Properties

Label 275.2.a.g.1.1
Level $275$
Weight $2$
Character 275.1
Self dual yes
Analytic conductor $2.196$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,2,Mod(1,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.618034 q^{2} +0.381966 q^{3} -1.61803 q^{4} -0.236068 q^{6} +3.85410 q^{7} +2.23607 q^{8} -2.85410 q^{9} +1.00000 q^{11} -0.618034 q^{12} +1.76393 q^{13} -2.38197 q^{14} +1.85410 q^{16} +1.61803 q^{17} +1.76393 q^{18} +6.70820 q^{19} +1.47214 q^{21} -0.618034 q^{22} +7.09017 q^{23} +0.854102 q^{24} -1.09017 q^{26} -2.23607 q^{27} -6.23607 q^{28} -3.61803 q^{29} -3.00000 q^{31} -5.61803 q^{32} +0.381966 q^{33} -1.00000 q^{34} +4.61803 q^{36} +5.76393 q^{37} -4.14590 q^{38} +0.673762 q^{39} -3.00000 q^{41} -0.909830 q^{42} -6.00000 q^{43} -1.61803 q^{44} -4.38197 q^{46} -5.94427 q^{47} +0.708204 q^{48} +7.85410 q^{49} +0.618034 q^{51} -2.85410 q^{52} -6.32624 q^{53} +1.38197 q^{54} +8.61803 q^{56} +2.56231 q^{57} +2.23607 q^{58} +9.47214 q^{59} -11.0902 q^{61} +1.85410 q^{62} -11.0000 q^{63} -0.236068 q^{64} -0.236068 q^{66} +8.00000 q^{67} -2.61803 q^{68} +2.70820 q^{69} -14.1803 q^{71} -6.38197 q^{72} +12.6180 q^{73} -3.56231 q^{74} -10.8541 q^{76} +3.85410 q^{77} -0.416408 q^{78} -0.854102 q^{79} +7.70820 q^{81} +1.85410 q^{82} -16.8541 q^{83} -2.38197 q^{84} +3.70820 q^{86} -1.38197 q^{87} +2.23607 q^{88} -18.0902 q^{89} +6.79837 q^{91} -11.4721 q^{92} -1.14590 q^{93} +3.67376 q^{94} -2.14590 q^{96} -0.618034 q^{97} -4.85410 q^{98} -2.85410 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 3 q^{3} - q^{4} + 4 q^{6} + q^{7} + q^{9} + 2 q^{11} + q^{12} + 8 q^{13} - 7 q^{14} - 3 q^{16} + q^{17} + 8 q^{18} - 6 q^{21} + q^{22} + 3 q^{23} - 5 q^{24} + 9 q^{26} - 8 q^{28} - 5 q^{29}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.618034 −0.437016 −0.218508 0.975835i \(-0.570119\pi\)
−0.218508 + 0.975835i \(0.570119\pi\)
\(3\) 0.381966 0.220528 0.110264 0.993902i \(-0.464830\pi\)
0.110264 + 0.993902i \(0.464830\pi\)
\(4\) −1.61803 −0.809017
\(5\) 0 0
\(6\) −0.236068 −0.0963743
\(7\) 3.85410 1.45671 0.728357 0.685198i \(-0.240284\pi\)
0.728357 + 0.685198i \(0.240284\pi\)
\(8\) 2.23607 0.790569
\(9\) −2.85410 −0.951367
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) −0.618034 −0.178411
\(13\) 1.76393 0.489227 0.244613 0.969621i \(-0.421339\pi\)
0.244613 + 0.969621i \(0.421339\pi\)
\(14\) −2.38197 −0.636607
\(15\) 0 0
\(16\) 1.85410 0.463525
\(17\) 1.61803 0.392431 0.196215 0.980561i \(-0.437135\pi\)
0.196215 + 0.980561i \(0.437135\pi\)
\(18\) 1.76393 0.415763
\(19\) 6.70820 1.53897 0.769484 0.638666i \(-0.220514\pi\)
0.769484 + 0.638666i \(0.220514\pi\)
\(20\) 0 0
\(21\) 1.47214 0.321246
\(22\) −0.618034 −0.131765
\(23\) 7.09017 1.47840 0.739201 0.673485i \(-0.235203\pi\)
0.739201 + 0.673485i \(0.235203\pi\)
\(24\) 0.854102 0.174343
\(25\) 0 0
\(26\) −1.09017 −0.213800
\(27\) −2.23607 −0.430331
\(28\) −6.23607 −1.17851
\(29\) −3.61803 −0.671852 −0.335926 0.941888i \(-0.609049\pi\)
−0.335926 + 0.941888i \(0.609049\pi\)
\(30\) 0 0
\(31\) −3.00000 −0.538816 −0.269408 0.963026i \(-0.586828\pi\)
−0.269408 + 0.963026i \(0.586828\pi\)
\(32\) −5.61803 −0.993137
\(33\) 0.381966 0.0664917
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) 4.61803 0.769672
\(37\) 5.76393 0.947585 0.473792 0.880637i \(-0.342885\pi\)
0.473792 + 0.880637i \(0.342885\pi\)
\(38\) −4.14590 −0.672553
\(39\) 0.673762 0.107888
\(40\) 0 0
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) −0.909830 −0.140390
\(43\) −6.00000 −0.914991 −0.457496 0.889212i \(-0.651253\pi\)
−0.457496 + 0.889212i \(0.651253\pi\)
\(44\) −1.61803 −0.243928
\(45\) 0 0
\(46\) −4.38197 −0.646086
\(47\) −5.94427 −0.867061 −0.433531 0.901139i \(-0.642732\pi\)
−0.433531 + 0.901139i \(0.642732\pi\)
\(48\) 0.708204 0.102220
\(49\) 7.85410 1.12201
\(50\) 0 0
\(51\) 0.618034 0.0865421
\(52\) −2.85410 −0.395793
\(53\) −6.32624 −0.868976 −0.434488 0.900678i \(-0.643071\pi\)
−0.434488 + 0.900678i \(0.643071\pi\)
\(54\) 1.38197 0.188062
\(55\) 0 0
\(56\) 8.61803 1.15163
\(57\) 2.56231 0.339386
\(58\) 2.23607 0.293610
\(59\) 9.47214 1.23317 0.616584 0.787289i \(-0.288516\pi\)
0.616584 + 0.787289i \(0.288516\pi\)
\(60\) 0 0
\(61\) −11.0902 −1.41995 −0.709975 0.704226i \(-0.751294\pi\)
−0.709975 + 0.704226i \(0.751294\pi\)
\(62\) 1.85410 0.235471
\(63\) −11.0000 −1.38587
\(64\) −0.236068 −0.0295085
\(65\) 0 0
\(66\) −0.236068 −0.0290580
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) −2.61803 −0.317483
\(69\) 2.70820 0.326029
\(70\) 0 0
\(71\) −14.1803 −1.68290 −0.841448 0.540338i \(-0.818297\pi\)
−0.841448 + 0.540338i \(0.818297\pi\)
\(72\) −6.38197 −0.752122
\(73\) 12.6180 1.47683 0.738415 0.674347i \(-0.235575\pi\)
0.738415 + 0.674347i \(0.235575\pi\)
\(74\) −3.56231 −0.414110
\(75\) 0 0
\(76\) −10.8541 −1.24505
