Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [275,2,Mod(26,275)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(275, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("275.26");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 275.h (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
26.1 |
|
−1.85576 | − | 1.34829i | 0.0131041 | − | 0.0403304i | 1.00792 | + | 3.10207i | 0 | −0.0786950 | + | 0.0571753i | −0.352180 | − | 1.08390i | 0.894346 | − | 2.75251i | 2.42560 | + | 1.76230i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
26.2 | −0.168506 | − | 0.122427i | −0.585361 | + | 1.80155i | −0.604628 | − | 1.86085i | 0 | 0.319195 | − | 0.231909i | 0.398265 | + | 1.22573i | −0.254662 | + | 0.783769i | −0.475901 | − | 0.345762i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
26.3 | 1.06921 | + | 0.776830i | 0.626199 | − | 1.92724i | −0.0782786 | − | 0.240917i | 0 | 2.16668 | − | 1.57419i | −0.107618 | − | 0.331213i | 0.920262 | − | 2.83228i | −0.895086 | − | 0.650318i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
26.4 | 2.07308 | + | 1.50618i | −0.553942 | + | 1.70486i | 1.41105 | + | 4.34277i | 0 | −3.71620 | + | 2.69998i | −1.17454 | − | 3.61485i | −2.03208 | + | 6.25410i | −0.172643 | − | 0.125433i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
126.1 | −0.854560 | − | 2.63006i | −1.32800 | − | 0.964848i | −4.56893 | + | 3.31953i | 0 | −1.40276 | + | 4.31724i | −1.53545 | + | 1.11557i | 8.16046 | + | 5.92892i | −0.0944009 | − | 0.290536i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
126.2 | −0.516686 | − | 1.59020i | 2.51599 | + | 1.82798i | −0.643729 | + | 0.467696i | 0 | 1.60686 | − | 4.94542i | 2.49985 | − | 1.81624i | −1.62907 | − | 1.18359i | 2.06168 | + | 6.34519i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
126.3 | −0.0430779 | − | 0.132580i | −2.41558 | − | 1.75502i | 1.60231 | − | 1.16415i | 0 | −0.128623 | + | 0.395861i | 2.88786 | − | 2.09815i | −0.448926 | − | 0.326164i | 1.82787 | + | 5.62561i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
126.4 | 0.296290 | + | 0.911888i | 0.727583 | + | 0.528620i | 0.874283 | − | 0.635204i | 0 | −0.266466 | + | 0.820099i | −0.616184 | + | 0.447684i | 2.38967 | + | 1.73620i | −0.677113 | − | 2.08394i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
201.1 | −1.85576 | + | 1.34829i | 0.0131041 | + | 0.0403304i | 1.00792 | − | 3.10207i | 0 | −0.0786950 | − | 0.0571753i | −0.352180 | + | 1.08390i | 0.894346 | + | 2.75251i | 2.42560 | − | 1.76230i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
201.2 | −0.168506 | + | 0.122427i | −0.585361 | − | 1.80155i | −0.604628 | + | 1.86085i | 0 | 0.319195 | + | 0.231909i | 0.398265 | − | 1.22573i | −0.254662 | − | 0.783769i | −0.475901 | + | 0.345762i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
201.3 | 1.06921 | − | 0.776830i | 0.626199 | + | 1.92724i | −0.0782786 | + | 0.240917i | 0 | 2.16668 | + | 1.57419i | −0.107618 | + | 0.331213i | 0.920262 | + | 2.83228i | −0.895086 | + | 0.650318i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
201.4 | 2.07308 | − | 1.50618i | −0.553942 | − | 1.70486i | 1.41105 | − | 4.34277i | 0 | −3.71620 | − | 2.69998i | −1.17454 | + | 3.61485i | −2.03208 | − | 6.25410i | −0.172643 | + | 0.125433i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
251.1 | −0.854560 | + | 2.63006i | −1.32800 | + | 0.964848i | −4.56893 | − | 3.31953i | 0 | −1.40276 | − | 4.31724i | −1.53545 | − | 1.11557i | 8.16046 | − | 5.92892i | −0.0944009 | + | 0.290536i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
251.2 | −0.516686 | + | 1.59020i | 2.51599 | − | 1.82798i | −0.643729 | − | 0.467696i | 0 | 1.60686 | + | 4.94542i | 2.49985 | + | 1.81624i | −1.62907 | + | 1.18359i | 2.06168 | − | 6.34519i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
251.3 | −0.0430779 | + | 0.132580i | −2.41558 | + | 1.75502i | 1.60231 | + | 1.16415i | 0 | −0.128623 | − | 0.395861i | 2.88786 | + | 2.09815i | −0.448926 | + | 0.326164i | 1.82787 | − | 5.62561i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
251.4 | 0.296290 | − | 0.911888i | 0.727583 | − | 0.528620i | 0.874283 | + | 0.635204i | 0 | −0.266466 | − | 0.820099i | −0.616184 | − | 0.447684i | 2.38967 | − | 1.73620i | −0.677113 | + | 2.08394i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.c | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 275.2.h.c | ✓ | 16 |
5.b | even | 2 | 1 | 275.2.h.e | yes | 16 | |
5.c | odd | 4 | 2 | 275.2.z.c | 32 | ||
11.c | even | 5 | 1 | inner | 275.2.h.c | ✓ | 16 |
11.c | even | 5 | 1 | 3025.2.a.bi | 8 | ||
11.d | odd | 10 | 1 | 3025.2.a.bm | 8 | ||
55.h | odd | 10 | 1 | 3025.2.a.bj | 8 | ||
55.j | even | 10 | 1 | 275.2.h.e | yes | 16 | |
55.j | even | 10 | 1 | 3025.2.a.bn | 8 | ||
55.k | odd | 20 | 2 | 275.2.z.c | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
275.2.h.c | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
275.2.h.c | ✓ | 16 | 11.c | even | 5 | 1 | inner |
275.2.h.e | yes | 16 | 5.b | even | 2 | 1 | |
275.2.h.e | yes | 16 | 55.j | even | 10 | 1 | |
275.2.z.c | 32 | 5.c | odd | 4 | 2 | ||
275.2.z.c | 32 | 55.k | odd | 20 | 2 | ||
3025.2.a.bi | 8 | 11.c | even | 5 | 1 | ||
3025.2.a.bj | 8 | 55.h | odd | 10 | 1 | ||
3025.2.a.bm | 8 | 11.d | odd | 10 | 1 | ||
3025.2.a.bn | 8 | 55.j | even | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .