Properties

Label 2736.2.bm.g.1855.1
Level $2736$
Weight $2$
Character 2736.1855
Analytic conductor $21.847$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2736,2,Mod(559,2736)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2736, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2736.559");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2736.bm (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.8470699930\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 304)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1855.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2736.1855
Dual form 2736.2.bm.g.559.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 + 2.59808i) q^{5} +3.46410i q^{7} +3.46410i q^{11} +(-4.50000 - 2.59808i) q^{13} +(1.50000 + 2.59808i) q^{17} +(-4.00000 + 1.73205i) q^{19} +(4.50000 + 2.59808i) q^{23} +(-2.00000 + 3.46410i) q^{25} +(-7.50000 - 4.33013i) q^{29} +4.00000 q^{31} +(-9.00000 + 5.19615i) q^{35} +(-7.50000 + 4.33013i) q^{41} +(10.5000 - 6.06218i) q^{43} +(-1.50000 - 0.866025i) q^{47} -5.00000 q^{49} +(-1.50000 - 0.866025i) q^{53} +(-9.00000 + 5.19615i) q^{55} +(-1.50000 - 2.59808i) q^{59} +(-3.50000 + 6.06218i) q^{61} -15.5885i q^{65} +(2.50000 - 4.33013i) q^{67} +(4.50000 + 7.79423i) q^{71} +(-3.50000 - 6.06218i) q^{73} -12.0000 q^{77} +(3.50000 + 6.06218i) q^{79} -3.46410i q^{83} +(-4.50000 + 7.79423i) q^{85} +(-7.50000 - 4.33013i) q^{89} +(9.00000 - 15.5885i) q^{91} +(-10.5000 - 7.79423i) q^{95} +(7.50000 - 4.33013i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{5} - 9 q^{13} + 3 q^{17} - 8 q^{19} + 9 q^{23} - 4 q^{25} - 15 q^{29} + 8 q^{31} - 18 q^{35} - 15 q^{41} + 21 q^{43} - 3 q^{47} - 10 q^{49} - 3 q^{53} - 18 q^{55} - 3 q^{59} - 7 q^{61} + 5 q^{67}+ \cdots + 15 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times\).

\(n\) \(1009\) \(1217\) \(1711\) \(2053\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.50000 + 2.59808i 0.670820 + 1.16190i 0.977672 + 0.210138i \(0.0673912\pi\)
−0.306851 + 0.951757i \(0.599275\pi\)
\(6\) 0 0
\(7\) 3.46410i 1.30931i 0.755929 + 0.654654i \(0.227186\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.46410i 1.04447i 0.852803 + 0.522233i \(0.174901\pi\)
−0.852803 + 0.522233i \(0.825099\pi\)
\(12\) 0 0
\(13\) −4.50000 2.59808i −1.24808 0.720577i −0.277350 0.960769i \(-0.589456\pi\)
−0.970725 + 0.240192i \(0.922790\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.50000 + 2.59808i 0.363803 + 0.630126i 0.988583 0.150675i \(-0.0481447\pi\)
−0.624780 + 0.780801i \(0.714811\pi\)
\(18\) 0 0
\(19\) −4.00000 + 1.73205i −0.917663 + 0.397360i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.50000 + 2.59808i 0.938315 + 0.541736i 0.889432 0.457068i \(-0.151100\pi\)
0.0488832 + 0.998805i \(0.484434\pi\)
\(24\) 0 0
\(25\) −2.00000 + 3.46410i −0.400000 + 0.692820i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −7.50000 4.33013i −1.39272 0.804084i −0.399100 0.916907i \(-0.630677\pi\)
−0.993615 + 0.112823i \(0.964011\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −9.00000 + 5.19615i −1.52128 + 0.878310i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.50000 + 4.33013i −1.17130 + 0.676252i −0.953987 0.299849i \(-0.903064\pi\)
−0.217317 + 0.976101i \(0.569730\pi\)
\(42\) 0 0
\(43\) 10.5000 6.06218i 1.60123 0.924473i 0.609994 0.792406i \(-0.291172\pi\)
0.991241 0.132068i \(-0.0421616\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.50000 0.866025i −0.218797 0.126323i 0.386596 0.922249i \(-0.373651\pi\)
−0.605393 + 0.795926i \(0.706984\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.50000 0.866025i −0.206041 0.118958i 0.393429 0.919355i \(-0.371289\pi\)
−0.599470 + 0.800397i \(0.704622\pi\)
\(54\) 0 0
\(55\) −9.00000 + 5.19615i −1.21356 + 0.700649i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.50000 2.59808i −0.195283 0.338241i 0.751710 0.659494i \(-0.229229\pi\)
−0.946993 + 0.321253i \(0.895896\pi\)
\(60\) 0 0
\(61\) −3.50000 + 6.06218i −0.448129 + 0.776182i −0.998264 0.0588933i \(-0.981243\pi\)
0.550135 + 0.835076i \(0.314576\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 15.5885i 1.93351i
\(66\) 0 0
\(67\) 2.50000 4.33013i 0.305424 0.529009i −0.671932 0.740613i \(-0.734535\pi\)
0.977356 + 0.211604i \(0.0678686\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.50000 + 7.79423i 0.534052 + 0.925005i 0.999209 + 0.0397765i \(0.0126646\pi\)