\(77\) 3.85410 0.439216
\(78\) −0.416408 −0.0471489
\(79\) −0.854102 −0.0960940 −0.0480470 0.998845i \(-0.515300\pi\)
−0.0480470 + 0.998845i \(0.515300\pi\)
\(80\) 0 0
\(81\) 7.70820 0.856467
\(82\) 1.85410 0.204751
\(83\) −16.8541 −1.84998 −0.924989 0.379994i \(-0.875926\pi\)
−0.924989 + 0.379994i \(0.875926\pi\)
\(84\) −2.38197 −0.259894
\(85\) 0 0
\(86\) 3.70820 0.399866
\(87\) −1.38197 −0.148162
\(88\) 2.23607 0.238366
\(89\) −18.0902 −1.91755 −0.958777 0.284159i \(-0.908286\pi\)
−0.958777 + 0.284159i \(0.908286\pi\)
\(90\) 0 0
\(91\) 6.79837 0.712663
\(92\) −11.4721 −1.19605
\(93\) −1.14590 −0.118824
\(94\) 3.67376 0.378920
\(95\) 0 0
\(96\) −2.14590 −0.219015
\(97\) −0.618034 −0.0627518 −0.0313759 0.999508i \(-0.509989\pi\)
−0.0313759 + 0.999508i \(0.509989\pi\)
\(98\) −4.85410 −0.490338
\(99\) −2.85410 −0.286848
\(100\) 0 0
\(101\) 5.09017 0.506491 0.253245 0.967402i \(-0.418502\pi\)
0.253245 + 0.967402i \(0.418502\pi\)
\(102\) −0.381966 −0.0378203
\(103\) 7.61803 0.750627 0.375314 0.926898i \(-0.377535\pi\)
0.375314 + 0.926898i \(0.377535\pi\)
\(104\) 3.94427 0.386768
\(105\) 0 0
\(106\) 3.90983 0.379756
\(107\) 0.236068 0.0228216 0.0114108 0.999935i \(-0.496368\pi\)
0.0114108 + 0.999935i \(0.496368\pi\)
\(108\) 3.61803 0.348145
\(109\) 8.09017 0.774898 0.387449 0.921891i \(-0.373356\pi\)
0.387449 + 0.921891i \(0.373356\pi\)
\(110\) 0 0
\(111\) 2.20163 0.208969
\(112\) 7.14590 0.675224
\(113\) 19.6525 1.84875 0.924375 0.381486i \(-0.124587\pi\)
0.924375 + 0.381486i \(0.124587\pi\)
\(114\) −1.58359 −0.148317
\(115\) 0 0
\(116\) 5.85410 0.543540
\(117\) −5.03444 −0.465434
\(118\) −5.85410 −0.538914
\(119\) 6.23607 0.571659
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 6.85410 0.620541
\(123\) −1.14590 −0.103322
\(124\) 4.85410 0.435911
\(125\) 0 0
\(126\) 6.79837 0.605647
\(127\) 1.61803 0.143577 0.0717886 0.997420i \(-0.477129\pi\)
0.0717886 + 0.997420i \(0.477129\pi\)
\(128\) 11.3820 1.00603
\(129\) −2.29180 −0.201781
\(130\) 0 0
\(131\) −1.09017 −0.0952486 −0.0476243 0.998865i \(-0.515165\pi\)
−0.0476243 + 0.998865i \(0.515165\pi\)
\(132\) −0.618034 −0.0537930
\(133\) 25.8541 2.24183
\(134\) −4.94427 −0.427120
\(135\) 0 0
\(136\) 3.61803 0.310244
\(137\) −14.5623 −1.24414 −0.622071 0.782961i \(-0.713708\pi\)
−0.622071 + 0.782961i \(0.713708\pi\)
\(138\) −1.67376 −0.142480
\(139\) −16.7082 −1.41717 −0.708586 0.705625i \(-0.750666\pi\)
−0.708586 + 0.705625i \(0.750666\pi\)
\(140\) 0 0
\(141\) −2.27051 −0.191211
\(142\) 8.76393 0.735453
\(143\) 1.76393 0.147507
\(144\) −5.29180 −0.440983
\(145\) 0 0
\(146\) −7.79837 −0.645398
\(147\) 3.00000 0.247436
\(148\) −9.32624 −0.766612
\(149\) 8.94427 0.732743 0.366372 0.930469i \(-0.380600\pi\)
0.366372 + 0.930469i \(0.380600\pi\)
\(150\) 0 0
\(151\) −3.00000 −0.244137 −0.122068 0.992522i \(-0.538953\pi\)
−0.122068 + 0.992522i \(0.538953\pi\)
\(152\) 15.0000 1.21666
\(153\) −4.61803 −0.373346
\(154\) −2.38197 −0.191944
\(155\) 0 0
\(156\) −1.09017 −0.0872835
\(157\) 21.4164 1.70922 0.854608 0.519274i \(-0.173798\pi\)
0.854608 + 0.519274i \(0.173798\pi\)
\(158\) 0.527864 0.0419946
\(159\) −2.41641 −0.191634
\(160\) 0 0
\(161\) 27.3262 2.15361
\(162\) −4.76393 −0.374290
\(163\) −0.145898 −0.0114276 −0.00571381 0.999984i \(-0.501819\pi\)
−0.00571381 + 0.999984i \(0.501819\pi\)
\(164\) 4.85410 0.379042
\(165\) 0 0
\(166\) 10.4164 0.808470
\(167\) −18.7082 −1.44768 −0.723842 0.689966i \(-0.757626\pi\)
−0.723842 + 0.689966i \(0.757626\pi\)
\(168\) 3.29180 0.253968
\(169\) −9.88854 −0.760657
\(170\) 0 0
\(171\) −19.1459 −1.46412
\(172\) 9.70820 0.740244
\(173\) 3.47214 0.263982 0.131991 0.991251i \(-0.457863\pi\)
0.131991 + 0.991251i \(0.457863\pi\)
\(174\) 0.854102 0.0647493
\(175\) 0 0
\(176\) 1.85410 0.139758
\(177\) 3.61803 0.271948
\(178\) 11.1803 0.838002
\(179\) −11.3820 −0.850728 −0.425364 0.905022i \(-0.639854\pi\)
−0.425364 + 0.905022i \(0.639854\pi\)
\(180\) 0 0
\(181\) 5.09017 0.378349 0.189175 0.981943i \(-0.439419\pi\)
0.189175 + 0.981943i \(0.439419\pi\)
\(182\) −4.20163 −0.311445
\(183\) −4.23607 −0.313139
\(184\) 15.8541 1.16878
\(185\) 0 0
\(186\) 0.708204 0.0519280
\(187\) 1.61803 0.118322
\(188\) 9.61803 0.701467
\(189\) −8.61803 −0.626870
\(190\) 0 0
\(191\) −9.90983 −0.717050 −0.358525 0.933520i \(-0.616720\pi\)
−0.358525 + 0.933520i \(0.616720\pi\)
\(192\) −0.0901699 −0.00650746
\(193\) −4.94427 −0.355896 −0.177948 0.984040i \(-0.556946\pi\)
−0.177948 + 0.984040i \(0.556946\pi\)
\(194\) 0.381966 0.0274236
\(195\) 0 0
\(196\) −12.7082 −0.907729
\(197\) −8.90983 −0.634799 −0.317400 0.948292i \(-0.602810\pi\)
−0.317400 + 0.948292i \(0.602810\pi\)
\(198\) 1.76393 0.125357
\(199\) 8.09017 0.573497 0.286748 0.958006i \(-0.407426\pi\)
0.286748 + 0.958006i \(0.407426\pi\)
\(200\) 0 0
\(201\) 3.05573 0.215534
