Properties

Label 275.2.h.c
Level 275275
Weight 22
Character orbit 275.h
Analytic conductor 2.1962.196
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,2,Mod(26,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 275=5211 275 = 5^{2} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 275.h (of order 55, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.195886055592.19588605559
Analytic rank: 00
Dimension: 1616
Relative dimension: 44 over Q(ζ5)\Q(\zeta_{5})
Coefficient field: Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x164x15+10x1413x13+53x1212x11+136x10+8x9+300x8++16 x^{16} - 4 x^{15} + 10 x^{14} - 13 x^{13} + 53 x^{12} - 12 x^{11} + 136 x^{10} + 8 x^{9} + 300 x^{8} + \cdots + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 5 5
Twist minimal: yes
Sato-Tate group: SU(2)[C5]\mathrm{SU}(2)[C_{5}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β9+β5+β2)q2β14q3+(β11β10β9+1)q4+(β15β12β10)q6+(β9β8β7++1)q7++(β15+β14+3β1)q99+O(q100) q + ( - \beta_{9} + \beta_{5} + \beta_{2}) q^{2} - \beta_{14} q^{3} + (\beta_{11} - \beta_{10} - \beta_{9} + \cdots - 1) q^{4} + ( - \beta_{15} - \beta_{12} - \beta_{10}) q^{6} + (\beta_{9} - \beta_{8} - \beta_{7} + \cdots + 1) q^{7}+ \cdots + (\beta_{15} + \beta_{14} + \cdots - 3 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q2q32q43q6+4q7+16q8+8q95q116q12+7q13+3q144q16+12q17+16q1813q19+10q21+28q224q2343q24+10q99+O(q100) 16 q - 2 q^{3} - 2 q^{4} - 3 q^{6} + 4 q^{7} + 16 q^{8} + 8 q^{9} - 5 q^{11} - 6 q^{12} + 7 q^{13} + 3 q^{14} - 4 q^{16} + 12 q^{17} + 16 q^{18} - 13 q^{19} + 10 q^{21} + 28 q^{22} - 4 q^{23} - 43 q^{24}+ \cdots - 10 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x164x15+10x1413x13+53x1212x11+136x10+8x9+300x8++16 x^{16} - 4 x^{15} + 10 x^{14} - 13 x^{13} + 53 x^{12} - 12 x^{11} + 136 x^{10} + 8 x^{9} + 300 x^{8} + \cdots + 16 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (26449018002ν15236888516211ν14+788099178184ν131526842653922ν12++6985303901728)/25527087093000 ( 26449018002 \nu^{15} - 236888516211 \nu^{14} + 788099178184 \nu^{13} - 1526842653922 \nu^{12} + \cdots + 6985303901728 ) / 25527087093000 Copy content Toggle raw display
β3\beta_{3}== (71383474437ν15289509004196ν14+724686737314ν13+26659476408112)/25527087093000 ( 71383474437 \nu^{15} - 289509004196 \nu^{14} + 724686737314 \nu^{13} + \cdots - 26659476408112 ) / 25527087093000 Copy content Toggle raw display
β4\beta_{4}== (104750151572ν15+673159972921ν142076349151074ν13++2568824593792)/25527087093000 ( - 104750151572 \nu^{15} + 673159972921 \nu^{14} - 2076349151074 \nu^{13} + \cdots + 2568824593792 ) / 25527087093000 Copy content Toggle raw display