−0.465157 + 0.885228i \(0.654002\pi\)
\(72\) 0 0
\(73\) −3.50000 6.06218i −0.409644 0.709524i 0.585206 0.810885i \(-0.301014\pi\)
−0.994850 + 0.101361i \(0.967680\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −12.0000 −1.36753
\(78\) 0 0
\(79\) 3.50000 + 6.06218i 0.393781 + 0.682048i 0.992945 0.118578i \(-0.0378336\pi\)
−0.599164 + 0.800626i \(0.704500\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.46410i 0.380235i −0.981761 0.190117i \(-0.939113\pi\)
0.981761 0.190117i \(-0.0608868\pi\)
\(84\) 0 0
\(85\) −4.50000 + 7.79423i −0.488094 + 0.845403i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −7.50000 4.33013i −0.794998 0.458993i 0.0467209 0.998908i \(-0.485123\pi\)
−0.841719 + 0.539915i \(0.818456\pi\)
\(90\) 0 0
\(91\) 9.00000 15.5885i 0.943456 1.63411i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −10.5000 7.79423i −1.07728 0.799671i
\(96\) 0 0
\(97\) 7.50000 4.33013i 0.761510 0.439658i −0.0683279 0.997663i \(-0.521766\pi\)
0.829837 + 0.558005i \(0.188433\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.50000 2.59808i 0.149256 0.258518i −0.781697 0.623658i \(-0.785646\pi\)
0.930953 + 0.365140i \(0.118979\pi\)
\(102\) 0 0
\(103\) −16.0000 −1.57653 −0.788263 0.615338i \(-0.789020\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) 13.5000 7.79423i 1.29307 0.746552i 0.313869 0.949466i \(-0.398375\pi\)
0.979196 + 0.202915i \(0.0650414\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.92820i 0.651751i −0.945413 0.325875i \(-0.894341\pi\)
0.945413 0.325875i \(-0.105659\pi\)
\(114\) 0 0
\(115\) 15.5885i 1.45363i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −9.00000 + 5.19615i −0.825029 + 0.476331i
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) −3.50000 + 6.06218i −0.310575 + 0.537931i −0.978487 0.206309i \(-0.933855\pi\)
0.667912 + 0.744240i \(0.267188\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −4.50000 + 2.59808i −0.393167 + 0.226995i −0.683531 0.729921i \(-0.739557\pi\)
0.290365 + 0.956916i \(0.406223\pi\)
\(132\) 0 0
\(133\) −6.00000 13.8564i −0.520266 1.20150i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.50000 2.59808i 0.128154 0.221969i −0.794808 0.606861i \(-0.792428\pi\)
0.922961 + 0.384893i \(0.125762\pi\)
\(138\) 0 0
\(139\) −16.5000 9.52628i −1.39951 0.808008i −0.405170 0.914241i \(-0.632788\pi\)
−0.994341 + 0.106233i \(0.966121\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.00000 15.5885i 0.752618 1.30357i
\(144\) 0 0
\(145\) 25.9808i 2.15758i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.50000 + 12.9904i 0.614424 + 1.06421i 0.990485 + 0.137619i \(0.0439449\pi\)
−0.376061 + 0.926595i \(0.622722\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.00000 + 10.3923i 0.481932 + 0.834730i
\(156\) 0 0
\(157\) 2.50000 + 4.33013i 0.199522 + 0.345582i 0.948373 0.317156i \(-0.102728\pi\)
−0.748852 + 0.662738i \(0.769394\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −9.00000 + 15.5885i −0.709299 + 1.22854i
\(162\) 0 0
\(163\) 10.3923i 0.813988i 0.913431 + 0.406994i \(0.133423\pi\)
−0.913431 + 0.406994i \(0.866577\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.5000 + 18.1865i −0.812514 + 1.40732i 0.0985846 + 0.995129i \(0.468568\pi\)
−0.911099 + 0.412188i \(0.864765\pi\)
\(168\) 0 0
\(169\) 7.00000 + 12.1244i 0.538462 + 0.932643i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.50000 + 4.33013i −0.570214 + 0.329213i −0.757235 0.653143i \(-0.773450\pi\)
0.187021 + 0.982356i \(0.440117\pi\)
\(174\) 0 0
\(175\) −12.0000 6.92820i −0.907115 0.523723i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 1.50000 + 0.866025i 0.111494 + 0.0643712i 0.554710 0.832044i \(-0.312829\pi\)
−0.443216 + 0.896415i \(0.646163\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −9.00000 + 5.19615i −0.658145 + 0.379980i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 24.2487i 1.75458i 0.479965 + 0.877288i \(0.340649\pi\)
−0.479965 + 0.877288i \(0.659351\pi\)
\(192\) 0 0
\(193\) −10.5000 + 6.06218i −0.755807 + 0.436365i −0.827788 0.561041i \(-0.810401\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) −10.5000 6.06218i −0.744325 0.429736i 0.0793146 0.996850i \(-0.474727\pi\)
−0.823640 + 0.567113i \(0.808060\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 15.0000 25.9808i 1.05279 1.82349i
\(204\) 0 0