\(202\) −3.14590 −0.221345
\(203\) −13.9443 −0.978696
\(204\) −1.00000 −0.0700140
\(205\) 0 0
\(206\) −4.70820 −0.328036
\(207\) −20.2361 −1.40650
\(208\) 3.27051 0.226769
\(209\) 6.70820 0.464016
\(210\) 0 0
\(211\) 17.0000 1.17033 0.585164 0.810915i \(-0.301030\pi\)
0.585164 + 0.810915i \(0.301030\pi\)
\(212\) 10.2361 0.703016
\(213\) −5.41641 −0.371126
\(214\) −0.145898 −0.00997338
\(215\) 0 0
\(216\) −5.00000 −0.340207
\(217\) −11.5623 −0.784900
\(218\) −5.00000 −0.338643
\(219\) 4.81966 0.325682
\(220\) 0 0
\(221\) 2.85410 0.191988
\(222\) −1.36068 −0.0913228
\(223\) −18.8885 −1.26487 −0.632435 0.774613i \(-0.717945\pi\)
−0.632435 + 0.774613i \(0.717945\pi\)
\(224\) −21.6525 −1.44672
\(225\) 0 0
\(226\) −12.1459 −0.807933
\(227\) 5.03444 0.334148 0.167074 0.985944i \(-0.446568\pi\)
0.167074 + 0.985944i \(0.446568\pi\)
\(228\) −4.14590 −0.274569
\(229\) −17.0344 −1.12567 −0.562834 0.826570i \(-0.690289\pi\)
−0.562834 + 0.826570i \(0.690289\pi\)
\(230\) 0 0
\(231\) 1.47214 0.0968594
\(232\) −8.09017 −0.531146
\(233\) −22.5066 −1.47445 −0.737227 0.675645i \(-0.763865\pi\)
−0.737227 + 0.675645i \(0.763865\pi\)
\(234\) 3.11146 0.203402
\(235\) 0 0
\(236\) −15.3262 −0.997653
\(237\) −0.326238 −0.0211914
\(238\) −3.85410 −0.249824
\(239\) 8.61803 0.557454 0.278727 0.960370i \(-0.410087\pi\)
0.278727 + 0.960370i \(0.410087\pi\)
\(240\) 0 0
\(241\) −12.2705 −0.790413 −0.395207 0.918592i \(-0.629327\pi\)
−0.395207 + 0.918592i \(0.629327\pi\)
\(242\) −0.618034 −0.0397287
\(243\) 9.65248 0.619207
\(244\) 17.9443 1.14876
\(245\) 0 0
\(246\) 0.708204 0.0451534
\(247\) 11.8328 0.752904
\(248\) −6.70820 −0.425971
\(249\) −6.43769 −0.407972
\(250\) 0 0
\(251\) 6.27051 0.395791 0.197896 0.980223i \(-0.436589\pi\)
0.197896 + 0.980223i \(0.436589\pi\)
\(252\) 17.7984 1.12119
\(253\) 7.09017 0.445755
\(254\) −1.00000 −0.0627456
\(255\) 0 0
\(256\) −6.56231 −0.410144
\(257\) 6.94427 0.433172 0.216586 0.976264i \(-0.430508\pi\)
0.216586 + 0.976264i \(0.430508\pi\)
\(258\) 1.41641 0.0881817
\(259\) 22.2148 1.38036
\(260\) 0 0
\(261\) 10.3262 0.639178
\(262\) 0.673762 0.0416252
\(263\) −21.0000 −1.29492 −0.647458 0.762101i \(-0.724168\pi\)
−0.647458 + 0.762101i \(0.724168\pi\)
\(264\) 0.854102 0.0525663
\(265\) 0 0
\(266\) −15.9787 −0.979718
\(267\) −6.90983 −0.422875
\(268\) −12.9443 −0.790697
\(269\) 14.6738 0.894675 0.447338 0.894365i \(-0.352372\pi\)
0.447338 + 0.894365i \(0.352372\pi\)
\(270\) 0 0
\(271\) −9.18034 −0.557666 −0.278833 0.960340i \(-0.589948\pi\)
−0.278833 + 0.960340i \(0.589948\pi\)
\(272\) 3.00000 0.181902
\(273\) 2.59675 0.157162
\(274\) 9.00000 0.543710
\(275\) 0 0
\(276\) −4.38197 −0.263763
\(277\) −2.52786 −0.151885 −0.0759423 0.997112i \(-0.524196\pi\)
−0.0759423 + 0.997112i \(0.524196\pi\)
\(278\) 10.3262 0.619327
\(279\) 8.56231 0.512612
\(280\) 0 0
\(281\) 19.3607 1.15496 0.577481 0.816404i \(-0.304036\pi\)
0.577481 + 0.816404i \(0.304036\pi\)
\(282\) 1.40325 0.0835625
\(283\) −9.61803 −0.571733 −0.285866 0.958269i \(-0.592281\pi\)
−0.285866 + 0.958269i \(0.592281\pi\)
\(284\) 22.9443 1.36149
\(285\) 0 0
\(286\) −1.09017 −0.0644631
\(287\) −11.5623 −0.682501
\(288\) 16.0344 0.944839
\(289\) −14.3820 −0.845998
\(290\) 0 0
\(291\) −0.236068 −0.0138385
\(292\) −20.4164 −1.19478
\(293\) 11.8885 0.694536 0.347268 0.937766i \(-0.387109\pi\)
0.347268 + 0.937766i \(0.387109\pi\)
\(294\) −1.85410 −0.108133
\(295\) 0 0
\(296\) 12.8885 0.749131
\(297\) −2.23607 −0.129750
\(298\) −5.52786 −0.320221
\(299\) 12.5066 0.723274
\(300\) 0 0
\(301\) −23.1246 −1.33288
\(302\) 1.85410 0.106692
\(303\) 1.94427 0.111696
\(304\) 12.4377 0.713351
\(305\) 0 0
\(306\) 2.85410 0.163158
\(307\) −22.4508 −1.28134 −0.640669 0.767817i \(-0.721343\pi\)
−0.640669 + 0.767817i \(0.721343\pi\)
\(308\) −6.23607 −0.355333
\(309\) 2.90983 0.165534
\(310\) 0 0
\(311\) 3.18034 0.180341 0.0901703 0.995926i \(-0.471259\pi\)
0.0901703 + 0.995926i \(0.471259\pi\)
\(312\) 1.50658 0.0852932
\(313\) 1.23607 0.0698667 0.0349333 0.999390i \(-0.488878\pi\)
0.0349333 + 0.999390i \(0.488878\pi\)
\(314\) −13.2361 −0.746955
\(315\) 0 0
\(316\) 1.38197 0.0777417
\(317\) 14.3820 0.807772 0.403886 0.914809i \(-0.367659\pi\)
0.403886 + 0.914809i \(0.367659\pi\)
\(318\) 1.49342 0.0837470
\(319\) −3.61803 −0.202571
\(320\) 0 0
\(321\) 0.0901699 0.00503280
\(322\) −16.8885 −0.941162
\(323\) 10.8541 0.603938
\(324\) −12.4721 −0.692896
\(325\) 0 0
\(326\) 0.0901699 0.00499405
\(327\) 3.09017 0.170887
\(328\) −6.70820 −0.370399
\(329\) −22.9098 −1.26306
\(330\) 0 0
\(331\) 3.18034 0.174807 0.0874036 0.996173i \(-0.472143\pi\)
0.0874036 + 0.996173i \(0.472143\pi\)
\(332\) 27.2705 1.49666
\(333\) −16.4508 −0.901501
\(334\) 11.5623 0.632661
\(335\) 0 0
\(336\) 2.72949 0.148906
\(337\) −25.4164 −1.38452 −0.692260 0.721648i \(-0.743385\pi\)