β5\beta_{5}== (64382245392ν15136843233291ν14+153040707434ν13+333330036813ν12++3970336916928)/12763543546500 ( 64382245392 \nu^{15} - 136843233291 \nu^{14} + 153040707434 \nu^{13} + 333330036813 \nu^{12} + \cdots + 3970336916928 ) / 12763543546500 Copy content Toggle raw display
β6\beta_{6}== (160551537112ν15+537455996876ν14932355398199ν13+10162625679608)/25527087093000 ( - 160551537112 \nu^{15} + 537455996876 \nu^{14} - 932355398199 \nu^{13} + \cdots - 10162625679608 ) / 25527087093000 Copy content Toggle raw display
β7\beta_{7}== (335740577504ν151576476952372ν14+4304252214543ν13++2834825497856)/25527087093000 ( 335740577504 \nu^{15} - 1576476952372 \nu^{14} + 4304252214543 \nu^{13} + \cdots + 2834825497856 ) / 25527087093000 Copy content Toggle raw display
β8\beta_{8}== (169847619014ν15638541728247ν14+1347321043353ν13+8155768916224)/12763543546500 ( 169847619014 \nu^{15} - 638541728247 \nu^{14} + 1347321043353 \nu^{13} + \cdots - 8155768916224 ) / 12763543546500 Copy content Toggle raw display
β9\beta_{9}== (436581493858ν15+1772774993434ν144602703454791ν13+32620021539072)/25527087093000 ( - 436581493858 \nu^{15} + 1772774993434 \nu^{14} - 4602703454791 \nu^{13} + \cdots - 32620021539072 ) / 25527087093000 Copy content Toggle raw display
β10\beta_{10}== (336455799554ν151405015474407ν14+3422183399388ν13+6722455741504)/12763543546500 ( 336455799554 \nu^{15} - 1405015474407 \nu^{14} + 3422183399388 \nu^{13} + \cdots - 6722455741504 ) / 12763543546500 Copy content Toggle raw display
β11\beta_{11}== (784893186521ν15+3081039362473ν147454798472622ν13+17909140090624)/25527087093000 ( - 784893186521 \nu^{15} + 3081039362473 \nu^{14} - 7454798472622 \nu^{13} + \cdots - 17909140090624 ) / 25527087093000 Copy content Toggle raw display
β12\beta_{12}== (825910307819ν15+3905169355947ν1410779625022808ν13+50705453705536)/25527087093000 ( - 825910307819 \nu^{15} + 3905169355947 \nu^{14} - 10779625022808 \nu^{13} + \cdots - 50705453705536 ) / 25527087093000 Copy content Toggle raw display
β13\beta_{13}== (420153483844ν151344158135822ν14+2796519364033ν13++30173885523636)/12763543546500 ( 420153483844 \nu^{15} - 1344158135822 \nu^{14} + 2796519364033 \nu^{13} + \cdots + 30173885523636 ) / 12763543546500 Copy content Toggle raw display
β14\beta_{14}== (509735557264ν151869094610042ν14+4458813844393ν13++14317509681756)/12763543546500 ( 509735557264 \nu^{15} - 1869094610042 \nu^{14} + 4458813844393 \nu^{13} + \cdots + 14317509681756 ) / 12763543546500 Copy content Toggle raw display
β15\beta_{15}== (1298485402504ν156312051157617ν14+17598840879833ν13++5900772630536)/25527087093000 ( 1298485402504 \nu^{15} - 6312051157617 \nu^{14} + 17598840879833 \nu^{13} + \cdots + 5900772630536 ) / 25527087093000 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β10β82β7+β52β4 \beta_{10} - \beta_{8} - 2\beta_{7} + \beta_{5} - 2\beta_{4} Copy content Toggle raw display