\(205\) −22.5000 12.9904i −1.57147 0.907288i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.00000 13.8564i −0.415029 0.958468i
\(210\) 0 0
\(211\) 11.5000 + 19.9186i 0.791693 + 1.37125i 0.924918 + 0.380166i \(0.124133\pi\)
−0.133226 + 0.991086i \(0.542533\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 31.5000 + 18.1865i 2.14828 + 1.24031i
\(216\) 0 0
\(217\) 13.8564i 0.940634i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 15.5885i 1.04859i
\(222\) 0 0
\(223\) 9.50000 + 16.4545i 0.636167 + 1.10187i 0.986267 + 0.165161i \(0.0528144\pi\)
−0.350100 + 0.936713i \(0.613852\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) −22.0000 −1.45380 −0.726900 0.686743i \(-0.759040\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.5000 + 23.3827i 0.884414 + 1.53185i 0.846383 + 0.532574i \(0.178775\pi\)
0.0380310 + 0.999277i \(0.487891\pi\)
\(234\) 0 0
\(235\) 5.19615i 0.338960i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 17.3205i 1.12037i 0.828367 + 0.560185i \(0.189270\pi\)
−0.828367 + 0.560185i \(0.810730\pi\)
\(240\) 0 0
\(241\) 19.5000 + 11.2583i 1.25611 + 0.725213i 0.972315 0.233674i \(-0.0750747\pi\)
0.283790 + 0.958886i \(0.408408\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −7.50000 12.9904i −0.479157 0.829925i
\(246\) 0 0
\(247\) 22.5000 + 2.59808i 1.43164 + 0.165312i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.50000 + 2.59808i 0.284037 + 0.163989i 0.635250 0.772307i \(-0.280897\pi\)
−0.351212 + 0.936296i \(0.614230\pi\)
\(252\) 0 0
\(253\) −9.00000 + 15.5885i −0.565825 + 0.980038i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.5000 7.79423i −0.842107 0.486191i 0.0158730 0.999874i \(-0.494947\pi\)
−0.857980 + 0.513683i \(0.828281\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −10.5000 + 6.06218i −0.647458 + 0.373810i −0.787482 0.616338i \(-0.788615\pi\)
0.140024 + 0.990148i \(0.455282\pi\)
\(264\) 0 0
\(265\) 5.19615i 0.319197i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 22.5000 12.9904i 1.37185 0.792038i 0.380688 0.924703i \(-0.375687\pi\)
0.991161 + 0.132666i \(0.0423537\pi\)
\(270\) 0 0
\(271\) 10.5000 6.06218i 0.637830 0.368251i −0.145948 0.989292i \(-0.546623\pi\)
0.783778 + 0.621041i \(0.213290\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −12.0000 6.92820i −0.723627 0.417786i
\(276\) 0 0
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −13.5000 7.79423i −0.805342 0.464965i 0.0399934 0.999200i \(-0.487266\pi\)
−0.845336 + 0.534235i \(0.820600\pi\)
\(282\) 0 0
\(283\) 4.50000 2.59808i 0.267497 0.154440i −0.360252 0.932855i \(-0.617309\pi\)
0.627750 + 0.778415i \(0.283976\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −15.0000 25.9808i −0.885422 1.53360i
\(288\) 0 0
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 13.8564i 0.809500i 0.914427 + 0.404750i \(0.132641\pi\)
−0.914427 + 0.404750i \(0.867359\pi\)
\(294\) 0 0
\(295\) 4.50000 7.79423i 0.262000 0.453798i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −13.5000 23.3827i −0.780725 1.35226i
\(300\) 0 0
\(301\) 21.0000 + 36.3731i 1.21042 + 2.09651i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −21.0000 −1.20246
\(306\) 0 0
\(307\) −2.50000 4.33013i −0.142683 0.247133i 0.785823 0.618451i \(-0.212239\pi\)
−0.928506 + 0.371318i \(0.878906\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3.46410i 0.196431i 0.995165 + 0.0982156i \(0.0313135\pi\)
−0.995165 + 0.0982156i \(0.968687\pi\)
\(312\) 0 0
\(313\) −9.50000 + 16.4545i −0.536972 + 0.930062i 0.462093 + 0.886831i \(0.347098\pi\)
−0.999065 + 0.0432311i \(0.986235\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.50000 + 2.59808i 0.252745 + 0.145922i 0.621021 0.783794i \(-0.286718\pi\)
−0.368275 + 0.929717i \(0.620052\pi\)
\(318\) 0 0
\(319\) 15.0000 25.9808i 0.839839 1.45464i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −10.5000 7.79423i −0.584236 0.433682i
\(324\) 0 0
\(325\) 18.0000 10.3923i 0.998460 0.576461i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.00000 5.19615i 0.165395 0.286473i
\(330\) 0 0
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 15.0000 0.819538
\(336\) 0 0
\(337\) −28.5000 + 16.4545i −1.55249 + 0.896333i −0.554556 + 0.832146i \(0.687112\pi\)
−0.997938 + 0.0641864i \(0.979555\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 13.8564i 0.750366i
\(342\) 0 0