−0.692260 + 0.721648i \(0.743385\pi\)
\(338\) 6.11146 0.332419
\(339\) 7.50658 0.407701
\(340\) 0 0
\(341\) −3.00000 −0.162459
\(342\) 11.8328 0.639845
\(343\) 3.29180 0.177740
\(344\) −13.4164 −0.723364
\(345\) 0 0
\(346\) −2.14590 −0.115364
\(347\) 0.437694 0.0234967 0.0117483 0.999931i \(-0.496260\pi\)
0.0117483 + 0.999931i \(0.496260\pi\)
\(348\) 2.23607 0.119866
\(349\) −31.8328 −1.70397 −0.851986 0.523565i \(-0.824602\pi\)
−0.851986 + 0.523565i \(0.824602\pi\)
\(350\) 0 0
\(351\) −3.94427 −0.210530
\(352\) −5.61803 −0.299442
\(353\) −23.3607 −1.24336 −0.621682 0.783270i \(-0.713550\pi\)
−0.621682 + 0.783270i \(0.713550\pi\)
\(354\) −2.23607 −0.118846
\(355\) 0 0
\(356\) 29.2705 1.55133
\(357\) 2.38197 0.126067
\(358\) 7.03444 0.371782
\(359\) 4.47214 0.236030 0.118015 0.993012i \(-0.462347\pi\)
0.118015 + 0.993012i \(0.462347\pi\)
\(360\) 0 0
\(361\) 26.0000 1.36842
\(362\) −3.14590 −0.165345
\(363\) 0.381966 0.0200480
\(364\) −11.0000 −0.576557
\(365\) 0 0
\(366\) 2.61803 0.136847
\(367\) 13.8541 0.723178 0.361589 0.932338i \(-0.382234\pi\)
0.361589 + 0.932338i \(0.382234\pi\)
\(368\) 13.1459 0.685277
\(369\) 8.56231 0.445736
\(370\) 0 0
\(371\) −24.3820 −1.26585
\(372\) 1.85410 0.0961307
\(373\) 25.1803 1.30379 0.651894 0.758310i \(-0.273975\pi\)
0.651894 + 0.758310i \(0.273975\pi\)
\(374\) −1.00000 −0.0517088
\(375\) 0 0
\(376\) −13.2918 −0.685472
\(377\) −6.38197 −0.328688
\(378\) 5.32624 0.273952
\(379\) −22.2361 −1.14219 −0.571095 0.820884i \(-0.693481\pi\)
−0.571095 + 0.820884i \(0.693481\pi\)
\(380\) 0 0
\(381\) 0.618034 0.0316628
\(382\) 6.12461 0.313362
\(383\) 22.9443 1.17240 0.586199 0.810167i \(-0.300624\pi\)
0.586199 + 0.810167i \(0.300624\pi\)
\(384\) 4.34752 0.221859
\(385\) 0 0
\(386\) 3.05573 0.155532
\(387\) 17.1246 0.870493
\(388\) 1.00000 0.0507673
\(389\) 14.4721 0.733766 0.366883 0.930267i \(-0.380425\pi\)
0.366883 + 0.930267i \(0.380425\pi\)
\(390\) 0 0
\(391\) 11.4721 0.580171
\(392\) 17.5623 0.887030
\(393\) −0.416408 −0.0210050
\(394\) 5.50658 0.277417
\(395\) 0 0
\(396\) 4.61803 0.232065
\(397\) 26.0902 1.30943 0.654714 0.755877i \(-0.272789\pi\)
0.654714 + 0.755877i \(0.272789\pi\)
\(398\) −5.00000 −0.250627
\(399\) 9.87539 0.494388
\(400\) 0 0
\(401\) −10.3607 −0.517388 −0.258694 0.965959i \(-0.583292\pi\)
−0.258694 + 0.965959i \(0.583292\pi\)
\(402\) −1.88854 −0.0941920
\(403\) −5.29180 −0.263603
\(404\) −8.23607 −0.409760
\(405\) 0 0
\(406\) 8.61803 0.427706
\(407\) 5.76393 0.285708
\(408\) 1.38197 0.0684175
\(409\) −20.1246 −0.995098 −0.497549 0.867436i \(-0.665767\pi\)
−0.497549 + 0.867436i \(0.665767\pi\)
\(410\) 0 0
\(411\) −5.56231 −0.274368
\(412\) −12.3262 −0.607270
\(413\) 36.5066 1.79637
\(414\) 12.5066 0.614665
\(415\) 0 0
\(416\) −9.90983 −0.485869
\(417\) −6.38197 −0.312526
\(418\) −4.14590 −0.202783
\(419\) −1.18034 −0.0576634 −0.0288317 0.999584i \(-0.509179\pi\)
−0.0288317 + 0.999584i \(0.509179\pi\)
\(420\) 0 0
\(421\) 21.2705 1.03666 0.518331 0.855180i \(-0.326554\pi\)
0.518331 + 0.855180i \(0.326554\pi\)
\(422\) −10.5066 −0.511452
\(423\) 16.9656 0.824894
\(424\) −14.1459 −0.686986
\(425\) 0 0
\(426\) 3.34752 0.162188
\(427\) −42.7426 −2.06846
\(428\) −0.381966 −0.0184630
\(429\) 0.673762 0.0325295
\(430\) 0 0
\(431\) 23.1803 1.11656 0.558279 0.829653i \(-0.311462\pi\)
0.558279 + 0.829653i \(0.311462\pi\)
\(432\) −4.14590 −0.199470
\(433\) 16.8885 0.811612 0.405806 0.913959i \(-0.366991\pi\)
0.405806 + 0.913959i \(0.366991\pi\)
\(434\) 7.14590 0.343014
\(435\) 0 0
\(436\) −13.0902 −0.626905
\(437\) 47.5623 2.27521
\(438\) −2.97871 −0.142328
\(439\) −34.2705 −1.63564 −0.817821 0.575473i \(-0.804818\pi\)
−0.817821 + 0.575473i \(0.804818\pi\)
\(440\) 0 0
\(441\) −22.4164 −1.06745
\(442\) −1.76393 −0.0839017
\(443\) −5.34752 −0.254069 −0.127034 0.991898i \(-0.540546\pi\)
−0.127034 + 0.991898i \(0.540546\pi\)
\(444\) −3.56231 −0.169060
\(445\) 0 0
\(446\) 11.6738 0.552769
\(447\) 3.41641 0.161591
\(448\) −0.909830 −0.0429854
\(449\) 0.326238 0.0153961 0.00769806 0.999970i \(-0.497550\pi\)
0.00769806 + 0.999970i \(0.497550\pi\)
\(450\) 0 0
\(451\) −3.00000 −0.141264
\(452\) −31.7984 −1.49567
\(453\) −1.14590 −0.0538390
\(454\) −3.11146 −0.146028
\(455\) 0 0
\(456\) 5.72949 0.268308
\(457\) 38.9787 1.82335 0.911674 0.410915i \(-0.134791\pi\)
0.911674 + 0.410915i \(0.134791\pi\)
\(458\) 10.5279 0.491935
\(459\) −3.61803 −0.168875
\(460\) 0 0
\(461\) 13.1803 0.613870 0.306935 0.951731i \(-0.400697\pi\)
0.306935 + 0.951731i \(0.400697\pi\)
\(462\) −0.909830 −0.0423291
\(463\) −33.3607 −1.55040 −0.775201 0.631714i \(-0.782352\pi\)
−0.775201 + 0.631714i \(0.782352\pi\)
\(464\) −6.70820 −0.311421
\(465\) 0 0
\(466\) 13.9098 0.644360
\(467\) 28.5279 1.32011 0.660056 0.751216i \(-0.270533\pi\)
0.660056 + 0.751216i \(0.270533\pi\)