ν3\nu^{3}== β15β132β11+2β10+2β93β82β7++1 - \beta_{15} - \beta_{13} - 2 \beta_{11} + 2 \beta_{10} + 2 \beta_{9} - 3 \beta_{8} - 2 \beta_{7} + \cdots + 1 Copy content Toggle raw display
ν4\nu^{4}== β15+β143β13+2β129β11+3β10+11β9+13β1 - \beta_{15} + \beta_{14} - 3 \beta_{13} + 2 \beta_{12} - 9 \beta_{11} + 3 \beta_{10} + 11 \beta_{9} + \cdots - 13 \beta_1 Copy content Toggle raw display
ν5\nu^{5}== 9β1412β13+9β1214β11+14β9+14β6+42β5+11 9 \beta_{14} - 12 \beta_{13} + 9 \beta_{12} - 14 \beta_{11} + 14 \beta_{9} + 14 \beta_{6} + 42 \beta_{5} + \cdots - 11 Copy content Toggle raw display
ν6\nu^{6}== 14β15+25β1425β13+14β1245β10+88β8+45β7+45 14 \beta_{15} + 25 \beta_{14} - 25 \beta_{13} + 14 \beta_{12} - 45 \beta_{10} + 88 \beta_{8} + 45 \beta_{7} + \cdots - 45 Copy content Toggle raw display
ν7\nu^{7}== 88β15+45β14+163β11275β10165β9+438β8+165 88 \beta_{15} + 45 \beta_{14} + 163 \beta_{11} - 275 \beta_{10} - 165 \beta_{9} + 438 \beta_{8} + \cdots - 165 Copy content Toggle raw display
ν8\nu^{8}== 275β15+275β13163β12+919β11919β10949β9+409 275 \beta_{15} + 275 \beta_{13} - 163 \beta_{12} + 919 \beta_{11} - 919 \beta_{10} - 949 \beta_{9} + \cdots - 409 Copy content Toggle raw display
ν9\nu^{9}== 534β15534β14+1453β13919β12+2980β111811β10++5427β1 534 \beta_{15} - 534 \beta_{14} + 1453 \beta_{13} - 919 \beta_{12} + 2980 \beta_{11} - 1811 \beta_{10} + \cdots + 5427 \beta_1 Copy content Toggle raw display
ν10\nu^{10}== 2980β14+4791β132980β12+5961β116063β96063β6++4018 - 2980 \beta_{14} + 4791 \beta_{13} - 2980 \beta_{12} + 5961 \beta_{11} - 6063 \beta_{9} - 6063 \beta_{6} + \cdots + 4018 Copy content Toggle raw display
ν11\nu^{11}== 5961β159845β14+9845β135961β12+19818β10++20208 - 5961 \beta_{15} - 9845 \beta_{14} + 9845 \beta_{13} - 5961 \beta_{12} + 19818 \beta_{10} + \cdots + 20208 Copy content Toggle raw display
ν12\nu^{12}== 32277β1519818β1465289β11+106372β10+66561β9++66561 - 32277 \beta_{15} - 19818 \beta_{14} - 65289 \beta_{11} + 106372 \beta_{10} + 66561 \beta_{9} + \cdots + 66561 Copy content Toggle raw display
ν13\nu^{13}== 106372β15106372β13+65289β12349879β11+349879β10++137070 - 106372 \beta_{15} - 106372 \beta_{13} + 65289 \beta_{12} - 349879 \beta_{11} + 349879 \beta_{10} + \cdots + 137070 Copy content Toggle raw display
ν14\nu^{14}== 215699β15+215699β14565578β13+349879β121152511β11+2127272β1 - 215699 \beta_{15} + 215699 \beta_{14} - 565578 \beta_{13} + 349879 \beta_{12} - 1152511 \beta_{11} + \cdots - 2127272 \beta_1 Copy content Toggle raw display
ν15\nu^{15}== 1152511β141863133β13+1152511β122342971β11+2391411β9+1482267 1152511 \beta_{14} - 1863133 \beta_{13} + 1152511 \beta_{12} - 2342971 \beta_{11} + 2391411 \beta_{9} + \cdots - 1482267 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/275Z)×\left(\mathbb{Z}/275\mathbb{Z}\right)^\times.