\(343\) 6.92820i 0.374088i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 13.5000 7.79423i 0.724718 0.418416i −0.0917687 0.995780i \(-0.529252\pi\)
0.816487 + 0.577364i \(0.195919\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) 0 0
\(355\) −13.5000 + 23.3827i −0.716506 + 1.24102i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 13.5000 7.79423i 0.712503 0.411364i −0.0994843 0.995039i \(-0.531719\pi\)
0.811987 + 0.583675i \(0.198386\pi\)
\(360\) 0 0
\(361\) 13.0000 13.8564i 0.684211 0.729285i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 10.5000 18.1865i 0.549595 0.951927i
\(366\) 0 0
\(367\) 13.5000 + 7.79423i 0.704694 + 0.406855i 0.809093 0.587680i \(-0.199959\pi\)
−0.104399 + 0.994535i \(0.533292\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.00000 5.19615i 0.155752 0.269771i
\(372\) 0 0
\(373\) 6.92820i 0.358729i 0.983783 + 0.179364i \(0.0574041\pi\)
−0.983783 + 0.179364i \(0.942596\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 22.5000 + 38.9711i 1.15881 + 2.00712i
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.5000 + 28.5788i 0.843111 + 1.46031i 0.887252 + 0.461285i \(0.152611\pi\)
−0.0441413 + 0.999025i \(0.514055\pi\)
\(384\) 0 0
\(385\) −18.0000 31.1769i −0.917365 1.58892i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.50000 12.9904i 0.380265 0.658638i −0.610835 0.791758i \(-0.709166\pi\)
0.991100 + 0.133120i \(0.0424994\pi\)
\(390\) 0 0
\(391\) 15.5885i 0.788342i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −10.5000 + 18.1865i −0.528312 + 0.915064i
\(396\) 0 0
\(397\) −5.50000 9.52628i −0.276037 0.478110i 0.694359 0.719629i \(-0.255688\pi\)
−0.970396 + 0.241518i \(0.922355\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.50000 2.59808i 0.224719 0.129742i −0.383414 0.923576i \(-0.625252\pi\)
0.608134 + 0.793835i \(0.291919\pi\)
\(402\) 0 0
\(403\) −18.0000 10.3923i −0.896644 0.517678i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 1.50000 + 0.866025i 0.0741702 + 0.0428222i 0.536626 0.843820i \(-0.319698\pi\)
−0.462456 + 0.886642i \(0.653032\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 9.00000 5.19615i 0.442861 0.255686i
\(414\) 0 0
\(415\) 9.00000 5.19615i 0.441793 0.255069i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 24.2487i 1.18463i −0.805708 0.592314i \(-0.798215\pi\)
0.805708 0.592314i \(-0.201785\pi\)
\(420\) 0 0
\(421\) 19.5000 11.2583i 0.950372 0.548697i 0.0571754 0.998364i \(-0.481791\pi\)
0.893196 + 0.449667i \(0.148457\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −12.0000 −0.582086
\(426\) 0 0
\(427\) −21.0000 12.1244i −1.01626 0.586739i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7.50000 12.9904i 0.361262 0.625725i −0.626907 0.779094i \(-0.715679\pi\)
0.988169 + 0.153370i \(0.0490126\pi\)
\(432\) 0 0
\(433\) 1.50000 + 0.866025i 0.0720854 + 0.0416185i 0.535609 0.844466i \(-0.320082\pi\)
−0.463524 + 0.886084i \(0.653415\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −22.5000 2.59808i −1.07632 0.124283i
\(438\) 0 0
\(439\) −8.50000 14.7224i −0.405683 0.702663i 0.588718 0.808339i \(-0.299633\pi\)
−0.994401 + 0.105675i \(0.966300\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −19.5000 11.2583i −0.926473 0.534899i −0.0407786 0.999168i \(-0.512984\pi\)
−0.885694 + 0.464269i \(0.846317\pi\)
\(444\) 0 0
\(445\) 25.9808i 1.23161i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6.92820i 0.326962i 0.986546 + 0.163481i \(0.0522723\pi\)
−0.986546 + 0.163481i \(0.947728\pi\)
\(450\) 0 0
\(451\) −15.0000 25.9808i −0.706322 1.22339i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 54.0000 2.53156
\(456\) 0 0
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7.50000 + 12.9904i 0.349310 + 0.605022i 0.986127 0.165992i \(-0.0530827\pi\)
−0.636817 + 0.771015i \(0.719749\pi\)
\(462\) 0 0
\(463\) 10.3923i 0.482971i 0.970404 + 0.241486i \(0.0776347\pi\)
−0.970404 + 0.241486i \(0.922365\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 17.3205i 0.801498i 0.916188 + 0.400749i \(0.131250\pi\)
−0.916188 + 0.400749i \(0.868750\pi\)
\(468\) 0 0
\(469\) 15.0000 + 8.66025i 0.692636 + 0.399893i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 21.0000 + 36.3731i 0.965581 + 1.67244i
\(474\) 0 0
\(475\) 2.00000 17.3205i 0.0917663 0.794719i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −13.5000 7.79423i −0.616831 0.356127i 0.158803 0.987310i \(-0.449236\pi\)