\(468\) 8.14590 0.376544
\(469\) 30.8328 1.42373
\(470\) 0 0
\(471\) 8.18034 0.376930
\(472\) 21.1803 0.974904
\(473\) −6.00000 −0.275880
\(474\) 0.201626 0.00926099
\(475\) 0 0
\(476\) −10.0902 −0.462482
\(477\) 18.0557 0.826715
\(478\) −5.32624 −0.243616
\(479\) 1.58359 0.0723562 0.0361781 0.999345i \(-0.488482\pi\)
0.0361781 + 0.999345i \(0.488482\pi\)
\(480\) 0 0
\(481\) 10.1672 0.463584
\(482\) 7.58359 0.345423
\(483\) 10.4377 0.474932
\(484\) −1.61803 −0.0735470
\(485\) 0 0
\(486\) −5.96556 −0.270603
\(487\) −3.58359 −0.162388 −0.0811940 0.996698i \(-0.525873\pi\)
−0.0811940 + 0.996698i \(0.525873\pi\)
\(488\) −24.7984 −1.12257
\(489\) −0.0557281 −0.00252011
\(490\) 0 0
\(491\) −29.1803 −1.31689 −0.658445 0.752629i \(-0.728786\pi\)
−0.658445 + 0.752629i \(0.728786\pi\)
\(492\) 1.85410 0.0835894
\(493\) −5.85410 −0.263655
\(494\) −7.31308 −0.329031
\(495\) 0 0
\(496\) −5.56231 −0.249755
\(497\) −54.6525 −2.45150
\(498\) 3.97871 0.178290
\(499\) 5.20163 0.232857 0.116428 0.993199i \(-0.462855\pi\)
0.116428 + 0.993199i \(0.462855\pi\)
\(500\) 0 0
\(501\) −7.14590 −0.319255
\(502\) −3.87539 −0.172967
\(503\) 24.6525 1.09920 0.549600 0.835428i \(-0.314780\pi\)
0.549600 + 0.835428i \(0.314780\pi\)
\(504\) −24.5967 −1.09563
\(505\) 0 0
\(506\) −4.38197 −0.194802
\(507\) −3.77709 −0.167746
\(508\) −2.61803 −0.116156
\(509\) 18.6180 0.825230 0.412615 0.910906i \(-0.364616\pi\)
0.412615 + 0.910906i \(0.364616\pi\)
\(510\) 0 0
\(511\) 48.6312 2.15132
\(512\) −18.7082 −0.826794
\(513\) −15.0000 −0.662266
\(514\) −4.29180 −0.189303
\(515\) 0 0
\(516\) 3.70820 0.163245
\(517\) −5.94427 −0.261429
\(518\) −13.7295 −0.603239
\(519\) 1.32624 0.0582154
\(520\) 0 0
\(521\) −24.1803 −1.05936 −0.529680 0.848198i \(-0.677688\pi\)
−0.529680 + 0.848198i \(0.677688\pi\)
\(522\) −6.38197 −0.279331
\(523\) 5.05573 0.221072 0.110536 0.993872i \(-0.464743\pi\)
0.110536 + 0.993872i \(0.464743\pi\)
\(524\) 1.76393 0.0770577
\(525\) 0 0
\(526\) 12.9787 0.565899
\(527\) −4.85410 −0.211448
\(528\) 0.708204 0.0308206
\(529\) 27.2705 1.18567
\(530\) 0 0
\(531\) −27.0344 −1.17319
\(532\) −41.8328 −1.81368
\(533\) −5.29180 −0.229213
\(534\) 4.27051 0.184803
\(535\) 0 0
\(536\) 17.8885 0.772667
\(537\) −4.34752 −0.187610
\(538\) −9.06888 −0.390987
\(539\) 7.85410 0.338300
\(540\) 0 0
\(541\) −8.72949 −0.375310 −0.187655 0.982235i \(-0.560089\pi\)
−0.187655 + 0.982235i \(0.560089\pi\)
\(542\) 5.67376 0.243709
\(543\) 1.94427 0.0834367
\(544\) −9.09017 −0.389738
\(545\) 0 0
\(546\) −1.60488 −0.0686825
\(547\) −27.8541 −1.19096 −0.595478 0.803372i \(-0.703037\pi\)
−0.595478 + 0.803372i \(0.703037\pi\)
\(548\) 23.5623 1.00653
\(549\) 31.6525 1.35089
\(550\) 0 0
\(551\) −24.2705 −1.03396
\(552\) 6.05573 0.257749
\(553\) −3.29180 −0.139981
\(554\) 1.56231 0.0663760
\(555\) 0 0
\(556\) 27.0344 1.14652
\(557\) −14.2361 −0.603202 −0.301601 0.953434i \(-0.597521\pi\)
−0.301601 + 0.953434i \(0.597521\pi\)
\(558\) −5.29180 −0.224020
\(559\) −10.5836 −0.447638
\(560\) 0 0
\(561\) 0.618034 0.0260934
\(562\) −11.9656 −0.504737
\(563\) 16.0344 0.675771 0.337886 0.941187i \(-0.390288\pi\)
0.337886 + 0.941187i \(0.390288\pi\)
\(564\) 3.67376 0.154693
\(565\) 0 0
\(566\) 5.94427 0.249856
\(567\) 29.7082 1.24763
\(568\) −31.7082 −1.33045
\(569\) 28.6180 1.19973 0.599865 0.800101i \(-0.295221\pi\)
0.599865 + 0.800101i \(0.295221\pi\)
\(570\) 0 0
\(571\) 2.72949 0.114226 0.0571128 0.998368i \(-0.481811\pi\)
0.0571128 + 0.998368i \(0.481811\pi\)
\(572\) −2.85410 −0.119336
\(573\) −3.78522 −0.158130
\(574\) 7.14590 0.298264
\(575\) 0 0
\(576\) 0.673762 0.0280734
\(577\) −4.56231 −0.189931 −0.0949656 0.995481i \(-0.530274\pi\)
−0.0949656 + 0.995481i \(0.530274\pi\)
\(578\) 8.88854 0.369715
\(579\) −1.88854 −0.0784852
\(580\) 0 0
\(581\) −64.9574 −2.69489
\(582\) 0.145898 0.00604767
\(583\) −6.32624 −0.262006
\(584\) 28.2148 1.16754
\(585\) 0 0
\(586\) −7.34752 −0.303523
\(587\) 25.0344 1.03328 0.516641 0.856202i \(-0.327182\pi\)
0.516641 + 0.856202i \(0.327182\pi\)
\(588\) −4.85410 −0.200180
\(589\) −20.1246 −0.829220
\(590\) 0 0
\(591\) −3.40325 −0.139991
\(592\) 10.6869 0.439230
\(593\) 9.00000 0.369586 0.184793 0.982777i \(-0.440839\pi\)
0.184793 + 0.982777i \(0.440839\pi\)
\(594\) 1.38197 0.0567028
\(595\) 0 0
\(596\) −14.4721 −0.592802
\(597\) 3.09017 0.126472
\(598\) −7.72949 −0.316082
\(599\) −15.3262 −0.626213 −0.313107 0.949718i \(-0.601370\pi\)
−0.313107 + 0.949718i \(0.601370\pi\)
\(600\) 0 0
\(601\) 11.2705 0.459734 0.229867 0.973222i \(-0.426171\pi\)
0.229867 + 0.973222i \(0.426171\pi\)
\(602\) 14.2918 0.582490
\(603\) −22.8328 −0.929824
\(604\) 4.85410 0.197511
\(605\) 0 0
\(606\) −1.20163 −0.0488127
\(607\) 12.4721 0.506228 0.253114 0.967436i \(-0.418545\pi\)
0.253114 + 0.967436i \(0.418545\pi\)
\(608\) −37.6869 −1.52841