nn 101101 177177
χ(n)\chi(n) 1β6+β7β9-1 - \beta_{6} + \beta_{7} - \beta_{9} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
26.1
2.66477 1.93607i
0.977523 0.710212i
−0.260198 + 0.189045i
−1.26407 + 0.918397i
0.545543 1.67901i
0.207669 0.639141i
−0.265939 + 0.818476i
−0.605307 + 1.86294i
2.66477 + 1.93607i
0.977523 + 0.710212i
−0.260198 0.189045i
−1.26407 0.918397i
0.545543 + 1.67901i
0.207669 + 0.639141i
−0.265939 0.818476i
−0.605307 1.86294i
−1.85576 1.34829i 0.0131041 0.0403304i 1.00792 + 3.10207i 0 −0.0786950 + 0.0571753i −0.352180 1.08390i 0.894346 2.75251i 2.42560 + 1.76230i 0
26.2 −0.168506 0.122427i −0.585361 + 1.80155i −0.604628 1.86085i 0 0.319195 0.231909i 0.398265 + 1.22573i −0.254662 + 0.783769i −0.475901 0.345762i 0
26.3 1.06921 + 0.776830i 0.626199 1.92724i −0.0782786 0.240917i 0 2.16668 1.57419i −0.107618 0.331213i 0.920262 2.83228i −0.895086 0.650318i 0
26.4 2.07308 + 1.50618i −0.553942 + 1.70486i 1.41105 + 4.34277i 0 −3.71620 + 2.69998i −1.17454 3.61485i −2.03208 + 6.25410i −0.172643 0.125433i 0
126.1 −0.854560 2.63006i −1.32800 0.964848i −4.56893 + 3.31953i 0 −1.40276 + 4.31724i −1.53545 + 1.11557i 8.16046 + 5.92892i −0.0944009 0.290536i 0
126.2 −0.516686 1.59020i 2.51599 + 1.82798i −0.643729 + 0.467696i 0 1.60686 4.94542i 2.49985 1.81624i −1.62907 1.18359i 2.06168 + 6.34519i 0
126.3 −0.0430779 0.132580i −2.41558 1.75502i 1.60231 1.16415i 0 −0.128623 + 0.395861i 2.88786 2.09815i −0.448926 0.326164i 1.82787 + 5.62561i 0
126.4 0.296290 + 0.911888i 0.727583 + 0.528620i 0.874283 0.635204i 0 −0.266466 + 0.820099i −0.616184 + 0.447684i 2.38967 + 1.73620i −0.677113 2.08394i 0
201.1 −1.85576 + 1.34829i 0.0131041 + 0.0403304i 1.00792 3.10207i 0 −0.0786950 0.0571753i −0.352180 + 1.08390i 0.894346 + 2.75251i 2.42560 1.76230i 0
201.2 −0.168506 + 0.122427i −0.585361 1.80155i −0.604628 + 1.86085i 0 0.319195 + 0.231909i 0.398265 1.22573i −0.254662 0.783769i −0.475901 + 0.345762i 0
201.3 1.06921 0.776830i 0.626199 + 1.92724i −0.0782786 + 0.240917i 0 2.16668 + 1.57419i −0.107618 + 0.331213i 0.920262 + 2.83228i −0.895086 + 0.650318i 0
201.4 2.07308 1.50618i −0.553942 1.70486i 1.41105 4.34277i 0 −3.71620 2.69998i −1.17454 + 3.61485i −2.03208 6.25410i −0.172643 + 0.125433i 0
251.1 −0.854560 + 2.63006i −1.32800 + 0.964848i −4.56893 3.31953i 0 −1.40276 4.31724i −1.53545 1.11557i 8.16046 5.92892i −0.0944009 + 0.290536i 0
251.2 −0.516686 + 1.59020i 2.51599 1.82798i −0.643729 0.467696i 0 1.60686 + 4.94542i 2.49985 + 1.81624i −1.62907 + 1.18359i 2.06168 6.34519i 0
251.3 −0.0430779 + 0.132580i −2.41558 + 1.75502i 1.60231 + 1.16415i 0 −0.128623 0.395861i 2.88786 + 2.09815i −0.448926 + 0.326164i 1.82787 5.62561i 0
251.4 0.296290 0.911888i 0.727583 0.528620i 0.874283 + 0.635204i 0 −0.266466 0.820099i −0.616184 0.447684i 2.38967 1.73620i −0.677113 + 2.08394i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 26.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 275.2.h.c 16
5.b even 2 1 275.2.h.e yes 16
5.c odd 4 2 275.2.z.c 32