−0.775634 + 0.631183i \(0.782570\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 22.5000 + 12.9904i 1.02167 + 0.589863i
\(486\) 0 0
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −16.5000 + 9.52628i −0.744635 + 0.429915i −0.823752 0.566950i \(-0.808123\pi\)
0.0791174 + 0.996865i \(0.474790\pi\)
\(492\) 0 0
\(493\) 25.9808i 1.17011i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −27.0000 + 15.5885i −1.21112 + 0.699238i
\(498\) 0 0
\(499\) 10.5000 6.06218i 0.470045 0.271380i −0.246214 0.969216i \(-0.579187\pi\)
0.716258 + 0.697835i \(0.245853\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −7.50000 4.33013i −0.334408 0.193071i 0.323388 0.946266i \(-0.395178\pi\)
−0.657797 + 0.753196i \(0.728511\pi\)
\(504\) 0 0
\(505\) 9.00000 0.400495
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 16.5000 + 9.52628i 0.731350 + 0.422245i 0.818916 0.573914i \(-0.194576\pi\)
−0.0875661 + 0.996159i \(0.527909\pi\)
\(510\) 0 0
\(511\) 21.0000 12.1244i 0.928985 0.536350i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −24.0000 41.5692i −1.05757 1.83176i
\(516\) 0 0
\(517\) 3.00000 5.19615i 0.131940 0.228527i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 41.5692i 1.82118i −0.413310 0.910590i \(-0.635627\pi\)
0.413310 0.910590i \(-0.364373\pi\)
\(522\) 0 0
\(523\) 2.50000 4.33013i 0.109317 0.189343i −0.806177 0.591675i \(-0.798467\pi\)
0.915494 + 0.402332i \(0.131800\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.00000 + 10.3923i 0.261364 + 0.452696i
\(528\) 0 0
\(529\) 2.00000 + 3.46410i 0.0869565 + 0.150613i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 45.0000 1.94917
\(534\) 0 0
\(535\) 18.0000 + 31.1769i 0.778208 + 1.34790i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 17.3205i 0.746047i
\(540\) 0 0
\(541\) 2.50000 4.33013i 0.107483 0.186167i −0.807267 0.590187i \(-0.799054\pi\)
0.914750 + 0.404020i \(0.132387\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 40.5000 + 23.3827i 1.73483 + 1.00160i
\(546\) 0 0
\(547\) 0.500000 0.866025i 0.0213785 0.0370286i −0.855138 0.518400i \(-0.826528\pi\)
0.876517 + 0.481371i \(0.159861\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 37.5000 + 4.33013i 1.59755 + 0.184470i
\(552\) 0 0
\(553\) −21.0000 + 12.1244i −0.893011 + 0.515580i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −4.50000 + 7.79423i −0.190671 + 0.330252i −0.945473 0.325701i \(-0.894400\pi\)
0.754802 + 0.655953i \(0.227733\pi\)
\(558\) 0 0
\(559\) −63.0000 −2.66462
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −12.0000 −0.505740 −0.252870 0.967500i \(-0.581374\pi\)
−0.252870 + 0.967500i \(0.581374\pi\)
\(564\) 0 0
\(565\) 18.0000 10.3923i 0.757266 0.437208i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 20.7846i 0.871336i −0.900107 0.435668i \(-0.856512\pi\)
0.900107 0.435668i \(-0.143488\pi\)
\(570\) 0 0
\(571\) 10.3923i 0.434904i 0.976071 + 0.217452i \(0.0697746\pi\)
−0.976071 + 0.217452i \(0.930225\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −18.0000 + 10.3923i −0.750652 + 0.433389i
\(576\) 0 0
\(577\) 46.0000 1.91501 0.957503 0.288425i \(-0.0931316\pi\)
0.957503 + 0.288425i \(0.0931316\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) 3.00000 5.19615i 0.124247 0.215203i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4.50000 + 2.59808i −0.185735 + 0.107234i −0.589984 0.807415i \(-0.700866\pi\)
0.404249 + 0.914649i \(0.367533\pi\)
\(588\) 0 0
\(589\) −16.0000 + 6.92820i −0.659269 + 0.285472i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.50000 2.59808i 0.0615976 0.106690i −0.833582 0.552396i \(-0.813714\pi\)
0.895180 + 0.445705i \(0.147047\pi\)
\(594\) 0 0
\(595\) −27.0000 15.5885i −1.10689 0.639064i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −4.50000 + 7.79423i −0.183865 + 0.318464i −0.943193 0.332244i \(-0.892194\pi\)
0.759328 + 0.650708i \(0.225528\pi\)
\(600\) 0 0
\(601\) 6.92820i 0.282607i −0.989966 0.141304i \(-0.954871\pi\)
0.989966 0.141304i \(-0.0451294\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.50000 2.59808i −0.0609837 0.105627i
\(606\) 0 0
\(607\) 40.0000 1.62355 0.811775 0.583970i \(-0.198502\pi\)
0.811775 + 0.583970i \(0.198502\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.50000 + 7.79423i 0.182051 + 0.315321i
\(612\) 0 0
\(613\) 8.50000 + 14.7224i 0.343312 + 0.594633i 0.985046 0.172294i \(-0.0551179\pi\)