\(609\) −5.32624 −0.215830
\(610\) 0 0
\(611\) −10.4853 −0.424189
\(612\) 7.47214 0.302043
\(613\) 26.5623 1.07284 0.536421 0.843951i \(-0.319776\pi\)
0.536421 + 0.843951i \(0.319776\pi\)
\(614\) 13.8754 0.559965
\(615\) 0 0
\(616\) 8.61803 0.347230
\(617\) −15.8197 −0.636876 −0.318438 0.947944i \(-0.603158\pi\)
−0.318438 + 0.947944i \(0.603158\pi\)
\(618\) −1.79837 −0.0723412
\(619\) 12.8885 0.518034 0.259017 0.965873i \(-0.416601\pi\)
0.259017 + 0.965873i \(0.416601\pi\)
\(620\) 0 0
\(621\) −15.8541 −0.636203
\(622\) −1.96556 −0.0788117
\(623\) −69.7214 −2.79333
\(624\) 1.24922 0.0500090
\(625\) 0 0
\(626\) −0.763932 −0.0305329
\(627\) 2.56231 0.102329
\(628\) −34.6525 −1.38278
\(629\) 9.32624 0.371861
\(630\) 0 0
\(631\) 2.72949 0.108659 0.0543296 0.998523i \(-0.482698\pi\)
0.0543296 + 0.998523i \(0.482698\pi\)
\(632\) −1.90983 −0.0759690
\(633\) 6.49342 0.258090
\(634\) −8.88854 −0.353009
\(635\) 0 0
\(636\) 3.90983 0.155035
\(637\) 13.8541 0.548920
\(638\) 2.23607 0.0885268
\(639\) 40.4721 1.60105
\(640\) 0 0
\(641\) −3.00000 −0.118493 −0.0592464 0.998243i \(-0.518870\pi\)
−0.0592464 + 0.998243i \(0.518870\pi\)
\(642\) −0.0557281 −0.00219941
\(643\) 37.4164 1.47556 0.737780 0.675042i \(-0.235874\pi\)
0.737780 + 0.675042i \(0.235874\pi\)
\(644\) −44.2148 −1.74231
\(645\) 0 0
\(646\) −6.70820 −0.263931
\(647\) 43.6525 1.71616 0.858078 0.513519i \(-0.171659\pi\)
0.858078 + 0.513519i \(0.171659\pi\)
\(648\) 17.2361 0.677097
\(649\) 9.47214 0.371814
\(650\) 0 0
\(651\) −4.41641 −0.173093
\(652\) 0.236068 0.00924514
\(653\) −34.7426 −1.35958 −0.679792 0.733405i \(-0.737930\pi\)
−0.679792 + 0.733405i \(0.737930\pi\)
\(654\) −1.90983 −0.0746803
\(655\) 0 0
\(656\) −5.56231 −0.217172
\(657\) −36.0132 −1.40501
\(658\) 14.1591 0.551977
\(659\) −24.2705 −0.945445 −0.472722 0.881211i \(-0.656729\pi\)
−0.472722 + 0.881211i \(0.656729\pi\)
\(660\) 0 0
\(661\) −26.8197 −1.04316 −0.521582 0.853201i \(-0.674658\pi\)
−0.521582 + 0.853201i \(0.674658\pi\)
\(662\) −1.96556 −0.0763936
\(663\) 1.09017 0.0423387
\(664\) −37.6869 −1.46254
\(665\) 0 0
\(666\) 10.1672 0.393970
\(667\) −25.6525 −0.993268
\(668\) 30.2705 1.17120
\(669\) −7.21478 −0.278940
\(670\) 0 0
\(671\) −11.0902 −0.428131
\(672\) −8.27051 −0.319042
\(673\) −24.4164 −0.941183 −0.470592 0.882351i \(-0.655960\pi\)
−0.470592 + 0.882351i \(0.655960\pi\)
\(674\) 15.7082 0.605057
\(675\) 0 0
\(676\) 16.0000 0.615385
\(677\) −2.65248 −0.101943 −0.0509715 0.998700i \(-0.516232\pi\)
−0.0509715 + 0.998700i \(0.516232\pi\)
\(678\) −4.63932 −0.178172
\(679\) −2.38197 −0.0914115
\(680\) 0 0
\(681\) 1.92299 0.0736890
\(682\) 1.85410 0.0709972
\(683\) 1.36068 0.0520650 0.0260325 0.999661i \(-0.491713\pi\)
0.0260325 + 0.999661i \(0.491713\pi\)
\(684\) 30.9787 1.18450
\(685\) 0 0
\(686\) −2.03444 −0.0776754
\(687\) −6.50658 −0.248241
\(688\) −11.1246 −0.424122
\(689\) −11.1591 −0.425126
\(690\) 0 0
\(691\) 18.9098 0.719364 0.359682 0.933075i \(-0.382885\pi\)
0.359682 + 0.933075i \(0.382885\pi\)
\(692\) −5.61803 −0.213566
\(693\) −11.0000 −0.417855
\(694\) −0.270510 −0.0102684
\(695\) 0 0
\(696\) −3.09017 −0.117133
\(697\) −4.85410 −0.183862
\(698\) 19.6738 0.744663
\(699\) −8.59675 −0.325159
\(700\) 0 0
\(701\) 44.3607 1.67548 0.837740 0.546070i \(-0.183877\pi\)
0.837740 + 0.546070i \(0.183877\pi\)
\(702\) 2.43769 0.0920048
\(703\) 38.6656 1.45830
\(704\) −0.236068 −0.00889715
\(705\) 0 0
\(706\) 14.4377 0.543370
\(707\) 19.6180 0.737812
\(708\) −5.85410 −0.220011
\(709\) 21.3050 0.800124 0.400062 0.916488i \(-0.368989\pi\)
0.400062 + 0.916488i \(0.368989\pi\)
\(710\) 0 0
\(711\) 2.43769 0.0914207
\(712\) −40.4508 −1.51596
\(713\) −21.2705 −0.796587
\(714\) −1.47214 −0.0550933
\(715\) 0 0
\(716\) 18.4164 0.688253
\(717\) 3.29180 0.122934
\(718\) −2.76393 −0.103149
\(719\) 15.6525 0.583739 0.291869 0.956458i \(-0.405723\pi\)
0.291869 + 0.956458i \(0.405723\pi\)
\(720\) 0 0
\(721\) 29.3607 1.09345
\(722\) −16.0689 −0.598022
\(723\) −4.68692 −0.174308
\(724\) −8.23607 −0.306091
\(725\) 0 0
\(726\) −0.236068 −0.00876130
\(727\) −7.72949 −0.286671 −0.143335 0.989674i \(-0.545783\pi\)
−0.143335 + 0.989674i \(0.545783\pi\)
\(728\) 15.2016 0.563410
\(729\) −19.4377 −0.719915
\(730\) 0 0
\(731\) −9.70820 −0.359071
\(732\) 6.85410 0.253335
\(733\) −7.83282 −0.289312 −0.144656 0.989482i \(-0.546207\pi\)
−0.144656 + 0.989482i \(0.546207\pi\)
\(734\) −8.56231 −0.316040
\(735\) 0 0
\(736\) −39.8328 −1.46826
\(737\) 8.00000 0.294684
\(738\) −5.29180 −0.194794
\(739\) −35.8541 −1.31891 −0.659457 0.751742i \(-0.729214\pi\)
−0.659457 + 0.751742i \(0.729214\pi\)
\(740\) 0 0
\(741\) 4.51973 0.166037
\(742\) 15.0689 0.553196
\(743\) 34.3262 1.25931 0.629654 0.776876i \(-0.283197\pi\)
0.629654 + 0.776876i \(0.283197\pi\)
\(744\) −2.56231 −0.0939387
\(745\) 0 0