11.c even 5 1 inner 275.2.h.c 16
11.c even 5 1 3025.2.a.bi 8
11.d odd 10 1 3025.2.a.bm 8
55.h odd 10 1 3025.2.a.bj 8
55.j even 10 1 275.2.h.e yes 16
55.j even 10 1 3025.2.a.bn 8
55.k odd 20 2 275.2.z.c 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
275.2.h.c 16 1.a even 1 1 trivial
275.2.h.c 16 11.c even 5 1 inner
275.2.h.e yes 16 5.b even 2 1
275.2.h.e yes 16 55.j even 10 1
275.2.z.c 32 5.c odd 4 2
275.2.z.c 32 55.k odd 20 2
3025.2.a.bi 8 11.c even 5 1
3025.2.a.bj 8 55.h odd 10 1
3025.2.a.bm 8 11.d odd 10 1
3025.2.a.bn 8 55.j even 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T216+5T21412T213+32T212+30T211+259T210193T29++1 T_{2}^{16} + 5 T_{2}^{14} - 12 T_{2}^{13} + 32 T_{2}^{12} + 30 T_{2}^{11} + 259 T_{2}^{10} - 193 T_{2}^{9} + \cdots + 1 acting on S2new(275,[χ])S_{2}^{\mathrm{new}}(275, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16+5T14++1 T^{16} + 5 T^{14} + \cdots + 1 Copy content Toggle raw display
33 T16+2T15++16 T^{16} + 2 T^{15} + \cdots + 16 Copy content Toggle raw display
55 T16 T^{16} Copy content Toggle raw display
77 T164T15++961 T^{16} - 4 T^{15} + \cdots + 961 Copy content Toggle raw display
1111 T16++214358881 T^{16} + \cdots + 214358881 Copy content Toggle raw display
1313 T167T15++12075625 T^{16} - 7 T^{15} + \cdots + 12075625 Copy content Toggle raw display
1717 T1612T15++192721 T^{16} - 12 T^{15} + \cdots + 192721 Copy content Toggle raw display
1919 T16++109830400 T^{16} + \cdots + 109830400 Copy content Toggle raw display
2323 (T8+2T7+121)2 (T^{8} + 2 T^{7} + \cdots - 121)^{2} Copy content Toggle raw display
2929 T16++1259895025 T^{16} + \cdots + 1259895025 Copy content Toggle raw display
3131 T16++1126877761 T^{16} + \cdots + 1126877761 Copy content Toggle raw display
3737 T16+4T15++19811401 T^{16} + 4 T^{15} + \cdots + 19811401 Copy content Toggle raw display
4141 T16++195873515776 T^{16} + \cdots + 195873515776 Copy content Toggle raw display
4343 (T8+14T7+101)2 (T^{8} + 14 T^{7} + \cdots - 101)^{2} Copy content Toggle raw display
4747 T16++211111761961 T^{16} + \cdots + 211111761961 Copy content Toggle raw display
5353 T16++2390818816 T^{16} + \cdots + 2390818816 Copy content Toggle raw display
5959 T16++6178746025 T^{16} + \cdots + 6178746025 Copy content Toggle raw display
6161 T16++11020667028121 T^{16} + \cdots + 11020667028121 Copy content Toggle raw display
6767 (T8+7T7++23994961)2 (T^{8} + 7 T^{7} + \cdots + 23994961)^{2} Copy content Toggle raw display
7171 T16++923250017881 T^{16} + \cdots + 923250017881 Copy content Toggle raw display
7373 T16++217828491841 T^{16} + \cdots + 217828491841 Copy content Toggle raw display
7979 T16++275304843025 T^{16} + \cdots + 275304843025 Copy content Toggle raw display
8383 T1628T15++69372241 T^{16} - 28 T^{15} + \cdots + 69372241 Copy content Toggle raw display
8989 (T8+11T7+278125)2 (T^{8} + 11 T^{7} + \cdots - 278125)^{2} Copy content Toggle raw display
9797 T16++7330099456 T^{16} + \cdots + 7330099456 Copy content Toggle raw display
show more
show less