−0.641734 + 0.766927i \(0.721785\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13.5000 23.3827i 0.543490 0.941351i −0.455211 0.890384i \(-0.650436\pi\)
0.998700 0.0509678i \(-0.0162306\pi\)
\(618\) 0 0
\(619\) 31.1769i 1.25311i −0.779379 0.626553i \(-0.784465\pi\)
0.779379 0.626553i \(-0.215535\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 15.0000 25.9808i 0.600962 1.04090i
\(624\) 0 0
\(625\) 14.5000 + 25.1147i 0.580000 + 1.00459i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 13.5000 + 7.79423i 0.537427 + 0.310283i 0.744035 0.668140i \(-0.232909\pi\)
−0.206609 + 0.978424i \(0.566243\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −21.0000 −0.833360
\(636\) 0 0
\(637\) 22.5000 + 12.9904i 0.891482 + 0.514698i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 34.5000 19.9186i 1.36267 0.786737i 0.372690 0.927956i \(-0.378436\pi\)
0.989978 + 0.141219i \(0.0451022\pi\)
\(642\) 0 0
\(643\) −1.50000 + 0.866025i −0.0591542 + 0.0341527i −0.529285 0.848444i \(-0.677540\pi\)
0.470131 + 0.882597i \(0.344207\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.46410i 0.136188i −0.997679 0.0680939i \(-0.978308\pi\)
0.997679 0.0680939i \(-0.0216918\pi\)
\(648\) 0 0
\(649\) 9.00000 5.19615i 0.353281 0.203967i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −18.0000 −0.704394 −0.352197 0.935926i \(-0.614565\pi\)
−0.352197 + 0.935926i \(0.614565\pi\)
\(654\) 0 0
\(655\) −13.5000 7.79423i −0.527489 0.304546i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −22.5000 + 38.9711i −0.876476 + 1.51810i −0.0212930 + 0.999773i \(0.506778\pi\)
−0.855183 + 0.518327i \(0.826555\pi\)
\(660\) 0 0
\(661\) 19.5000 + 11.2583i 0.758462 + 0.437898i 0.828743 0.559629i \(-0.189056\pi\)
−0.0702812 + 0.997527i \(0.522390\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 27.0000 36.3731i 1.04702 1.41049i
\(666\) 0 0
\(667\) −22.5000 38.9711i −0.871203 1.50897i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −21.0000 12.1244i −0.810696 0.468056i
\(672\) 0 0
\(673\) 48.4974i 1.86944i 0.355387 + 0.934719i \(0.384349\pi\)
−0.355387 + 0.934719i \(0.615651\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 41.5692i 1.59763i 0.601574 + 0.798817i \(0.294541\pi\)
−0.601574 + 0.798817i \(0.705459\pi\)
\(678\) 0 0
\(679\) 15.0000 + 25.9808i 0.575647 + 0.997050i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 9.00000 0.343872
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 4.50000 + 7.79423i 0.171436 + 0.296936i
\(690\) 0 0
\(691\) 10.3923i 0.395342i 0.980268 + 0.197671i \(0.0633378\pi\)
−0.980268 + 0.197671i \(0.936662\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 57.1577i 2.16811i
\(696\) 0 0
\(697\) −22.5000 12.9904i −0.852248 0.492046i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −16.5000 28.5788i −0.623196 1.07941i −0.988887 0.148671i \(-0.952500\pi\)
0.365690 0.930737i \(-0.380833\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9.00000 + 5.19615i 0.338480 + 0.195421i
\(708\) 0 0
\(709\) −15.5000 + 26.8468i −0.582115 + 1.00825i 0.413114 + 0.910679i \(0.364441\pi\)
−0.995228 + 0.0975728i \(0.968892\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 18.0000 + 10.3923i 0.674105 + 0.389195i
\(714\) 0 0
\(715\) 54.0000 2.01949
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.50000 0.866025i 0.0559406 0.0322973i −0.471769 0.881722i \(-0.656384\pi\)
0.527709 + 0.849425i \(0.323051\pi\)
\(720\) 0 0
\(721\) 55.4256i 2.06416i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 30.0000 17.3205i 1.11417 0.643268i
\(726\) 0 0
\(727\) −1.50000 + 0.866025i −0.0556319 + 0.0321191i −0.527558 0.849519i \(-0.676892\pi\)
0.471926 + 0.881638i \(0.343559\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 31.5000 + 18.1865i 1.16507 + 0.672653i
\(732\) 0 0
\(733\) 10.0000 0.369358 0.184679 0.982799i \(-0.440875\pi\)
0.184679 + 0.982799i \(0.440875\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 15.0000 + 8.66025i 0.552532 + 0.319005i
\(738\) 0 0
\(739\) −1.50000 + 0.866025i −0.0551784 + 0.0318573i −0.527335 0.849657i \(-0.676809\pi\)
0.472157 + 0.881514i \(0.343476\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.50000 2.59808i −0.0550297 0.0953142i 0.837198 0.546899i \(-0.184192\pi\)
−0.892228 + 0.451585i \(0.850859\pi\)
\(744\) 0 0
\(745\) −22.5000 + 38.9711i −0.824336 + 1.42779i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 41.5692i 1.51891i
\(750\) 0 0
\(751\) −11.5000 + 19.9186i −0.419641 + 0.726839i −0.995903 0.0904254i \(-0.971177\pi\)
0.576262 + 0.817265i \(0.304511\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 12.0000 + 20.7846i 0.436725 + 0.756429i
\(756\) 0 0
\(757\) 6.50000 + 11.2583i 0.236247 + 0.409191i 0.959634 0.281251i \(-0.0907494\pi\)
−0.723388 + 0.690442i \(0.757416\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) 0 0
\(763\) 27.0000 + 46.7654i 0.977466 + 1.69302i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 15.5885i 0.562867i
\(768\) 0 0
\(769\) 20.5000 35.5070i 0.739249 1.28042i −0.213585 0.976924i \(-0.568514\pi\)
0.952834 0.303492i \(-0.0981526\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −37.5000 21.6506i −1.34878 0.778719i −0.360704 0.932680i \(-0.617464\pi\)
−0.988077 + 0.153961i \(0.950797\pi\)
\(774\) 0 0
\(775\) −8.00000 + 13.8564i −0.287368 + 0.497737i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 22.5000 30.3109i 0.806146 1.08600i
\(780\) 0 0
\(781\) −27.0000 + 15.5885i −0.966136 + 0.557799i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7.50000 + 12.9904i −0.267686 + 0.463647i
\(786\) 0 0
\(787\) 28.0000 0.998092 0.499046 0.866575i \(-0.333684\pi\)
0.499046 + 0.866575i \(0.333684\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 24.0000 0.853342
\(792\) 0 0
\(793\) 31.5000 18.1865i 1.11860 0.645823i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 13.8564i 0.490819i −0.969419 0.245410i \(-0.921078\pi\)
0.969419 0.245410i \(-0.0789224\pi\)
\(798\) 0 0
\(799\) 5.19615i 0.183827i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 21.0000 12.1244i 0.741074 0.427859i
\(804\) 0 0
\(805\) −54.0000 −1.90325
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) 6.50000 11.2583i 0.228246 0.395333i −0.729042 0.684468i \(-0.760034\pi\)
0.957288 + 0.289135i \(0.0933677\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −27.0000 + 15.5885i −0.945769 + 0.546040i
\(816\) 0 0
\(817\) −31.5000 + 42.4352i −1.10205 + 1.48462i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −22.5000 + 38.9711i −0.785255 + 1.36010i 0.143591 + 0.989637i \(0.454135\pi\)
−0.928846 + 0.370465i \(0.879198\pi\)
\(822\) 0 0
\(823\) 1.50000 + 0.866025i 0.0522867 + 0.0301877i 0.525915 0.850537i \(-0.323723\pi\)
−0.473629 + 0.880725i \(0.657056\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 19.5000 33.7750i 0.678081 1.17447i −0.297477 0.954729i \(-0.596145\pi\)
0.975558 0.219742i \(-0.0705217\pi\)
\(828\) 0 0
\(829\) 6.92820i 0.240626i 0.992736 + 0.120313i \(0.0383899\pi\)
−0.992736 + 0.120313i \(0.961610\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −7.50000 12.9904i −0.259860 0.450090i
\(834\) 0 0
\(835\) −63.0000 −2.18020
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 10.5000 + 18.1865i 0.362500 + 0.627869i 0.988372 0.152057i \(-0.0485899\pi\)
−0.625871 + 0.779926i \(0.715257\pi\)
\(840\) 0 0
\(841\) 23.0000 + 39.8372i 0.793103 + 1.37370i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −21.0000 + 36.3731i −0.722422 + 1.25127i
\(846\) 0 0
\(847\) 3.46410i 0.119028i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −17.5000 30.3109i −0.599189 1.03783i −0.992941 0.118609i \(-0.962157\pi\)
0.393753 0.919216i \(-0.371177\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −37.5000 + 21.6506i −1.28098 + 0.739572i −0.977027 0.213117i \(-0.931639\pi\)
−0.303949 + 0.952688i \(0.598305\pi\)
\(858\) 0 0
\(859\) 49.5000 + 28.5788i 1.68892 + 0.975097i 0.955348 + 0.295484i \(0.0954809\pi\)
0.733571 + 0.679613i \(0.237852\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −12.0000 −0.408485 −0.204242 0.978920i \(-0.565473\pi\)
−0.204242 + 0.978920i \(0.565473\pi\)
\(864\) 0 0
\(865\) −22.5000 12.9904i −0.765023 0.441686i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −21.0000 + 12.1244i −0.712376 + 0.411291i
\(870\) 0 0
\(871\) −22.5000 + 12.9904i −0.762383 + 0.440162i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 10.3923i 0.351324i
\(876\) 0 0
\(877\) −22.5000 + 12.9904i −0.759771 + 0.438654i −0.829214 0.558932i \(-0.811211\pi\)
0.0694425 + 0.997586i \(0.477878\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 0 0
\(883\) −4.50000 2.59808i −0.151437 0.0874322i 0.422367 0.906425i \(-0.361199\pi\)