\(746\) −15.5623 −0.569777
\(747\) 48.1033 1.76001
\(748\) −2.61803 −0.0957248
\(749\) 0.909830 0.0332445
\(750\) 0 0
\(751\) −22.2705 −0.812662 −0.406331 0.913726i \(-0.633192\pi\)
−0.406331 + 0.913726i \(0.633192\pi\)
\(752\) −11.0213 −0.401905
\(753\) 2.39512 0.0872831
\(754\) 3.94427 0.143642
\(755\) 0 0
\(756\) 13.9443 0.507148
\(757\) −12.5279 −0.455333 −0.227666 0.973739i \(-0.573110\pi\)
−0.227666 + 0.973739i \(0.573110\pi\)
\(758\) 13.7426 0.499155
\(759\) 2.70820 0.0983016
\(760\) 0 0
\(761\) 12.0000 0.435000 0.217500 0.976060i \(-0.430210\pi\)
0.217500 + 0.976060i \(0.430210\pi\)
\(762\) −0.381966 −0.0138372
\(763\) 31.1803 1.12880
\(764\) 16.0344 0.580106
\(765\) 0 0
\(766\) −14.1803 −0.512357
\(767\) 16.7082 0.603298
\(768\) −2.50658 −0.0904483
\(769\) −5.00000 −0.180305 −0.0901523 0.995928i \(-0.528735\pi\)
−0.0901523 + 0.995928i \(0.528735\pi\)
\(770\) 0 0
\(771\) 2.65248 0.0955266
\(772\) 8.00000 0.287926
\(773\) 9.20163 0.330959 0.165480 0.986213i \(-0.447083\pi\)
0.165480 + 0.986213i \(0.447083\pi\)
\(774\) −10.5836 −0.380419
\(775\) 0 0
\(776\) −1.38197 −0.0496097
\(777\) 8.48529 0.304408
\(778\) −8.94427 −0.320668
\(779\) −20.1246 −0.721039
\(780\) 0 0
\(781\) −14.1803 −0.507412
\(782\) −7.09017 −0.253544
\(783\) 8.09017 0.289119
\(784\) 14.5623 0.520082
\(785\) 0 0
\(786\) 0.257354 0.00917952
\(787\) 34.7082 1.23721 0.618607 0.785701i \(-0.287697\pi\)
0.618607 + 0.785701i \(0.287697\pi\)
\(788\) 14.4164 0.513563
\(789\) −8.02129 −0.285565
\(790\) 0 0
\(791\) 75.7426 2.69310
\(792\) −6.38197 −0.226773
\(793\) −19.5623 −0.694678
\(794\) −16.1246 −0.572241
\(795\) 0 0
\(796\) −13.0902 −0.463969
\(797\) 27.7984 0.984669 0.492334 0.870406i \(-0.336144\pi\)
0.492334 + 0.870406i \(0.336144\pi\)
\(798\) −6.10333 −0.216055
\(799\) −9.61803 −0.340262
\(800\) 0 0
\(801\) 51.6312 1.82430
\(802\) 6.40325 0.226107
\(803\) 12.6180 0.445281
\(804\) −4.94427 −0.174371
\(805\) 0 0
\(806\) 3.27051 0.115199
\(807\) 5.60488 0.197301
\(808\) 11.3820 0.400416
\(809\) −43.4164 −1.52644 −0.763220 0.646139i \(-0.776383\pi\)
−0.763220 + 0.646139i \(0.776383\pi\)
\(810\) 0 0
\(811\) 17.0000 0.596951 0.298475 0.954417i \(-0.403522\pi\)
0.298475 + 0.954417i \(0.403522\pi\)
\(812\) 22.5623 0.791782
\(813\) −3.50658 −0.122981
\(814\) −3.56231 −0.124859
\(815\) 0 0
\(816\) 1.14590 0.0401145
\(817\) −40.2492 −1.40814
\(818\) 12.4377 0.434874
\(819\) −19.4033 −0.678005
\(820\) 0 0
\(821\) −40.3607 −1.40860 −0.704299 0.709904i \(-0.748738\pi\)
−0.704299 + 0.709904i \(0.748738\pi\)
\(822\) 3.43769 0.119903
\(823\) 0.583592 0.0203427 0.0101714 0.999948i \(-0.496762\pi\)
0.0101714 + 0.999948i \(0.496762\pi\)
\(824\) 17.0344 0.593423
\(825\) 0 0
\(826\) −22.5623 −0.785043
\(827\) −26.0689 −0.906504 −0.453252 0.891382i \(-0.649736\pi\)
−0.453252 + 0.891382i \(0.649736\pi\)
\(828\) 32.7426 1.13789
\(829\) 51.1033 1.77489 0.887446 0.460912i \(-0.152478\pi\)
0.887446 + 0.460912i \(0.152478\pi\)
\(830\) 0 0
\(831\) −0.965558 −0.0334948
\(832\) −0.416408 −0.0144363
\(833\) 12.7082 0.440313
\(834\) 3.94427 0.136579
\(835\) 0 0
\(836\) −10.8541 −0.375397
\(837\) 6.70820 0.231869
\(838\) 0.729490 0.0251998
\(839\) 43.3394 1.49624 0.748121 0.663562i \(-0.230956\pi\)
0.748121 + 0.663562i \(0.230956\pi\)
\(840\) 0 0
\(841\) −15.9098 −0.548615
\(842\) −13.1459 −0.453038
\(843\) 7.39512 0.254702
\(844\) −27.5066 −0.946815
\(845\) 0 0
\(846\) −10.4853 −0.360492
\(847\) 3.85410 0.132429
\(848\) −11.7295 −0.402792
\(849\) −3.67376 −0.126083
\(850\) 0 0
\(851\) 40.8673 1.40091
\(852\) 8.76393 0.300247
\(853\) 43.1459 1.47729 0.738644 0.674096i \(-0.235467\pi\)
0.738644 + 0.674096i \(0.235467\pi\)
\(854\) 26.4164 0.903951
\(855\) 0 0
\(856\) 0.527864 0.0180420
\(857\) −30.8197 −1.05278 −0.526390 0.850243i \(-0.676455\pi\)
−0.526390 + 0.850243i \(0.676455\pi\)
\(858\) −0.416408 −0.0142159
\(859\) −6.18034 −0.210870 −0.105435 0.994426i \(-0.533624\pi\)
−0.105435 + 0.994426i \(0.533624\pi\)
\(860\) 0 0
\(861\) −4.41641 −0.150511
\(862\) −14.3262 −0.487954
\(863\) 48.5967 1.65425 0.827126 0.562016i \(-0.189974\pi\)
0.827126 + 0.562016i \(0.189974\pi\)
\(864\) 12.5623 0.427378
\(865\) 0 0
\(866\) −10.4377 −0.354687
\(867\) −5.49342 −0.186566
\(868\) 18.7082 0.634998
\(869\) −0.854102 −0.0289734
\(870\) 0 0
\(871\) 14.1115 0.478148
\(872\) 18.0902 0.612610
\(873\) 1.76393 0.0597001
\(874\) −29.3951 −0.994305
\(875\) 0 0
\(876\) −7.79837 −0.263483
\(877\) 31.4164 1.06086 0.530428 0.847730i \(-0.322031\pi\)
0.530428 + 0.847730i \(0.322031\pi\)
\(878\) 21.1803 0.714802
\(879\) 4.54102 0.153165
\(880\) 0 0
\(881\) −1.09017 −0.0367288 −0.0183644 0.999831i \(-0.505846\pi\)
−0.0183644 + 0.999831i \(0.505846\pi\)
\(882\) 13.8541 0.466492
\(883\) −0.347524 −0.0116951 −0.00584756 0.999983i \(-0.501861\pi\)
−0.00584756 + 0.999983i \(0.501861\pi\)
