-0.585389\pi\) | ||||
−0.265052 | + | 0.964234i | \(0.585389\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 16.0000 | 0.527791 | 0.263896 | − | 0.964551i | \(-0.414993\pi\) | ||||
0.263896 | + | 0.964551i | \(0.414993\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 10.0000 | 0.328798 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −34.0000 | −1.11550 | −0.557752 | − | 0.830008i | \(-0.688336\pi\) | ||||
−0.557752 | + | 0.830008i | \(0.688336\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −7.00000 | −0.229416 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −22.0000 | −0.718709 | −0.359354 | − | 0.933201i | \(-0.617003\pi\) | ||||
−0.359354 | + | 0.933201i | \(0.617003\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 22.0000 | 0.717180 | 0.358590 | − | 0.933495i | \(-0.383258\pi\) | ||||
0.358590 | + | 0.933495i | \(0.383258\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 8.00000 | 0.260516 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −8.00000 | −0.259965 | −0.129983 | − | 0.991516i | \(-0.541492\pi\) | ||||
−0.129983 | + | 0.991516i | \(0.541492\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 60.0000 | 1.94768 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −38.0000 | −1.23094 | −0.615470 | − | 0.788160i | \(-0.711034\pi\) | ||||
−0.615470 | + | 0.788160i | \(0.711034\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | −24.0000 | −0.776622 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 33.0000 | 1.06452 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | −28.0000 | −0.901352 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 32.0000 | 1.02905 | 0.514525 | − | 0.857475i | \(-0.327968\pi\) | ||||
0.514525 | + | 0.857475i | \(0.327968\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −36.0000 | −1.15529 | −0.577647 | − | 0.816286i | \(-0.696029\pi\) | ||||
−0.577647 | + | 0.816286i | \(0.696029\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 42.0000 | 1.34370 | 0.671850 | − | 0.740688i | \(-0.265500\pi\) | ||||
0.671850 | + | 0.740688i | \(0.265500\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −8.00000 | −0.255160 | −0.127580 | − | 0.991828i | \(-0.540721\pi\) | ||||
−0.127580 | + | 0.991828i | \(0.540721\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 4.00000 | 0.127451 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 16.0000 | 0.508770 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −40.0000 | −1.27064 | −0.635321 | − | 0.772248i | \(-0.719132\pi\) | ||||
−0.635321 | + | 0.772248i | \(0.719132\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 16.0000 | 0.507234 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | −58.0000 | −1.83688 | −0.918439 | − | 0.395562i | \(-0.870550\pi\) | ||||
−0.918439 | + | 0.395562i | \(0.870550\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 2736.2.a.s.1.1 | 1 | ||
3.2 | odd | 2 | 912.2.a.b.1.1 | 1 | |||
4.3 | odd | 2 | 171.2.a.a.1.1 | 1 | |||
12.11 | even | 2 | 57.2.a.c.1.1 | ✓ | 1 | ||
20.19 | odd | 2 | 4275.2.a.m.1.1 | 1 | |||
24.5 | odd | 2 | 3648.2.a.bf.1.1 | 1 | |||
24.11 | even | 2 | 3648.2.a.o.1.1 | 1 | |||
28.27 | even | 2 | 8379.2.a.e.1.1 | 1 | |||
60.23 | odd | 4 | 1425.2.c.g.799.1 | 2 | |||
60.47 | odd | 4 | 1425.2.c.g.799.2 | 2 | |||
60.59 | even | 2 | 1425.2.a.a.1.1 | 1 | |||
76.75 | even | 2 | 3249.2.a.g.1.1 | 1 | |||
84.83 | odd | 2 | 2793.2.a.i.1.1 | 1 | |||
132.131 | odd | 2 | 6897.2.a.a.1.1 | 1 | |||
156.155 | even | 2 | 9633.2.a.h.1.1 | 1 | |||
228.227 | odd | 2 | 1083.2.a.a.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
57.2.a.c.1.1 | ✓ | 1 | 12.11 | even | 2 | ||
171.2.a.a.1.1 | 1 | 4.3 | odd | 2 | |||
912.2.a.b.1.1 | 1 | 3.2 | odd | 2 | |||
1083.2.a.a.1.1 | 1 | 228.227 | odd | 2 | |||
1425.2.a.a.1.1 | 1 | 60.59 | even | 2 | |||
1425.2.c.g.799.1 | 2 | 60.23 | odd | 4 | |||
1425.2.c.g.799.2 | 2 | 60.47 | odd | 4 | |||
2736.2.a.s.1.1 | 1 | 1.1 | even | 1 | trivial | ||
2793.2.a.i.1.1 | 1 | 84.83 | odd | 2 | |||
3249.2.a.g.1.1 | 1 | 76.75 | even | 2 | |||
3648.2.a.o.1.1 | 1 | 24.11 | even | 2 | |||
3648.2.a.bf.1.1 | 1 | 24.5 | odd | 2 | |||
4275.2.a.m.1.1 | 1 | 20.19 | odd | 2 | |||
6897.2.a.a.1.1 | 1 | 132.131 | odd | 2 | |||
8379.2.a.e.1.1 | 1 | 28.27 | even | 2 | |||
9633.2.a.h.1.1 | 1 | 156.155 | even | 2 |