−0.573804 + 0.818993i \(0.694533\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.50000 2.59808i 0.0503651 0.0872349i −0.839744 0.542983i \(-0.817295\pi\)
0.890109 + 0.455748i \(0.150628\pi\)
\(888\) 0 0
\(889\) −21.0000 12.1244i −0.704317 0.406638i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.50000 + 0.866025i 0.250978 + 0.0289804i
\(894\) 0 0
\(895\) −18.0000 31.1769i −0.601674 1.04213i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −30.0000 17.3205i −1.00056 0.577671i
\(900\) 0 0
\(901\) 5.19615i 0.173109i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5.19615i 0.172726i
\(906\) 0 0
\(907\) −6.50000 11.2583i −0.215829 0.373827i 0.737700 0.675129i \(-0.235912\pi\)
−0.953529 + 0.301302i \(0.902579\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) 12.0000 0.397142
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −9.00000 15.5885i −0.297206 0.514776i
\(918\) 0 0
\(919\) 38.1051i 1.25697i −0.777821 0.628486i \(-0.783675\pi\)
0.777821 0.628486i \(-0.216325\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 46.7654i 1.53930i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 19.5000 + 33.7750i 0.639774 + 1.10812i 0.985482 + 0.169779i \(0.0543055\pi\)
−0.345708 + 0.938342i \(0.612361\pi\)
\(930\) 0 0
\(931\) 20.0000 8.66025i 0.655474 0.283828i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −27.0000 15.5885i −0.882994 0.509797i
\(936\) 0 0
\(937\) 24.5000 42.4352i 0.800380 1.38630i −0.118986 0.992896i \(-0.537964\pi\)
0.919366 0.393403i \(-0.128702\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −13.5000 7.79423i −0.440087 0.254085i 0.263547 0.964646i \(-0.415107\pi\)
−0.703635 + 0.710562i \(0.748441\pi\)
\(942\) 0 0
\(943\) −45.0000 −1.46540
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 25.5000 14.7224i 0.828639 0.478415i −0.0247477 0.999694i \(-0.507878\pi\)
0.853386 + 0.521279i \(0.174545\pi\)
\(948\) 0 0
\(949\) 36.3731i 1.18072i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 10.5000 6.06218i 0.340128 0.196373i −0.320200 0.947350i \(-0.603750\pi\)
0.660329 + 0.750977i \(0.270417\pi\)
\(954\) 0 0
\(955\) −63.0000 + 36.3731i −2.03863 + 1.17700i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 9.00000 + 5.19615i 0.290625 + 0.167793i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −31.5000 18.1865i −1.01402 0.585445i
\(966\) 0 0
\(967\) −43.5000 + 25.1147i −1.39887 + 0.807635i −0.994274 0.106862i \(-0.965920\pi\)
−0.404592 + 0.914497i \(0.632586\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −13.5000 23.3827i −0.433236 0.750386i 0.563914 0.825833i \(-0.309295\pi\)
−0.997150 + 0.0754473i \(0.975962\pi\)
\(972\) 0 0
\(973\) 33.0000 57.1577i 1.05793 1.83239i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.92820i 0.221653i 0.993840 + 0.110826i \(0.0353498\pi\)
−0.993840 + 0.110826i \(0.964650\pi\)
\(978\) 0 0
\(979\) 15.0000 25.9808i 0.479402 0.830349i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 4.50000 + 7.79423i 0.143528 + 0.248597i 0.928823 0.370525i \(-0.120822\pi\)
−0.785295 + 0.619122i \(0.787489\pi\)
\(984\) 0 0
\(985\) −27.0000 46.7654i −0.860292 1.49007i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 63.0000 2.00328
\(990\) 0 0
\(991\) −12.5000 21.6506i −0.397076 0.687755i 0.596288 0.802771i \(-0.296642\pi\)
−0.993364 + 0.115015i \(0.963308\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 36.3731i 1.15310i
\(996\) 0 0
\(997\) −15.5000 + 26.8468i −0.490890 + 0.850246i −0.999945 0.0104877i \(-0.996662\pi\)
0.509055 + 0.860734i \(0.329995\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2736.2.bm.g.1855.1 2
3.2 odd 2 304.2.n.a.31.1 2
4.3 odd 2 2736.2.bm.h.1855.1 2
12.11 even 2 304.2.n.b.31.1 yes 2
19.8 odd 6 2736.2.bm.h.559.1 2
24.5 odd 2 1216.2.n.b.639.1 2
24.11 even 2 1216.2.n.a.639.1 2
57.8 even 6 304.2.n.b.255.1 yes 2
76.27 even 6 inner 2736.2.bm.g.559.1 2
228.179 odd 6 304.2.n.a.255.1 yes 2
456.179 odd 6 1216.2.n.b.255.1 2
456.293 even 6 1216.2.n.a.255.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
304.2.n.a.31.1 2 3.2 odd 2
304.2.n.a.255.1 yes 2 228.179 odd 6
304.2.n.b.31.1 yes 2 12.11 even 2
304.2.n.b.255.1 yes 2 57.8 even 6
1216.2.n.a.255.1 2 456.293 even 6
1216.2.n.a.639.1 2 24.11 even 2
1216.2.n.b.255.1 2 456.179 odd 6
1216.2.n.b.639.1 2 24.5 odd 2
2736.2.bm.g.559.1 2 76.27 even 6 inner
2736.2.bm.g.1855.1 2 1.1 even 1 trivial
2736.2.bm.h.559.1 2 19.8 odd 6
2736.2.bm.h.1855.1 2 4.3 odd 2