\(884\) −4.61803 −0.155321
\(885\) 0 0
\(886\) 3.30495 0.111032
\(887\) −42.7771 −1.43631 −0.718157 0.695881i \(-0.755014\pi\)
−0.718157 + 0.695881i \(0.755014\pi\)
\(888\) 4.92299 0.165205
\(889\) 6.23607 0.209151
\(890\) 0 0
\(891\) 7.70820 0.258235
\(892\) 30.5623 1.02330
\(893\) −39.8754 −1.33438
\(894\) −2.11146 −0.0706177
\(895\) 0 0
\(896\) 43.8673 1.46550
\(897\) 4.77709 0.159502
\(898\) −0.201626 −0.00672835
\(899\) 10.8541 0.362005
\(900\) 0 0
\(901\) −10.2361 −0.341013
\(902\) 1.85410 0.0617348
\(903\) −8.83282 −0.293938
\(904\) 43.9443 1.46156
\(905\) 0 0
\(906\) 0.708204 0.0235285
\(907\) −38.8328 −1.28942 −0.644711 0.764426i \(-0.723022\pi\)
−0.644711 + 0.764426i \(0.723022\pi\)
\(908\) −8.14590 −0.270331
\(909\) −14.5279 −0.481859
\(910\) 0 0
\(911\) −18.0000 −0.596367 −0.298183 0.954509i \(-0.596381\pi\)
−0.298183 + 0.954509i \(0.596381\pi\)
\(912\) 4.75078 0.157314
\(913\) −16.8541 −0.557789
\(914\) −24.0902 −0.796832
\(915\) 0 0
\(916\) 27.5623 0.910684
\(917\) −4.20163 −0.138750
\(918\) 2.23607 0.0738012
\(919\) −3.41641 −0.112697 −0.0563484 0.998411i \(-0.517946\pi\)
−0.0563484 + 0.998411i \(0.517946\pi\)
\(920\) 0 0
\(921\) −8.57546 −0.282571
\(922\) −8.14590 −0.268271
\(923\) −25.0132 −0.823318
\(924\) −2.38197 −0.0783609
\(925\) 0 0
\(926\) 20.6180 0.677551
\(927\) −21.7426 −0.714122
\(928\) 20.3262 0.667241
\(929\) 5.40325 0.177275 0.0886375 0.996064i \(-0.471749\pi\)
0.0886375 + 0.996064i \(0.471749\pi\)
\(930\) 0 0
\(931\) 52.6869 1.72674
\(932\) 36.4164 1.19286
\(933\) 1.21478 0.0397702
\(934\) −17.6312 −0.576910
\(935\) 0 0
\(936\) −11.2574 −0.367958
\(937\) 14.8328 0.484567 0.242283 0.970206i \(-0.422104\pi\)
0.242283 + 0.970206i \(0.422104\pi\)
\(938\) −19.0557 −0.622192
\(939\) 0.472136 0.0154076
\(940\) 0 0
\(941\) −47.7214 −1.55567 −0.777836 0.628467i \(-0.783683\pi\)
−0.777836 + 0.628467i \(0.783683\pi\)
\(942\) −5.05573 −0.164725
\(943\) −21.2705 −0.692663
\(944\) 17.5623 0.571604
\(945\) 0 0
\(946\) 3.70820 0.120564
\(947\) 5.36068 0.174199 0.0870993 0.996200i \(-0.472240\pi\)
0.0870993 + 0.996200i \(0.472240\pi\)
\(948\) 0.527864 0.0171442
\(949\) 22.2574 0.722504
\(950\) 0 0
\(951\) 5.49342 0.178136
\(952\) 13.9443 0.451936
\(953\) −0.472136 −0.0152940 −0.00764699 0.999971i \(-0.502434\pi\)
−0.00764699 + 0.999971i \(0.502434\pi\)
\(954\) −11.1591 −0.361288
\(955\) 0 0
\(956\) −13.9443 −0.450990
\(957\) −1.38197 −0.0446726
\(958\) −0.978714 −0.0316208
\(959\) −56.1246 −1.81236
\(960\) 0 0
\(961\) −22.0000 −0.709677
\(962\) −6.28367 −0.202594
\(963\) −0.673762 −0.0217117
\(964\) 19.8541 0.639458
\(965\) 0 0
\(966\) −6.45085 −0.207553
\(967\) 3.72949 0.119932 0.0599662 0.998200i \(-0.480901\pi\)
0.0599662 + 0.998200i \(0.480901\pi\)
\(968\) 2.23607 0.0718699
\(969\) 4.14590 0.133185
\(970\) 0 0
\(971\) 35.0902 1.12610 0.563049 0.826424i \(-0.309628\pi\)
0.563049 + 0.826424i \(0.309628\pi\)
\(972\) −15.6180 −0.500949
\(973\) −64.3951 −2.06441
\(974\) 2.21478 0.0709662
\(975\) 0 0
\(976\) −20.5623 −0.658183
\(977\) −1.06888 −0.0341966 −0.0170983 0.999854i \(-0.505443\pi\)
−0.0170983 + 0.999854i \(0.505443\pi\)
\(978\) 0.0344419 0.00110133
\(979\) −18.0902 −0.578164
\(980\) 0 0
\(981\) −23.0902 −0.737212
\(982\) 18.0344 0.575502
\(983\) −10.4721 −0.334009 −0.167005 0.985956i \(-0.553409\pi\)
−0.167005 + 0.985956i \(0.553409\pi\)
\(984\) −2.56231 −0.0816833
\(985\) 0 0
\(986\) 3.61803 0.115222
\(987\) −8.75078 −0.278540
\(988\) −19.1459 −0.609112
\(989\) −42.5410 −1.35273
\(990\) 0 0
\(991\) −12.2705 −0.389786 −0.194893 0.980825i \(-0.562436\pi\)
−0.194893 + 0.980825i \(0.562436\pi\)
\(992\) 16.8541 0.535118
\(993\) 1.21478 0.0385499
\(994\) 33.7771 1.07134
\(995\) 0 0
\(996\) 10.4164 0.330057
\(997\) 38.8541 1.23052 0.615261 0.788324i \(-0.289051\pi\)
0.615261 + 0.788324i \(0.289051\pi\)
\(998\) −3.21478 −0.101762
\(999\) −12.8885 −0.407775
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.a.g.1.1 yes 2
3.2 odd 2 2475.2.a.n.1.2 2
4.3 odd 2 4400.2.a.bg.1.2 2
5.2 odd 4 275.2.b.e.199.2 4
5.3 odd 4 275.2.b.e.199.3 4
5.4 even 2 275.2.a.d.1.2 2
11.10 odd 2 3025.2.a.i.1.2 2
15.2 even 4 2475.2.c.p.199.3 4
15.8 even 4 2475.2.c.p.199.2 4
15.14 odd 2 2475.2.a.s.1.1 2
20.3 even 4 4400.2.b.x.4049.2 4
20.7 even 4 4400.2.b.x.4049.3 4
20.19 odd 2 4400.2.a.bv.1.1 2
55.54 odd 2 3025.2.a.m.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.2.a.d.1.2 2 5.4 even 2
275.2.a.g.1.1 yes 2 1.1 even 1 trivial
275.2.b.e.199.2 4 5.2 odd 4
275.2.b.e.199.3 4 5.3 odd 4
2475.2.a.n.1.2 2 3.2 odd 2
2475.2.a.s.1.1 2 15.14 odd 2
2475.2.c.p.199.2 4 15.8 even 4
2475.2.c.p.199.3 4 15.2 even 4
3025.2.a.i.1.2 2 11.10 odd 2
3025.2.a.m.1.1 2 55.54 odd 2
4400.2.a.bg.1.2 2 4.3 odd 2
4400.2.a.bv.1.1 2 20.19 odd 2
4400.2.b.x.4049.2 4 20.3 even 4
4400.2.b.x.4049.3 4 20.7 even 4